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Purpose: Intravascular ultrasound �IVUS� is a vascular imaging technique that is used to study
atherosclerosis since it has the ability to show the lumen and the vessel wall. Cross-sectional images
of blood vessels are produced and they provide quantitative assessment of the vascular wall,
information about the nature of atherosclerotic lesions, as well as the plaque shape and size. Due to
the ultrasound speckle, catheter artifacts, or calcification shadows, the automated analysis of large
IVUS data sets represents an important challenge.
Methods: A multiple interface 3D fast-marching method is presented for the detection of the lumen
and external vessel wall boundaries. The segmentation is based on a combination of region and
contour information, namely, the gray level probability density functions of the vessel structures
and the intensity gradient. The detection of the lumen boundary is fully automatic. The segmenta-
tion method includes an interactive initialization procedure of the external vessel wall border. The
segmentation method was applied to 20 in vivo IVUS data sets acquired from femoral arteries. This
database contained three subgroups: Pullbacks acquired before balloon angioplasty �n=7�, after the
intervention �n=7�, and at a 1 yr follow-up examination �n=6�. Results were compared to valida-
tion contours that were manually traced by two experts on more than 1500 individual frames.
Results: For all subgroups, no significant difference was found between the area measurements of
the segmentation and validation contours for the lumen and external vessel wall. Moreover, high
intraclass correlation coefficients ��0.96� between the area of the manually traced contours and
detected boundaries with the fast-marching method were obtained for both vessel layers over the
whole database. The segmentation performance was also evaluated with point-to-point contour
distances between segmentation results and manually traced contours. A good overall accuracy was
obtained with average distances �0.13 mm and maximum distances �0.46 mm, indicating a good
performance in regions lacking information or containing artifacts. Only small differences of less
than a pixel �0.02 mm� were observed between the average distance metrics of each subgroup,
which prove the segmentation consistency.
Conclusions: This new IVUS segmentation method provides accurate results that correspond well
to the experts’ manually traced contours, but requires much less manual interactions and is
faster. © 2010 American Association of Physicists in Medicine. �DOI: 10.1118/1.3438476�
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I. INTRODUCTION

Intravascular ultrasound imaging �IVUS� provides high-
resolution tomographic images of the lumen and vessel wall
as a transducer mounted on a catheter is pulled back inside
blood vessels. IVUS can be safely used to assess the athero-
sclerotic plaque progression/regression in clinical trials1 and
it has also been the case in several studies that evaluated the
effect of therapies on coronary atherosclerosis.2,3 Benefits of
IVUS-based studies include smaller patient numbers to con-
firm study end-points and shorter trial durations.4 With its
ability to show the lumen cross section area, the wall thick-
ness, and the volume and position �concentricity or eccen-
tricity� of the lesion, IVUS is also becoming a tool of choice
in the treatment of peripheral diseases.5 Better stent expan-
sion evaluation6 and understanding of in-stent restenosis
mechanisms7 resulted from IVUS studies. More recently,
several reports that investigated, based on IVUS imaging,
drug-eluting stent deployment, implantation, and failures
were reviewed.8

A typical IVUS pullback contains hundreds of images in
which the lumen and external elastic membrane ��EEM� the
outer layer of the vessel wall� must be identified. Several 2D
and 3D quantitative measurements of the atherosclerotic dis-
ease such as the plaque volume, wall thickness, vascular re-
modeling, lumen area stenosis, and plaque burden can be
made from these contours.9 Since clinical trials often require
numerous patients ��100� to investigate atherosclerosis
therapies, a tremendous amount of data are produced and the
analysis is fastidious without robust and easy to use image
processing methods. Moreover, IVUS imaging is subject to
catheter ring-down artifacts, missing vessel parts due to cal-
cification shadowing or side branches, pulsation movements,
heterogeneously looking plaque, and ultrasonic speckle. Spe-
cific segmentation models must then be elaborated to over-
come these difficulties.

Many segmentation methods have been proposed so far
for the assessment of coronary IVUS images. The vast ma-
jority of these algorithms were based on edge information.
Recent works include graph-search algorithms with imple-
mentations based on the information of edge operators ap-
plied to blood noise filtered images,10 and on first-derivative
and second-derivative gradient filters.11 Active contours and
surfaces were investigated with various edge information:
Gradient-based active surfaces,12 pixel intensity combined to
gradient active contours,13 gradient vector flow active con-
tours based on edge information with median filtered
images,14 and image gray level gradient active contours with
automatic initialization.15 Other edge-based segmentation
models include elliptical template fitting16 and multiagent
segmentation.17 On the other hand, segmentation models
were developed using region features of IVUS images: The
optimization of a maximum a posteriori estimator modeling
gray level variances and contour geometry was proposed18

and then revised using Rayleigh statistics of the signal for
the detection of the lumen contour only.19 A graph-search
algorithm also using Rayleigh statistics and intensity patterns

20
learned from a training step were also proposed. None of
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these segmentation methods combines local edge informa-
tion and region features.

Furthermore, these investigations were all focused on the
analysis of coronary IVUS images that are widely studied.
Because the usage of IVUS is becoming a valued and some-
times necessary tool in peripheral artery interventions, and as
the appearance and size of peripheral arteries are different,5

the IVUS segmentation problematic should also be addressed
for these vessels. In cases where the disease is advanced and
intervention is required, extensive irregular atheromas that
project into the lumen are routinely found in peripheral
vessels.21 Since IVUS is a gold standard method for clinical
trials, the segmentation algorithm should be validated with
IVUS acquisitions ideally acquired at different time points
during such a trial �for example, before and after balloon
angioplasty and one year after pharmaceutical or other thera-
pies�. Previously, we presented a 3D fast-marching segmen-
tation model that was based on the gray level probability
density functions �PDFs� of the vessel wall structures.22

However, the segmentation method was initialized manually.
Segmentation results compared well to a gradient implemen-
tation of the fast-marching method.

The aim of this work was thus to identify the luminal and
EEM borders on IVUS sequences of diseased femoral arter-
ies with a highly automated segmentation method. A fast-
marching segmentation model with an automated initializa-
tion procedure that requires minimal user involvement is
thus presented. This method has the ability to recover in
parallel different boundaries. During the initialization, the
lumen and EEM contours are automatically detected and the
EEM contours, on longitudinal views of the 3D data set, can
be corrected manually if required. The automatically esti-
mated PDFs that model the gray level distributions of the
wall layers and atherosclerotic plaques are shown to be ap-
propriate for the segmentation of the femoral arterial wall
that exhibits various sizes and echogenicities. The image gra-
dient information was combined with PDF mixtures repre-
senting the vessel wall structures to give more robustness to
the multiple interface fast-marching segmentation. Overall,
20 pullbacks containing 15 895 frames were segmented and
more than 1500 frames were analyzed manually for accuracy
assessment of our method. Such a comparison with pre- and
post-intervention data has never been reported in the IVUS
segmentation literature �for both coronary and peripheral
vessels�.

The paper is organized as follows: The 3D fast-marching
method based on a mixture of probability density functions
and the gray level gradient is detailed in Sec. II; it is fol-
lowed by the description of the PDF estimation method and
the initialization procedure. Section III presents the experi-
mental data. Segmentation results are reported in Sec. IV and
discussed in Sec. V.

II. SEGMENTATION MODEL

The segmentation model is divided into three steps: The
preprocessing, the initialization, and the fast-marching seg-
mentation. Figure 1 shows a block diagram of the whole

segmentation process.
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II.A. Fast-marching method

Level-set and fast-marching methods, which were intro-
duced by Osher and Sethian to follow an interface �or front
or contour� propagating under a speed function F,23,24 have
been widely used in the medical imaging field ever since
they were adapted to shape recovery.25 When applied to im-
age segmentation, the boundary is defined as the desired final
position of the propagating interface. To achieve this, the
interface speed should become close to zero when it reaches
the object borders to stop the propagation and end the seg-
mentation process.

When using the fast-marching formulation for the seg-
mentation of a 3D image sequence, the function T that de-
scribes the arrival time T�x� of the propagating contour at a
point x= �x1 ,x2 ,x3� in the imaging volume governs the front
evolution. The T function satisfies Eq. �1�, stating that the
arrival time difference between two adjacent voxels in-
creases as the velocity of the contour F decreases. The evo-
lution of the interface is performed through the construction
of the time function map �T map�23

��T�F = 1. �1�

For the segmentation of IVUS images, the luminal and
EEM borders must be identified. In our study, both contours
were detected in parallel using a multiple interface extension
of the fast-marching algorithm.26 The multiple interface ap-
proach directly depicts the layered structure of the wall and
prevents the detected borders from overlapping. For this par-
ticular case, a boundary is defined by the meeting position of
two fronts propagating in opposite directions. The final po-
sition of the boundary is thus located where the speed is
minimal for both opposite interfaces. To identify the lumen
and EEM borders, two sets of two interfaces propagating
until they meet were defined. Each of the multiple interfaces
l�L, where L is the set �1,2 , . . . ,2NL� of interfaces of the
NL=2 vessel wall structures, propagates according to a speed
function defined in terms of the image gradient and the PDF
Pl of the corresponding wall component. For example, to
detect the lumen boundary, the first interface, positioned in-
side the lumen, evolves outward according to the lumen PDF
and the intensity gradient; the second interface, positioned
inside the intima plus plaque structure of the wall, evolves

inward according to the intima plus plaque PDF and the
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intensity gradient �the EEM border is similarly detected with
two moving interfaces�. The propagation speed Fl of inter-
face l is given by Eq. �2�

Fl�i, j,k� = �Fl,PDF�i, j,k� + �Fl,grad�i, j,k� , �2�

where Fl,PDF�i , j ,k� and Fl,grad�i , j ,k� are the speed function
components, at position �i , j ,k� in the IVUS image volume I,
respectively defined in terms of the PDF and intensity gradi-
ent; � and � are the weights of each component in the speed
function Fl that should be in the interval �0, 1�.26

Fl,PDF�i , j ,k� and Fl,grad�i , j ,k� were defined in this study as

Fl,PDF�i, j,k� =
1

N�
�
s��

pl�ys� , �3�

Fl,grad�i, j,k� =
1

1 + �G� � g�ys��
, �4�

where ys is the gray level value of voxel s positioned at
I�i , j ,k�; � is the set of the N� 3D neighbors of the voxel s;
and pl�ys� is the occurring probability of ys in region l. Ac-
cording to Eq. �3�, the velocity of interface l takes higher
values when it is inside a region having a gray level distri-
bution close to pl, whereas the velocity decreases when ap-
proaching the boundary since the neighbors are distributed
under other component PDFs. This velocity function has a
general form that can be used with any type of PDF. In Eq.
�4�, g�ys� is the value of the gradient g at ys and G� is
a Gaussian smoothing filter of standard deviation
�=3.5 pixels �the dimension of the IVUS images was
10�10 mm2 with an isotropic pixel size of 0.026
�0.026 mm2; the vessel diameter of the superficial femoral
arteries were 6.0 mm, on average, in this study�. According
to Eq. �4�, the speed function takes low values when the
gradient is high, which corresponds to the border between
different regions.

The propagation of multiple interfaces is similar to the
single interface fast-marching algorithm except that several
interfaces contribute to the construction of a joint T map
�Sifakis et al.26 provided a detailed description of the T map
construction algorithm�. The multiple interface fast-marching

FIG. 1. Block diagram of the whole segmentation
model.
segmentation is finished when all fronts propagating in op-
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posite directions have met. Fronts are thus obligated to
evolve until the arrival time map is completely built.

II.B. Preprocessing

The IVUS images were converted to the polar format
to enable the usage of a radial window in Eq. �3� and
the computation of a radial gradient in Eq. �4�. All computa-
tions were performed in the polar format. The radial 3D
window that provided neighborhood averaging in the
PDF component of the speed function was of size
3° radially�0.3 mm axially�0.3 mm longitudinally �3
�12�3 voxels, Nv=108�. The � and � parameters in Eq.
�2� were set to 0.5. For the gradient computation, each radial
line of the smoothed polar transformed image was convolved
with the gradient operator �2 2 1 0−1−2−2�. The gradient
at each point was then averaged with both axial neighbors
and normalized between �−1,1�.

The catheter artifact �ring-down� was also automatically
detected and removed from the IVUS images. Pixels that had
intensities that correlated highly �with r�0.9� through
frames across the whole pullback were labeled as catheter
pixels. Since the blood pixels decorrelate as well as the wall
pixels over the whole pullback, it was possible to distinguish
the catheter from the blood and wall. The search length for
each scan line was reduced to the first 30% points �corre-
sponding to a circular area with a 1.5 mm radius� and the
correlation was performed on a subset of the whole pullback
�corresponding to 5% of the number of images� to reduce the
computation. The size of the searched region, determined
empirically, was wide enough to cover large ring-down arti-
facts. The labeled catheter pixel intensities were replaced by
the average intensity of the eight connected noncatheter pixel
neighbors to preserve the plaque in the image if the artifact
and parts of the vessel wall were superimposed. Figure 2
shows an example of an IVUS image before and after the
catheter artifact removal procedure.

II.C. Probability density function estimation

The speed function of Eq. �3� is based on the occurring
probability of the gray level values �pl�ys�� in the different
vessel components. It is usually assumed in ultrasound

FIG. 2. �a� Typical intravascular ultrasound cross-sectional image with ring-
down artifact and �b� corresponding image without the artifact.
B-mode imaging �the B-mode signal is the envelop filtered
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radio-frequency signal� that the intensity of the ultrasonic
speckle pattern of a tissue that contains a large number of
randomly distributed scatterers is Rayleigh distributed.27 The
gray level distributions of the tissue components in the IVUS
volume were thus each modeled with a Rayleigh PDF. Since
an IVUS pullback contains the ultrasonic speckle pattern of
various tissues �blood in the lumen, plaque components, ves-
sel wall, and different types of surrounding tissues�, its dis-
tribution was modeled as a mixture of Rayleigh PDFs. The
PDF mixture pY�� with parameter �= ��	m ,am

2 ��m=1
M that con-

tains M Rayleigh probability density functions pY�ys� was
defined by

pY���ys��� = �
m=1

M

	mpm�ys�am
2 � , �5�

with

pY�ys;a
2� =

ys

a2exp	−
ys

2

2a2
 , �6�

where 	m is the proportion of the mth component of the mix-
ture so that �m=1

M 	m=1; Y is the image gray levels and ys

takes its value in �1,…,256�; and a2�0 and the variance
�2=a2�4−
� /2.

The global mixture PDF is thus the combination of the
intensity distributions of the different tissues that form the
IVUS data. The expectation-maximization �EM� algorithm28

was used to estimate the mixture parameter � from the
whole IVUS pullback. A detailed description of the Rayleigh
PDF mixture parameter estimation for IVUS pullbacks with
the expectation-maximization algorithm can be found in our
previous work.22 With the EM algorithm, the mixture param-
eters were automatically computed at the beginning of each
segmentation to take into account the echogenicity variabil-
ity among patients. The only fixed parameter was the number
of distribution in the mixture. A mixture of M =5 distribu-
tions �roughly corresponding to the lumen, plaque compo-
nents, vessel wall, and two types of surrounding tissues� was
used to model each IVUS data set.

For computation efficiency, the EM algorithm was only
applied to a subset of Y, i.e., the pixel intensities of the
whole IVUS series of a given patient. The subset contained
approximately 3% of the pixels that were randomly sampled
from the whole pullback frames. It was shown that no statis-
tically significant difference was found between the Rayleigh
mixture parameters calculated for such a subset and the
whole observed data set.22

II.C.1. PDF classification

To be used in the multiple interface fast-marching, the
different distributions of the mixture must be assigned to the
tissues that form the IVUS data. For the initial interface cal-
culation �see Sec. II D�, a first rough assignment was per-
formed. The distributions were thus classified in two groups:
The hypoechoic tissue group that contains the lumen and
media structure �which appears, on axial frames, as a thick

hypoechoic ring inside the EEM� �group 1� and the higher



g

3637 Roy Cardinal et al.: IVUS plaque segmentation 3637
intensity tissue group that represents the intima plus plaque
and surrounding tissues �group 2�. The two distributions with
the lowest average value were assigned to the first group and
the remaining three distributions to the second one. This was
a rough estimate that was only used during the initialization
procedure. For the fast-marching segmentation, the distribu-
tions used in Eq. �3� were chosen to minimize the difference
between the selected PDF for the lumen or wall components
and the gray level histograms computed from the corre-
sponding regions delineated by the initial contours. The
speed function Fl,PDF was thus defined according to the PDF
that best fitted the tissue echogenicity.

II.D. Interactive initialization

The initialization procedure was divided in two steps. Ini-
tial lumen and EEM borders were computed on longitudinal
views �LViews� during the first step of the initialization pro-
cedure. LViews provide information for the whole pullback.
A total of four LViews were thus selected at regularly spaced
angles over 360° �0°, 45°, 90°, and 135°�; they provided
enough information on each cross-sectional image while lim-
iting the computation time. Initial longitudinal lumen con-
tours were fully automatically detected. The EEM longitudi-
nal contours were also automatically computed and then
proposed to the user for correction or acceptance on the four
LViews.

The fully automatic calculation of the cross-sectional �or
axial� lumen and EEM initial borders of the individual
frames was performed during the second step of the initial-
ization process. The cross-sectional contours were computed
from the initial longitudinal contours. No manual corrections
were necessary or used at this step. Details on the initializa-
tion steps 1 and 2 are given below.

II.D.1. Longitudinal Initialization

Sets of two longitudinal lumen contours �one on each side
of the catheter� were first automatically detected on the four

Pullback length
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FIG. 3. Example of a LView of an IVUS data set with the longitudinal initia
lines, one on each side of the catheter, correspond to the initial longitudinal
cally computed longitudinal EEM contours proposed to the user for man
corrections. The catheter position was outlined with the thin gray lines. Nlon
LViews for a total of 8 boundaries. The two thick gray lines
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in Fig. 3 are an example of detected initial longitudinal lu-
men contours on an IVUS LView. Each longitudinal contour
cLum, where Lum indicates the lumen, was grown, starting at
the catheter position, to maximize the lumen boundary like-
lihood LLum

LLum�cLum� =
1

N�1
�

s��1
log p1�ys� , �7�

where �1 is the set of N�1 voxels inside the lumen boundary
and outside the catheter and p1�ys� is the estimated occurring
probabilities of voxel ys in the hypoechoic tissue group 1.
Pixels were added to the set �1 as long as the log-likelihood
of their neighborhood was higher than 95% of the lumen
boundary likelihood LLum. The neighborhood was defined by
a window of 0.08 mm radially, 0.08 mm longitudinally, and
0.08 mm axially �3�3�3 voxels�. The longitudinal con-
tours were then smoothed as B-splines to remove inconsis-
tent points. This method was simple and fast, and provided
initial longitudinal contours that were rough initialization of
the lumen to be refined in the last step of the initialization
process �see Sec. II D 2�.

EEM longitudinal borders were then detected on the same
LViews. For that purpose, the low intensity media sur-
rounded by the adventitia that brightly reflects the ultrasound
waves was searched in the IVUS LViews. The vessel con-
tours cEEM contained the previously identified longitudinal
lumen and were positioned to maximize the EEM boundary
likelihood defined by

LEEM�cEEM� =
1

N�1
�

s��1
log p1�ys� +

1

N�2
�

s��2
log p2�ys�

+
1

N�3
�

s��3
g�ys� , �8�

where �1 and �2 are sets of N�1 and N�2 voxels in regions of
interest, respectively inside and outside the vessel boundary;
�3 is the set of N�3 voxels on the boundary; p1�ys� and p2�ys�

, N
long

= 600 images
40 50 60

n contours, which required manual corrections of the EEM. The thick gray
n contours automatically detected. The white dotted lines are the automati-
cceptance or correction. The thick white lines correspond to the manual
he number of IVUS frames in the pullback.
(mm)
30

lizatio
lume
ual a

is t
are the estimated occurring probabilities of ys in the hypo-
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echoic and higher intensity tissue regions, respectively; and
g�ys� is the value of the gray level gradient g at ys. LEEM

reached a maximum when the pixels inside and outside the
vessel boundary were distributed according to the hypo-
echoic and hyperechoic tissue distributions, respectively, and
when the pixels close to the boundary had a high intensity
gradient.

To maximize Eq. �8�, deformation transformations were
applied to the longitudinal EEM boundary cEEM at regularly
spaced control points. A simplified deformable template
strategy29 was used to modify the longitudinal EEM bound-
ary with 1D stretching transformations applied in the radial
direction only. The stretching deformations were performed
according to Eq. �9� by displacing the contour c1 with vari-
ous Gaussian windows w centered on the control point posi-
tion kctrl.

c2�k� = c1�k� + �ww�k� , �9�

with

w�k� = e−�k − kctrl�
2/2�2

,

where c1 is the contour to deform and c2 the deformed con-
tour; k= �1, . . . ,Nlong� and 1�kctrl�Nlong; Nlong is the number
of points in the longitudinal contour �equal to the number of
IVUS frames in the pullback�; �w is a scaling factor of the
window; kctrl is the control point position; and �2 is the vari-
ance of the Gaussian window. Parameters in Eq. �9� were set
to −1.2 mm��w�1.2 mm, �=40, and Nctrl=20 regularly
spaced control points. These values were determined empiri-
cally to provide a large enough searching window and to
make the contour flexible while keeping a low computation
time.

On the first LView at 0°, the deformations were applied to
the longitudinal EEM boundary that was initially positioned
outside the longitudinal lumen location since no information
was available on its position. On the following three LViews,
deformations were applied to the previously detected EEM
border in a restrained neighborhood of the longitudinal con-
tour to maximize LEEM locally. The detected longitudinal
contours were proposed to the user and corrected if neces-
sary before proceeding to the next LView. Corrections were
made by dragging the erroneous parts of the contour close to
the boundary while keeping the accurately detected parts of
the boundary. Figure 3 shows an example of LView that re-
quired manual corrections of the EEM contours. The de-
tected and corrected longitudinal EEM contours are dis-
played.

II.D.2. Automatic cross-sectional initialization

From the previous longitudinal IVUS initialization proce-
dure, two sets of eight contour points, for the lumen and
EEM, were available for the initialization of all cross-
sectional frames. Figure 4 shows an example of an IVUS
cross-sectional frame in the polar format with the corre-
sponding two sets of eight longitudinal contour points. Axial
�along depth� lumen and EEM contours were detected inside

a region around these longitudinal contour points to reduce
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the searching area and computation time. A similar procedure
to the EEM longitudinal boundary detection based on Eqs.
�8� and �9�, without the manual interaction, was used to ini-
tialize the axial lumen and EEM.

The initial cross-sectional lumen contours were automati-
cally detected as smooth closed curves, not necessarily cir-
cular to preserve the irregular lumen shape. A spline interpo-
lated contour passing through the initial longitudinal lumen
points was thus deformed to maximize the lumen boundary
likelihood defined similarly to the EEM boundary likelihood
in Eq. �8�. The deformed contour was not restricted to pass
through the longitudinal contour points. However, for the
lumen initialization, �1 in Eq. �8�, which is the set of pixels
in a region of interest inside the boundary, contained the
pixels inside the whole lumen and �2 contained the set of
pixels outside the lumen boundary �corresponding to the in-
tima plus plaque�.

On the other hand, the initial axial propagating interface
for the external wall boundary was automatically set as an
elliptical contour, passing near the longitudinal EEM contour
points and maximizing the vessel boundary likelihood
LEEM�cEEM� of Eq. �8� for the cross-sectional images.

Once initialized, stretching transformations, as defined in
the previous section by Eq. �9�, were applied to both lumen
and EEM cross-sectional contours to maximize their bound-
ary likelihood. Deformations applied to the axial contours
were characterized by parameters �= �40,60�, −0.25 mm
��w�0.25 mm, and Nctrl=20 control points in Eq. �9�.
These values were also determined empirically; a smaller
search window was used here since only small adjustments
of the axial contours were performed. Examples of automati-
cally computed cross-sectional contours for the lumen and
EEM are shown on Fig. 4.

Cross-sectional lumen and EEM contours were computed
for one out of three IVUS images and interpolated for the
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FIG. 4. Example of a cross-sectional IVUS frame in polar format with the
initial longitudinal set of eight contour points and automatically computed
axial contours for both the lumen and EEM.
missing frames to reduce the computation time. The fast-
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marching segmentation was initialized with the interpolated
contours and was performed over the whole data set. As
mentioned earlier, the multiple interface fast-marching seg-
mentation requires that the initial axial contours be converted
in pairs of interfaces propagating in opposite directions and
that they contain the boundary to be detected. This was per-
formed using the procedure described in our previous
work.22

III. EXPERIMENTAL DATA

A total of 20 in vivo IVUS pullbacks �of 795
308
frames/series for a total of 15 895 frames� from diseased
superficial femoral arteries of 11 patients were available. Of
these data sets, seven were acquired before undergoing bal-
loon angioplasty, seven were acquired following intervention
�balloon angioplasty�, and finally, six were obtained at a 1 yr
follow-up examination �the database of 20 IVUS pullbacks
selected for the validation study was arbitrarily chosen from
the data set of 11 patients to provide groups of approximately
the same size�. The data sets were thus divided into three
subgroups. The patients received external beam radiation
�doses between 0 and 14 Gy� 24 h after intervention. The
IVUS database was acquired as a substudy of a randomized
clinical trial.30

An IVUS Volcano Therapeutics imaging system �In-
Vision Gold, Rancho Cordova, CA� equipped with a 20 MHz
array transducer was used to acquire data. The frame rate
was set to 10 images/s and the catheter pullback velocity to 1
mm/s; 0.1 mm thick 2D slices were thus generated. The ac-
quisition was not ECG-gated. Images of size 10�10 mm2

were recorded as 384�384 pixel matrices and stored in the
DICOM
format.

III.A. Validation

To validate the segmentation results, comparisons were
made with manually drawn contours of the lumen and EEM.
Boundaries were traced by two independent experts from an
accredited IVUS core laboratory on one every ten frames of
each IVUS pullback for a total of 1593 IVUS images avail-
able for the validation. Of these frames, 459 came from the
preangioplasty group, 476 from the post-intervention group,
and 658 from the 1 yr follow-up examination group. The
experts did not draw the boundary if its position could not be
identified due to excessive noise deterioration or large calci-
fications. These frames would be rejected in the clinical set-
ting. A total of 1533 and 1524 IVUS frames, respectively, for
the lumen and EEM �from the 1593 IVUS frames�, were thus
manually analyzed. Only approximately 4% of the validation
frames were rejected.

Average and Hausdorff point-to-point distances31 between
the detected and manually traced contours were computed to
assess the segmentation accuracy. The area of these contours
was also computed. The combination of distance and area
metrics validates the position and the size of the detected
contours compared to the manually traced ones. These met-

rics were computed for the lumen and EEM borders. The
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Hausdorff distance is the maximum distance between differ-
ent contours; it represents the largest segmentation error or
difference between contours �worst case�. To evaluate the
interuser variability, the contours manually traced by the two
experts were also compared.

Moreover, the repeatability of the segmentation was
evaluated; each IVUS pullback was segmented two times
�including the mixture parameter detection and interactive
initialization�. The interactive initialization of the method
was performed by a qualified user blinded to the validation
experts. Average and Hausdorff point-to-point contour dis-
tances, and area differences between detected boundaries
from different runs of the algorithm were thus calculated.

III.B. Statistical analysis

Two way analyses of variance �ANOVA� were carried out
for the area measurements, and average and Hausdorff dis-
tances; multiple pairwise comparisons with Tukey tests were
performed. The area measurements from the whole data sets
and for each subgroup �preangioplasty, postangioplasty, and
follow-up examination� were computed. The average and
Hausdorff distances were also evaluated for each subgroup
�preangioplasty, postangioplasty, and follow-up examina-
tion�. In the first ANOVA, the comparison was made be-
tween the area measurements of the segmentation and the
experts’ contours �see Table I�. The second ANOVA, for the
average and Hausdorff distance metrics, compared the 3D
fast-marching and the manual contours, the manual contours
from the two experts �interuser�, and the results from the two
runs of the algorithm �intersegmentation� �see Table III�.
Comparisons of the distance metrics were also made between

TABLE I. Segmentation accuracy: Area measurements for the detected
boundaries and manually traced contours by the experts. Expert 1 and Ex-
pert 2 correspond to the area measurements from the manually traced con-
tours, and FMM 1 and FMM 2 from the detected boundaries with the fast-
marching method �both runs�. EEM is the external elastic membrane �the
vessel wall border�. Pre-interv, Post-interv, and Follow-up, respectively,
show the results for the pre-intervention �balloon angioplasty�, post-
intervention, and 1 yr follow-up examination groups. The pixel size is
26�26 �m2. No significant difference existed when not indicated.

Expert 1 Expert 2 FMM 1 FMM 2

Lumen area �mm2�
All data �N=1533� 15.3
5.9 a–c 16.0
6.0 a 16.1
5.8 b 16.2
5.8 c

Pre-interv �N=440� 15.2
5.5 15.9
5.5 16.3
5.0 16.3
5.0
Post-interv �N=453� 15.6
5.0 16.6
5.0 16.6
5.1 16.8
5.3
Follow-up �N=640� 15.1
6.8 15.8
6.9 15.7
6.6 15.7
6.6

EEM area �mm2�
All data �N=1524� 28.5
7.4 28.6
7.4 28.5
7.3 28.5
7.3
Pre-interv �N=451� 28.1
4.7 28.1
4.7 28.2
4.5 28.2
4.6
Post-interv �N=442� 29.8
4.8 29.8
4.7 29.8
4.8 29.7
4.8
Follow-up �N=631� 27.9
9.7 28.2
10.0 27.9
9.7 27.9
9.8

aIndicates statistically significant differences �p�0.01� between Expert 1
and Expert 2.
bBetween Expert 1 and FMM 1 �p�0.01�.
cBetween Expert 1 and FMM 2 �p�0.01�.
the subgroups to study the performance of the segmentation
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on different types of IVUS acquisitions. Finally, the intrac-
lass correlation coefficient was also computed for the area
measurements of the manually traced boundaries and seg-
mentation results for the whole database �see Figs. 7�a� and
7�b��. All statistical analyses were performed with SIGMAS-

TAT, version 3.11, Systat Software Inc., San Jose, CA.

IV. RESULTS

The segmentation method was applied to the 20 IVUS
pullbacks of which 7 were acquired before balloon angio-
plasty, 7 after the intervention and 6 at a 1 year follow-up
examination. The lumen and EEM borders were obtained.

IV.A. Preprocessing

IV.A.1. Probability density function estimation

Figure 5 shows an example of automatically detected PDF
mixture and corresponding IVUS pullback histogram �a digi-
tization artifact of the IVUS system has probably caused the
regularly spaced histogram peaks visible on Fig. 5; however,
the PDF mixture estimation process seemed robust to this
artifact�. The detected mixtures were composed of five Ray-
leigh distributions even though only four are visible on Fig.
5. In this special case, the fifth PDF is flat with a weight 	m

close to zero because the IVUS pullback PDF mixture could
be modeled with less than five distributions.

IV.A.2. Interactive initialization

The fast-marching initialization procedure was performed
at the beginning of each segmentation. The interactive accep-
tance or correction of the EEM longitudinal initial contours
was performed on four LViews of each IVUS pullback. The
difference between the automatically detected and interac-
tively corrected longitudinal EEM contours was calculated to
evaluate the error of the automatically detected boundaries.
Average and Hausdorff differences between these contours
of 0.14
0.28 and 0.64
0.48 mm were, respectively, found
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IV.B. Segmentation

Typical segmentation results for the 3D fast-marching
method combining PDFs and gradient are shown in Fig. 6;
the manually traced contours by the expert technicians are
also displayed. The lumen and EEM boundaries are pre-
sented for three different cross-sectional IVUS images. A
qualitative analysis of the fast-marching segmentation results
reveals detected contours that were very close to all vessel
layers.

The area measurements computed from the two runs of
the segmentation method and both experts’ contours are
shown and compared in Table I. The results are reported for
the whole IVUS data sets and for each subgroup. For the
whole database, statistically significant differences were
found between the lumen area measurements from the two
experts, and between one of the experts and the segmentation
results. For each subgroup, the area measurements from the
experts’ contours were not statistically significantly different
when compared to the segmentation results. No statistically
significant difference was found for the EEM area measure-
ments.

Figure 7 shows the correlation between the detected and
manually drawn contours for all IVUS sequences. The seg-
mentation results from each run of the algorithm were com-
pared to the manual segmentation of each expert. High intra-
class correlation coefficients of 0.966 and 0.989 were,
respectively, found for the lumen and EEM areas between
the manually traced contours and automated segmentation
results. Figure 7 also shows the variation in the area mea-
surements between the detected boundaries and manually
drawn contours with the lumen and EEM Bland–Altman
plots.

To evaluate the degree of discrepancy between the area
measurements, Table II shows the difference �mm2 and %�
between the manually traced and detected boundary areas
�Auto-Man column�. The results of each run of the segmen-
tation method were compared to each expert. The area dif-
ferences were evaluated for the preangioplasty, postangio-
plasty, and follow-up examination data sets. This table also
presents the interuser variability �Man-Man column� and the

80

ure
ture

FIG. 5. Detected PDF mixture and corresponding IVUS
data histogram. The dotted line corresponds to the glo-
bal distribution and the solid lines to the individual
Rayleigh PDFs. The gray level x-axis was shortened for
better readability; however, PDFs decreased exponen-
tially for the gray level values up to 256.
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segmentation repeatability �Auto-Auto column�.
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Table III shows the average and Hausdorff distances be-
tween the manually traced and detected boundaries �Auto-
Man column�. The results of each run of the segmentation
method were compared to each expert’s contours. This table
also presents the interuser variability �Man-Man column� and
the segmentation repeatability measurements �Auto-Auto
column�. The average and Hausdorff distances were again
computed for the pre-intervention �balloon angioplasty�,
post-intervention, and follow-up exam acquisitions.

The average and Hausdorff point-to-point contour dis-
tances between the automated and manual segmentations

(a)

(d)

(g)

FIG. 6. ��a�, �d�, �g�� Typical intravascular ultrasound cross-sectional images
algorithm �solid gray and dashed white sets of contours�, ��c�, �f�, �i�� and m
contours�. Lumen and EEM detected boundaries are depicted. The catheter
almost no catheter artifact. The image size is 10�10 mm2.
were significantly higher than the interuser variability for
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both contours and for all subgroups �Man-Man column com-
pared to Auto-Man column�. However, for the segmentation
repeatability, lower average and Hausdorff distances than the
interuser variability were obtained for the lumen �Man-Man
column compared to Auto-Auto column�. For the EEM
boundary, the average distance was lower, but the Hausdorff
distance was higher when comparing the segmentation vari-
ability with that of the expert users.

To investigate the influence of the type of data sets �pre-
balloon angioplasty, postballoon angioplasty, and follow-up
examination� on the segmentation results, comparisons were

(c)

(f)

(i)

�e�, �h�� corresponding segmentation results of the two different runs of the
lly traced contours by the two experts �solid gray and dashed white sets of
ct was removed in �b�, �c�, �e�, �f�, �h�, and �i�. Note that �d� and �g� had
(b)

(e)

(h)

, ��b�,
anua
artifa
also made between the results of the different groups within



3642 Roy Cardinal et al.: IVUS plaque segmentation 3642
each column of Table III. Statistically significant differences
were found for many of the error metrics between the differ-
ent groups. Most often, the post-intervention group produced
statistically significant higher error metrics than the pre-
intervention and follow-up exam groups.

Figure 8 shows the volumic reconstruction of two IVUS
sequences to assess the performance of the method in 3D.
The segmented lumen and EEM of the best and worst IVUS
pullbacks are displayed. The sequences were rated by an
expert radiologist independently of the segmentation results
according to their calcium scoring. The worst acquisition
contained multiple and severe calcifications. Note that al-
though the manual segmentation technical experts had re-
ceived the instruction of not segmenting boundaries cor-
rupted by strong calcification shadow, the fast-marching
method provided an estimate of those contours.

V. DISCUSSION

A segmentation method based on a combination of global
and local image features integrated in a 3D fast-marching
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FIG. 7. Area of the detected boundaries versus manually drawn contours for
to y=x and ICC is the intraclass correlation coefficient between the detected
the detected boundaries and manually drawn contours for �c� the lumen and �
EEM is the external elastic membrane �the vessel wall border�.
model was presented. The segmentation method is highly
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automated with interactive initialization of the EEM and au-
tomatic lumen detection. An extensive validation of the
method was performed: A total of 15 895 IVUS frames were
segmented and 1524 of these were compared to manually
traced contours by IVUS analysis experts. The contributions
of this work include the usage of the mixture of the IVUS
gray level PDFs and the association of this information to the
intensity gradient; a multiple interface fast-marching seg-
mentation using an interactive initialization procedure in
which automatically detected EEM contours from only four
LViews are accepted or corrected by the user; the processing
of femoral artery IVUS images with the segmentation
method; and the validation of the segmentation on IVUS
acquisitions performed before balloon angioplasty, after the
intervention and at a 1 yr follow-up examination.

The preprocessing of the method includes the estimation
of a Rayleigh PDF mixture at the beginning of each segmen-
tation; Fig. 5 showed qualitatively that the detected mixture
closely fit the corresponding IVUS gray level histogram.
Each pullback was thus segmented with its own set of PDF
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mixture parameters since the acquisition settings were differ-
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ent and the echogenicity of the different wall components
was variable between patients. A quantitative evaluation was
performed earlier and it was shown that the mixture detec-
tion was robust and had a low variability.22 Standard devia-
tions of the mixture parameters 	m and am

2 going from 0.2%
to 3.5% were found for several runs of the algorithm on
different pixel subsets of an IVUS pullback. The number of
distribution in the mixture �five PDFs� was chosen empiri-
cally to be high enough to model the different tissue distri-
butions without being too elevated for convergence and com-
putation efficiency. Moreover, with the PDF classification
procedure described in Sec. II C 1, a complex plaque could
be modeled with more than one Rayleigh distribution. Figure
5 showed that the whole IVUS gray level distribution could
be modeled with less than five distributions without altering
the segmentation process.

The computation of the fast-marching initial contours was
also part of the segmentation preprocessing. The Hausdorff
distance between the proposed EEM longitudinal contours
on four LViews that were automatically detected and the cor-
rected boundaries was 0.64 mm on average showing that
only small corrections were necessary. Moreover, the com-
putation and manual correction of the initial longitudinal
EEM contours were completed in 243
161 s per pullback
with a combined C and MATLAB implementation of the pro-
cedure on an AMD Athlon 64 2 GHz processor with 1 GB of

TABLE II. Segmentation accuracy: Area differences. Man-Man indicates the
area difference between the manually traced contours of the two experts,
Auto-Man shows the average of the difference between each automated
segmentation and each of the expert contours �a positive value indicates a
bigger area with the fast-marching method�, and Auto-Auto gives the differ-
ence between different runs of the 3D fast-marching algorithm. EEM is the
external elastic membrane �the vessel wall border�. Pre-interv, Post-interv,
and Follow-up, respectively, show the results for the pre-intervention �bal-
loon angioplasty�, post-intervention, and 1 yr follow-up examination groups.
The pixel size is 26�26 �m2.

Man-Man Auto-Man Auto-Auto

Lumen area difference �mm2�
Pre-interv �N=440� −0.71
0.53 0.71
1.70 −0.02
0.45
Post-interv �N=453� −0.94
0.75 0.63
1.38 −0.19
0.96
Follow-up �N=640� −0.67
0.73 0.23
1.16 −0.03
0.46

Lumen area difference �%�
Pre-interv �N=440� −5.0
5.1 8.3
22.2 −0.2
3.2
Post-interv �N=453� −6.3
5.0 4.4
10.3 −0.8
4.7
Follow-up �N=640� 4.9
6.0 3.3
11.1 −0.2
3.1

EEM area difference �mm2�
Pre-interv �N=451� −0.07
0.72 0.10
0.94 −0.03
0.52
Post-interv �N=442� −0.03
1.08 −0.07
0.98 0.002
0.97
Follow-up �N=631� −0.24
0.72 −0.15
0.87 0.007
0.59

EEM area difference �%�
Pre-interv �N=451� −0.3
2.6 0.5
3.7 −0.1
1.9
Post-interv �N=442� −0.1
3.6 −0.2
3.6 0.03
3.1
Follow-up �N=631� −0.8
2.7 −0.4
3.3 0.03
2.3
RAM running under Windows XP.
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The typical segmentation results that are displayed on Fig.
6 show that the vessel wall boundaries were detected for
IVUS images exhibiting different characteristics. A vessel
with a large ring-down artifact and a plaque with a hypo-
echoic section surrounded by a brighter looking thickened
intima �Fig. 6�a�� was accurately segmented when comparing
the manually drawn and detected contours �Figs. 6�b� and
6�c�, respectively�. A robust segmentation was also provided
for the large vessel of Fig. 6�d�. A vessel that contained cal-
cifications and a heterogeneously looking plaque was seg-
mented in Fig. 6�h�. Figures 6�h� and 6�i� show that the
largest disagreement between the two experts and between
the segmentation results from different runs of the algorithm
occurred in the same regions with less information �the lu-
men contours at 7 o’clock and the EEM contours at 12
o’clock�.

A quantitative evaluation of the segmentation accuracy
was performed in Tables I and III. The results were com-
pared to manually traced boundaries on approximately 1500
IVUS frames. Table I shows the area measurements com-

TABLE III. Segmentation accuracy: Average and Hausdorff distances. AD is
the average distance �unsigned� and HD is the Hausdorff distance. Man-Man
corresponds to the difference metrics between the manually traced contours
of the two experts, Auto-Man shows the average of the difference between
each automated segmentation and each of the expert contours, and Auto-
Auto gives the difference between different runs of the 3D fast-marching
algorithm. EEM is the external elastic membrane �the vessel wall border�.
Pre-interv, Post-interv, and Follow-up, respectively, show the results for the
pre-intervention �balloon angioplasty�, post-intervention, and 1 yr follow-up
examination groups. The pixel size is 26�26 �m2. No significant differ-
ence existed between the subgroups when not indicated. The differences
between the columns are not indicated to lighten the table appearance �re-
sults from the Auto-Man column were significantly higher than the ones
from the Man-Man column�.

Man-Man Auto-Man Auto-Auto

Lumen AD �mm�
Pre-interv �N=440� 0.08
0.03 a 0.13
0.10 b 0.02
0.03 a

Post-interv �N=453� 0.09
0.04 a,c 0.13
0.07 c 0.03
0.05 a,c

Follow-up �N=640� 0.08
0.04 c 0.12
0.06 b,c 0.02
0.03 c

EEM AD �mm�
Pre-interv �N=451� 0.06
0.03 a 0.08
0.04 0.03
0.03 a

Post-interv �N=442� 0.07
0.04 a,c 0.09
0.05 c 0.05
0.05 a,c

Follow-up �N=631� 0.06
0.03 c 0.08
0.04 c 0.03
0.03 c

Lumen HD �mm�
Pre-interv �N=440� 0.20
0.10 a 0.43
0.30 0.16
0.15 a

Post-interv �N=453� 0.25
0.13 a 0.46
0.26 c 0.20
0.21 a,c

Follow-up �N=640� 0.22
0.12 0.40
0.21 c 0.16
0.13 c

EEM HD �mm�
Pre-interv �N=451� 0.16
0.09 0.27
0.17 0.17
0.15 a

Post-inter �N=442� 0.18
0.11 c 0.30
0.15 c 0.25
0.19 a,c

Follow-up �N=631� 0.15
0.08 c 0.25
0.14 c 0.20
0.16 c

aIndicates statistically significant differences between the pre- and post-
intervention groups �p�0.01�.
bBetween the pre-intervention and follow-up exam groups �p�0.01�.
cBetween the post-intervention and follow-up exam groups �p�0.01�.
puted from both experts and from the segmentation results.
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Over the whole IVUS database, in Table I, statistically sig-
nificant differences were found between the two experts’ lu-
men area measurements. This difference shows that the lu-
men contour was more difficult to identify and led to
differences in the IVUS image interpretation. However, these
differences were small. The IVUS data were acquired on
severely diseased femoral arteries from pre-intervention,
post-intervention, and 1 yr follow-up examinations. The av-
erage plaque burden, i.e., the area within the EEM occupied
by the atherosclerotic plaque,9 was 47%
13% with an av-
erage maximal value of 71%
11% �computed from the ex-
perts’ validation contours�. Nonstatistically significant differ-
ences of less than 0.2 mm �p�0.9� were obtained between
the lumen area measurements from the segmentation con-
tours and one of the experts’ manually traced boundaries; a
statistically significant difference of 0.9 mm �p�0.01� was
found with the other expert’s lumen area measurements.
However, that difference was small and only slightly higher
than the experts’ disagreement for the lumen area �0.8 mm�.
Since the segmentation method was closer to one of the ex-
perts’ lumen area measurements, that difference was ex-
pected. Nonstatistically significant differences of less than
0.1 mm �p�0.9� were measured between the EEM area
measurements of the experts and fast-marching segmentation
contours.

Table I also showed the area measurements for the prean-
gioplasty, post-intervention, and follow-up examination sub-
groups. When divided in this manner, no significant differ-
ence was found between the segmentation results and the
experts’ tracings for both contours. This indicates that the
lumen and EEM areas can be computed with the fast-
marching segmentation in agreement with both experts for

FIG. 8. Volumic reconstructions of the �a� worst and �b� best IVUS pullbac
boundaries are, respectively, shown in dark and light gray.
the different types of data sets.
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Moreover, small area differences between −0.15 and
0.71 mm2 were obtained in Table II for the lumen and EEM.
These absolute values are in the range of the experts’ vari-
ability between −0.94 and −0.03 mm2 for the lumen and
EEM area differences. It is important to evaluate the error on
the lumen and EEM area measurements since they are used
to evaluate the atherosclerotic disease in terms of stenosis
percentage, plaque burden, lumen and vessel wall volumes,
and wall thickness.

In addition to these previous results, Fig. 7 showed a high
intraclass correlation ��0.96� between the manually traced
contours and detected boundaries with the fast-marching
method for both lumen and EEM area measurements. The
Bland–Altman plots in Figs. 7�c� and 7�d� revealed that the
highest errors came from overestimation of the lumen area in
some cases. This happened in the presence of a low
echogenic plaque or wall making the blood and vessel wall
interface hard to identify. An analysis of the ultrasonic
speckle that decorrelates in the flowing blood as opposed to
the plaque speckle that correlates between adjacent frames
might solve this problem and improve the lumen segmenta-
tion.

The average and Hausdorff point-to-point distances be-
tween contours that were manually traced and detected with
the 3D fast-marching segmentation were also reported for the
pre-intervention �balloon angioplasty�, post-intervention, and
follow-up exam acquisitions in Table III. The interobserver
and segmentation variabilities were also evaluated. Table III
revealed that the point-to-point contour distances between
the segmentation results and manual boundaries were signifi-
cantly higher than the manually traced contour differences
�comparison between the columns of Table III�. Still, for any

cording to their calcium scoring. The lumen and external elastic membrane
ks ac
type of acquisition, the average and Hausdorff distances of
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the segmentation results remained low with values, respec-
tively, under 0.13 and 0.46 mm for both lumen and EEM
structures indicating a good performance in general and in
regions lacking information or containing artifacts. Again, as
shown in Table II, the average and maximum distances cor-
responded to variations close to the boundaries since small
area differences were obtained.

The average and maximum distance results also revealed
that the computerized segmentation variability was signifi-
cantly smaller than the manual interobserver variability ac-
cording to the point-to-point contour distances except for the
EEM Hausdorff distance, but these differences were smaller
than 3 pixels �0.07 mm� for all subgroups. The high repeat-
ability of the results shows the low sensitivity of the segmen-
tation method to the EM initialization and to the interactive
initialization of the external wall boundary.

When comparing average and Hausdorff distances be-
tween the different subgroups �comparison within the col-
umns of Table III�, the post-intervention data sets were often
more difficult to analyze either manually or computationally
as we measured the highest average and Hausdorff distances.
However, the discrepancy was small with less than the size
of a pixel �0.02 mm� for the average distances and less than
3 pixels �0.08 mm� for the Hausdorff distances. A statisti-
cally significant difference was found between the average
distance of the pre-intervention and follow-up groups; how-
ever, it was less than the size of a pixel �0.01 mm�.

Furthermore, Fig. 8 showed qualitatively that the perfor-
mance of the segmentation method over a whole acquisition
was similar for the best and worse IVUS pullbacks. In the
presence of severe calcifications, there is no signal or no gray
level information behind the calcification arc. In this case,
the velocity of the two fronts propagating in opposite direc-
tions to detect the EEM boundary was approximately the
same; therefore, the fronts converged to the initial boundary
for this specific region of the contour only.

To conclude, the multiple interface fast-marching has thus
provided segmentation results that were close to the manu-
ally traced boundaries by two experts with much less manual
interactions. Tables I and III have also shown that the lumen
and EEM areas correspond to the experts’ analyses, and that
the processing of data sets acquired at different time points in
a clinical trial �i.e., pre-intervention, post-intervention, and
follow-up exams� is feasible with the fast-marching segmen-
tation method.

V.A. Comparison with other segmentation methods

Recently, Giannoglou et al.15 proposed a gradient-based
active contour method and found lumen and EEM area dif-
ferences between segmented and manually traced contours of
0.70
1.34 and 0.17
2.29 mm2, respectively. Moreover,
Bovenkamp et al.17 obtained area differences of −0.14
1.01
and 0.13
2.16 mm2 for the lumen and EEM, respectively,
with an edge-based multiagent segmentation that took up to a
minute of processing per image. Takagi et al.10 found lumen
and EEM area differences of −0.15
0.84 and

2
−0.18
1.36 mm , respectively, with an edge-based graph-
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search method. These methods are fully automatic and au-
thors obtained area differences roughly in the same range
than those obtained with our method but on smaller vessels
�coronaries�. However, an objective comparison cannot be
made without the percentage of area differences that enables
comparison regardless of the vessel size. Moreover, in two of
these studies, the validation was performed on limited size
data sets �less than 200 images10 and 50 images15�. Here, we
validated our method with 1593 IVUS images that were seg-
mented two times with the computerized algorithm and
manually delineated by two experts. In addition, the 3D data
sets segmented with the fast-marching method included
15 895 frames.

Sanz-Requena et al.14 also proposed an active contour
segmentation method and obtained, for the lumen and EEM,
respectively, percentage of area differences of 11.09% and
4.98% for the interactive version of their segmentation and
of 10.95% and 7.27% for an automatic segmentation. These
values are higher than our 3D fast-marching combining re-
gion and local image information that provided differences
lower than 8.3% and 0.5% for the lumen and EEM areas,
respectively. Koning et al.11 proposed a graph-search-based
segmentation method with manual corrections of results if
necessary; lumen and EEM area differences of, respectively,
−0.21
0.34 and 0.27
0.49 mm2 were obtained on a small
data set �less than 130 images�. These values are again in the
range of area measurements of our study but on smaller ves-
sels. However, the authors did not provide information on the
necessary manual corrections. In our previous work,22 area
differences of 0.40
2.1 and −0.2
2.1 mm2, average dis-
tances of 0.16
0.10 and 0.13
0.07 mm, and Hausdorff
distances of 0.40
0.25 and 0.31
0.16 mm, each for the
lumen and EEM, respectively, were obtained, which are in
the same range of error metrics presented in Tables II and III;
these results were obtained with the fast-marching segmen-
tation that was initialized manually. A direct comparison be-
tween the previous version of the fast-marching method
based only on the gray level PDFs was not performed since
the initialization procedure is different. With the new fast-
marching method combining the intensity gradient and the
gray level PDF mixture, the lumen was fully automatically
detected. In addition, minimal interaction, which involved
only 4 min on average per IVUS 3D data set for the EEM
longitudinal contour calculation and correction, was required
for the vessel border initialization.

V.B. Other considerations

The average computation time for the whole segmentation
process �PDF mixture, gradient, the initialization computa-
tion and interactive correction, and 3D fast-marching� was
1.7
0.3 s per 2D image. The segmentation was not real-
time; however, the time to analyze an IVUS data set was
dramatically reduced compared to the manual analysis that
took approximately 60 s/image, corresponding to a more
than 30-fold improvement.

The parameters used in the equations of the initialization

procedure �in Sec. II D� were chosen empirically on a subset
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of the database to provide neighborhood averaging and flex-
ible deformation windows for all IVUS sequences with small
corrections on average. Increasing the size of the windows
produced higher computation times without improving the
performance of the segmentation. However, some IVUS se-
quences could have been initialized with less manual correc-
tions if using a different set of parameters specific to the
pullback being segmented. Adaptive parameters, optimized
for each data set, could decrease the number of necessary
manual corrections. It would be conceivable to use the
manually corrected contours to compute new parameters for
the next frame to be initialized. However, the computation
load of such a strategy should remain low to preserve the low
computation time.

Moreover, it would be possible to develop a multiscale
optimization of the 3D fast-marching segmentation to in-
crease the performance of the method. With this approach, a
higher resolution data set is initialized with low resolution
segmentation results of the same pullback. At low resolution
levels, a larger region can be explored and provides a rough
segmentation in less computation time; the segmentation can
then be refined at higher resolution levels but with a reduced
region to explore. In addition, the initial longitudinal con-
tours could be directly converted to initialize the coarsest
data set segmentation; the automatic computation of the ini-
tial cross-sectional contours �Sec. II D 2� could thus be
eliminated and the computation time decreased.

Another possibility to correct contours that were not ini-
tialized with enough precision would be the usage of a gen-
eralized fast-marching segmentation method using a speed
function that can be either positive or negative.32 The speed
function of Eq. �2� should then be modified to authorize
negative values if, for example, the interface propagating to-
ward the lumen boundary was inside the wall instead of be-
ing inside the lumen.

A limitation of the method for the processing of IVUS
images coming from other types of arteries �such as coronar-
ies� or from other IVUS imaging system might be the usage
of Rayleigh distributions in the mixture model. Depending
on gain settings, envelop filtering techniques, or other filter-
ing applied to the data by the imaging system, the gray level
PDFs of the vessel wall tissues might not be Rayleigh dis-
tributed anymore. Other models such as the Nakagami dis-
tribution that can still be estimated with the EM algorithm
could be used.33 That would increase the robustness of the
segmentation method to the image acquisition parameters
and equipment.

Finally, some adjustments of the segmentation method
might be required for the processing of coronary IVUS data
sets. The size of the windows that defines the neighborhood
in the computation of the multiple interface speed functions
�Eq. �3��, or the neighborhood of the lumen and EEM bound-
ary likelihood functions �Eq. �8�� would likely need to be
adjusted since the size of the coronary wall layers is differ-
ent. The cardiac motion would also need to be detected dur-
ing the initialization of the method. Moreover, the assign-
ment of the distributions composing the mixture to the

different wall structures for the initial contour calculation
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�Sec. II C 1� would also need to be revised to take into ac-
count the echogenicity differences between the peripheral
and coronary artery vessel wall layers, especially when dif-
ferent scanning frequencies are used.

VI. CONCLUSION

This study has demonstrated the efficiency of the 3D fast-
marching segmentation using a combination of Rayleigh
PDFs and gray level gradient on in vivo intravascular ultra-
sound images of femoral arteries acquired before and after
balloon angioplasty. The segmentation method is highly au-
tomated with an interactive initialization procedure. The pro-
posed approach is reliable and has a small variability for the
analysis of in vivo IVUS images. The usage of the 3D fast-
marching segmentation method dramatically reduced the
analysis time compared to manual contour tracing. It is
hoped that the fast-marching method become a widely used
tool for the fastidious and difficult task of IVUS image pro-
cessing.
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