Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior

Cédric Schmitt a,b, Anis Hadj Henni a, Guy Cloutier a,b,c,*

a Laboratory of Biochemistry and Medical Ultrasounds, Research Center, Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada H2L 2W5
b Institute of Biomedical Engineering, Université de Montréal, Montréal, Québec, Canada H3C 3J7
c Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, Québec, Canada H2T 1J4

A R T I C L E I N F O
Article history:
Accepted 10 November 2010

Keywords:
Dynamic elastography
Ultrasound imaging
Plane shear wave
Blood coagulation kinetics
Storage modulus
Loss modulus
Viscoelasticity
Mechanical properties
Rheological models

A B S T R A C T
Dynamic elastography (DE) is a new tool to study mechanical behavior of soft tissues via their motion response to propagating shear waves. This technique characterized viscoelasticity of 9 porcine whole blood samples (3 animals) during coagulation for a shearing frequency of 70 Hz, and after complete clot formation between 50 and 160 Hz. Clot storage (G’) and loss (G”) moduli were calculated from shear wave velocity and attenuation. Temporal evolutions of G’ and G” during coagulation were typified with 4 parameters: maximum change in elasticity (G’ slope max), elasticity after 120 min of coagulation (G’ max), time occurrence of G” maximum (t max) and G” at the plateau (G” plateau). G’ and G” frequency dependence of completely formed blood clots was fitted with 5 standard rheological models: Maxwell, Kelvin–Voigt, Jeffrey, Zener and third-order generalized Maxwell. DE had sufficient sensitivity to follow the coagulation kinetics described by a progressive increase in G’, while G” transitory increased followed by a rapid stabilization. Inter- and intra-animal dispersions (InterAD and IntraAD) of G’ max (InterAD = 15.9%, IntraAD = 9.1%) showed better reproducibility than G” slope max (InterAD = 40.4%, IntraAD = 21.9%), t max (InterAD = 27.4%, IntraAD = 18.7%) and G” plateau (InterAD = 58.6%, IntraAD = 40.2%). G” evolution within the considered range of frequency exhibited an increase, followed by stabilization to a plateau, whereas G” presented little variations with convergence at a quasi-constant value at highest frequencies. Residues χ², describing the goodness of fit between models and experimental data, showed statistically (p < 0.05) that the Kelvin–Voigt model was less in agreement with experimental data than other models. The Zener model is recommended to predict G’ and G” dispersion of coagulated blood over the explored frequency range.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction
Deep venous thrombosis (DVT) is a vascular disease characterized by the formation of blood clots or thrombi in lower limb veins that can lead to pulmonary embolism. Thrombus maturity, related to its age-dependent elasticity (Geier et al., 2005; Xie et al., 2005), is important for its classification (Zwiebel, 2004) and, thus, for identifying an appropriate therapy. Recently, dynamic elastography (DE) methods were proposed to characterize the viscoelasticity of biological tissues (Muthupillai et al., 1995; Sarvazyan et al., 1998). These novel non-invasive and quantitative approaches first imply generation of properly polarized, low-frequency, harmonic or transient shear waves in the medium, and tracking of these waves with ultrasound (Taylor et al., 2000; Sandrin et al., 2002; Catheline et al., 2004; Bercoff et al., 2004), magnetic resonance (Kruse et al., 2000; Sinkus et al., 2000) or laser-based approaches (Bossy et al., 2007; Bouchard et al., 2009). A major advantage of DE is that it can be adapted to image, in real time, mechanical displacements provoked by shear wave motion, thus potentially allowing an in vivo mechanical characterization of DVT. Most DE methods employ a reconstruction algorithm, which retrieve mechanical parameters of probed medium by assuming a certain viscoelastic behavior. The choice of the most adequate viscoelastic model is essential to improve mechanical estimates. It is thus obvious that developing DE for DVT application requires accurate knowledge of blood viscoelastic properties during clotting and after complete coagulation.

A wide variety of in vitro techniques has been proposed to characterize blood viscoelasticity during and after clotting. Among quantitative methods, rotational rheometers were used to measure storage (G’) and loss moduli (G”) (Burghardt et al., 1995; Riha et al., 1999; Williams et al., 2006; Evans et al., 2008a). However, uncertainty of sample geometries due to handling restrictions can imply measurement errors, whereas difficulties in imposing perfect non-slip-ping contact between the blood clot and rotating plates limit these instruments to a range of frequencies typically below 10 Hz.

One-dimensional (1-D) ultrasound DE, introduced by Sandrin et al. (2002) and adapted by Gennisson et al. (2006a) to blood clot
mechanical characterization allowed to quantitatively detect changes in viscoelasticity during clotting and proved to be sensitive to variations in hematocrit, fibrinogen and heparin concentrations. However, the latter study, carried out at a single frequency (25 Hz) and assuming a Kelvin–Voigt viscoelastic model, gave biased viscosity values because of the 1-D formulation, chosen mechanical model, and shear wave generation strategy.

In this context, the present study is filling the lack of information about \(G' \) and \(G'' \) evolution during whole blood clotting and explores clot rheological behavior over a large frequency range (50–160 Hz) with DE. This range of frequency is justified by the abovementioned DVT application, for which image resolution improves with frequency but image quality degrades with frequency-dependent attenuation of shear waves. Velocities (\(v \)) and attenuations (\(\alpha \)) of plane shear waves propagating into large and homogeneous blood clots as a function of time or frequency were estimated to calculate the complex shear modulus (\(G = G' + iG'' \)). The frequency dependence of \(G \) was fitted to different rheological laws to find which model better reproduces the dynamic mechanical behavior of blood clots. The reproducibility and variability of measurements with different porcine blood samples were also investigated.

2. Methods

2.1. Experimental set-up

The experimental set-up was composed of a large rigid plate (202 × 85 mm\(^2\)) attached to a vibrator (Type 4810, Brüel & Kjær, Nærum, Denmark) and applied on the phantom surface (Fig. 1). A low-frequency 20-period harmonic excitation (50–160 Hz) produced by a function generator (Type 2706, low-frequency amplifier, Brüel & Kjær) before supplying the vibrator. A clinical ultrasound array transducer (1L4-5/38, Ultrasonix) of a Sonix RP scanner (Ultrasonix Medical Corporation, Burnaby, BC, Canada) was positioned parallel to displacements of scatterers within the phantom to acquire and reconstruct radio-frequency (RF) sequences (see details below). The excitation frequency of the probe, sampling frequency and bit depth were 10 MHz, 40 MHz and 16 bits, respectively. An electronic circuit (SYNCH) was designed to properly synchronize the RF image acquisition with the shear wave pulsation for retrospective RF image reconstructions. Experiments were conducted in a temperature-controlled chamber at 20°C.

Phantom-building consisted of pouring an agar (3% w/w)-gelatin (4% w/w) mixture (Gennisson and Cloutier, 2006b) into a 20.5 × 27.5 × 10.5 cm\(^3\) hollow box containing a 8 × 10 × 3.5 cm\(^3\) parallelepiped inclusion that was filled with fresh porcine blood. Coagulation was initiated by adding 2 g/L of calcium ions (CaCl\(_2\), calcium chloride dihydrate, Acros Organics, Geel, Belgium) diluted into 40 mL of saline solution. The reproducibility and variability of blood clot viscoelastic properties were tested with 9 blood samples, withdrawn from 3 different healthy animals (3 samples per animal), and experiments were performed within 16 h of blood sampling.

2.2. Acquisition of RF sequences and post-processing

Immediately after adding CaCl\(_2\) to blood, the mixture was poured into the inclusion footprint. This time defined the beginning of experiments consisting in acquiring RF sequences every 4 min for 2 h, and tracking the 70-Hz shear wave propagation into the inclusion. To study viscoelasticity, a multi-frequency strategy, which consisted of repeating the above procedure at frequencies from 50 to 160 Hz with a step of 10 Hz, was then undertaken on the previously described phantom. To overcome the scanner frame rate limit (i.e., ~250 images/s for small regions of interest), high frame rate RF sequences were retrospectively reconstructed to follow shear wave propagation without aliasing. As outlined by Hadj Henni et al. (2008), the 128 transducer array elements were sequentially activated in 64 groups of two elements. At each firing of pairs of elements, the low-frequency shear vibration was synchronized and generated within the phantom. The scanner then acquired 1000 consecutive frames at a high frame rate of 3850 images/s. This process was repeated for each group of elements. Off-line, retrospective post-processing consisted of re-assembling measured RF echoes to reconstruct the matrix width × depth × time (38-mm × 80-mm × 260-ms) of each image frame.

Successive ultrasonic signal propagation paths over time were processed with a 1-D cross-correlation algorithm to compute shear wave motion along the x-axis within the blood medium (see Fig. 1).

2.3. Theory

Let an infinite medium be homogeneous, isotropic, linear, viscoelastic and incompressible. The displacement field induced by the propagation of a harmonic plane shear wave is then described by the Navier differential equation (Achenbach, 1973). If one assumes a plane shear wave \(U_2(x,t) \) propagating in the x direction and...
polarized in the y direction (Fig. 1), the displacement differential equation is reduced to the Helmholtz wave equation

$$G(\omega) \frac{\partial^2 U(x)}{\partial t^2} + \rho \omega^2 U(x) = 0 \quad (1)$$

where $G(\omega)$ is the complex shear modulus, $U(x)$ is the wave amplitude, $U_0 = U(x)e^{i\phi}$ and ρ is the material density assumed constant at 1080 kg/m3 (Nahirnyak et al., 2006). Because harmonic plane shear waves were used, the time dependence can be omitted for simplification. The stationary shear wave amplitude $U(x)$ solving Eq. (1) has the following form:

$$U(x) = U_0 e^{i\omega x - i\phi} \quad (2)$$

where U_0 denotes the absolute wave amplitude and ϕ is an arbitrary phase (indeed, generated shear waves are pseudo-harmonic with only 20 periods). Parameters k and ω designate the real (velocity) and imaginary (attenuation) parts of the wave number, respectively. The wave velocity v was calculated from the wave number real part k, and wave angular frequency ω as

$$v = \frac{\omega}{k} \quad (3)$$

whereas the attenuation z was given by the slope of the linear regression applied on the natural logarithm of the absolute $U(x)$ waveform (Catheline et al., 2004)

$$z = \arg\min_x \ln|U(x)| - (ax + b) \quad (4)$$

Without any assumption on the viscoelastic behavior of experimental data, the complex shear modulus $G(\omega)$ and wave number $k = k^\prime + ik^\prime$ are related through the shear wave propagation equation as

$$G(\omega) = \rho \omega^2 k^2 - \frac{2\omega^2}{(k^2 + \omega^2)^2} \quad (5)$$

where f_{wave} is the frequency of the harmonic shear wave. As shown (Vappou et al., 2009), the real and imaginary parts of Eq. (5) can be rewritten as

$$G(\omega) = \rho \omega^2 k^2 - \frac{\omega^2}{(k^2 + \omega^2)^2} \quad (6)$$

$$G^\prime(\omega) = -2\rho \omega^2 \frac{k^2}{(k^2 + \omega^2)^2} \quad (7)$$

Using Eqs. (6) and (7), the storage $G(\omega)$ (elastic behavior) and loss $G^\prime(\omega)$ (viscous behavior) moduli were calculated from the wave velocity and attenuation (Eqs. (3) and (4)).

2.4. Summary of data processing

As illustrated in Fig. 2, the first step consisted in computing spatio-temporal blood clot displacements induced by shear waves using a normalized cross-correlation (NCC) algorithm applied to the RF temporal sequence ($U_0(x,y,t)$). For each pixel of the time-varying displacement waveform, a Fourier transform (FT) was computed and the corresponding complex spectral amplitude at the generated frequency was used to form the complex stationary displacement field. The wave number k^\prime was retrieved at each depth y by applying a second spatial Fourier transform to the real part of the stationary displacement field at the corresponding depth, to obtain the wave velocity v in Eq. (3). On the other hand, the wave attenuation z at each depth was linearly interpolated according to Eq. (4) using the natural logarithm (ln) of the absolute part of the complex value of the stationary displacement field at the corresponding depth. Finally, with Eqs. (6) and (7), we deduced G^\prime and $G^\prime\prime$.

2.5. Modeling of the viscoelasticity behavior

Model fittings of $G(\omega)$ and $G^\prime(\omega)$ were used to deduce elasticity (μ) and viscosity (η) moduli of blood clots. Equations and schematic representations of each viscoelastic model are presented in Fig. 3. Rheological laws varied according to their level of complexity, ranging from the simplest (Maxwell and Kelvin–Voigt) to higher-order models (Jeffrey and Zener). Moreover, a generalized model (third-order generalized Maxwell), considering series-parallel viscosities and elasticities, was also tested. These five models were fitted to the experimental data by minimizing the error χ as a function of viscoelastic parameters (μ, η)

$$\chi = |G(\omega) - \hat{G}(\omega)|^2 + |G^\prime(\omega) - \hat{G}^\prime(\omega)|^2$$

where $\hat{G}(\omega)$ and $\hat{G}^\prime(\omega)$ are fitted theoretical storage and loss moduli of each model (Fig. 3). In Eq. (8), the non-linear least square minimization of χ was done with the Lsqnonlin function of Matlab (The MathWorks Inc., Natick, MA, USA version 6.5) for each frequency. After convergence of the solution, the resulting parameter χ^* denoted the best-fit between models and experimental data. Note that the optimization problem was built with the complex shear modulus instead of μ and η because G^\prime and $G^\prime\prime$, unlike wave velocity and attenuation, have the same unit and a similar range of values, which avoided numerical instability during the inverse problem-solving.

3. Results

Typical kinetics of blood viscoelasticity (G^\prime, $G^\prime\prime$) during coagulation are presented in Fig. 4 for 3 experiments with animal #1. Experimental means and standard deviations (STD) were calculated from measurements at 20 different depths (y direction, Fig. 1), between $y = 27.5$ mm and $y = 47.7$ mm. Because G^\prime and $G^\prime\prime$ assessment presents significant variability for incipient clots (semi-liquid material), these parameters could only be estimated for time starting from 30 to 40 min after the addition of calcium. All plots can be typified by a strong increment in G^\prime with maximum changes...
in elasticity at the beginning of estimation (G_0 slopemax$_i = 27.0 \pm 10.4$ Pa/min), and quasi-stabilization after 120 min (G_0 max$_i$ between 1030 and 1240 Pa). G' presented very different trends with quite constant evolution until a sudden maximum at t_e (between 38 and 81 min) followed by a decrease to G'_0 plateau. Results of G'_0 max, G' slope$_{max}$, t_e and G'_0 plateau of all animal bloods served to calculate intra-animal (IntraAD, $n=3$) and inter-animal (InterAD, $n=3$) dispersions (Calle et al., 2009). As seen in Table 1, IntraAD and InterAD were, respectively, 9.1% and 15.9% for G'_0 max, 21.9% and 40.4% for G' slope$_{max}$ 18.7% and 27.4% for t_e and largest dispersions were 40.2% and 58.6% for G'_0 plateau.

Examples of storage and loss moduli of formed clots (after 3 h) as a function of frequency are plotted in Fig. 3 for animal #1 (3 experiments) along with fitted rheological models for each of these experiments. G' and G'' varied with frequency, especially G' that presented a significant increase from 877 ± 31 Pa at 50 Hz to...
1208 ± 47 Pa at 160 Hz. Similar viscoelastic curves were obtained for all 9 experiments (3 animals) with corresponding averaged variability over frequency for \(G' \) and \(G'' \), defined as STD/mean, respectively, of 5.5 ± 1.7% and 9.5 ± 5.6% (animal #1), 6.8 ± 3.0% and 9.7 ± 7.3% (animal #2), and 9.2 ± 0.8% and 12.5 ± 12% (animal #3).

The best fitted viscoelastic parameters for all rheological models and corresponding residues \(\chi^2 \) (Eq. (8)) are reported in Table 2. Except for the Maxwell and Jeffrey equations, which could not fit \(G'' \) at 50 Hz, or the Kelvin–Voigt model which is not adapted to fit both \(G' \) and \(G'' \) curves (Fig. 3), other models could qualitatively describe blood clot viscoelasticity. Moreover, averaged intra-animal viscoelastic parameter (\(\mu_i, \eta_i \)) dispersions were found to be 8.0 ± 2.4%, 7.8 ± 2.0%, 13.3 ± 6.2%, 13.2 ± 6.0%, and 27.0 ± 19.1% for Maxwell, Kelvin–Voigt, Jeffrey, Zener and generalized Maxwell models, whereas averaged inter-animal dispersions were 19.7 ± 5.9%, 24.7 ± 18.3%, 28.0 ± 20.5%, 51.6 ± 36.6% and 57.9 ± 27.0% for these same models. Regarding residues \(\chi^2 \) of Table 2, Maxwell (\(\chi^2 = 71.4 \text{ Pa} \)) and Kelvin–Voigt (\(\chi^2 = 86.2 \text{ Pa} \)) laws gave mean residues that were about twice values of other models (mean \(\chi^2 \leq 46.6 \text{ Pa} \)).

An analysis of variance (one-way ANOVA with the Bonferroni post hoc test) applied on residues (Fig. 5) revealed a significant difference \((p < 0.05) \) between the group composed of the Maxwell and Kelvin–Voigt models and the generalized Maxwell model, while such a significant difference \((p < 0.05) \) could also be observed between the Kelvin–Voigt and higher-order explored viscoelastic laws (Jeffrey, Zener and generalized Maxwell).

4. Discussion and conclusion

This study aimed demonstrating in vitro that the generation and tracking of harmonic plane shear waves into a blood clot can characterize its kinetics of coagulation and rheological behavior. To
Gour knowledge, this is the first work dedicated to quantitatively assess
blood clot properties. Residue χ^* for the best-fitting mechanical parameters is also given.

Table 2
Blood clot frequency dependence model fitting with mean elasticity and viscosity parameters and corresponding standard deviations (in parenthesis) for 3 experiments in 3 animals. Residence χ^* for the best-fitting mechanical parameters is also given.

<table>
<thead>
<tr>
<th>Viscoelastic models</th>
<th>Animal 1 ($n=3$)</th>
<th>Animal 2 ($n=3$)</th>
<th>Animal 3 ($n=3$)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxwell</td>
<td>μ (Pa)</td>
<td>1250.78 (70.50)</td>
<td>958.16 (89.28)</td>
<td>973.16 (41.86)</td>
</tr>
<tr>
<td></td>
<td>η (Pa.s)</td>
<td>6.95 (0.09)</td>
<td>11.11 (0.03)</td>
<td>8.44 (1.55)</td>
</tr>
<tr>
<td></td>
<td>χ^* (Pa)</td>
<td>78.68 (13.06)</td>
<td>54.12 (4.07)</td>
<td>81.26 (18.02)</td>
</tr>
<tr>
<td>Kelvin–Voigt</td>
<td>μ (Pa)</td>
<td>1134.13 (50.60)</td>
<td>933.74 (85.91)</td>
<td>928.67 (52.68)</td>
</tr>
<tr>
<td></td>
<td>η (Pa.s)</td>
<td>0.47 (0.05)</td>
<td>0.22 (0.02)</td>
<td>0.31 (0.03)</td>
</tr>
<tr>
<td></td>
<td>χ^* (Pa)</td>
<td>144.26 (12.10)</td>
<td>46.93 (8.16)</td>
<td>67.46 (8.80)</td>
</tr>
<tr>
<td>Jeffrey</td>
<td>μ (Pa)</td>
<td>1235.16 (58.37)</td>
<td>947.21 (98.74)</td>
<td>955.79 (48.71)</td>
</tr>
<tr>
<td></td>
<td>η_1 (Pa)</td>
<td>9.51 (0.64)</td>
<td>30.11 (6.27)</td>
<td>20.87 (2.15)</td>
</tr>
<tr>
<td></td>
<td>η_2 (Pa.s)</td>
<td>0.17 (0.04)</td>
<td>0.15 (0.01)</td>
<td>0.21 (0.03)</td>
</tr>
<tr>
<td></td>
<td>χ^* (Pa)</td>
<td>53.93 (16.65)</td>
<td>32.00 (1.29)</td>
<td>46.60 (18.34)</td>
</tr>
<tr>
<td>Zener</td>
<td>μ_1 (Pa)</td>
<td>578.20 (90.59)</td>
<td>805.20 (44.11)</td>
<td>771.79 (48.19)</td>
</tr>
<tr>
<td></td>
<td>μ_2 (Pa)</td>
<td>796.36 (46.12)</td>
<td>319.06 (20.43)</td>
<td>449.99 (57.78)</td>
</tr>
<tr>
<td></td>
<td>η (Pa.s)</td>
<td>2.07 (0.39)</td>
<td>0.44 (0.14)</td>
<td>0.54 (0.08)</td>
</tr>
<tr>
<td></td>
<td>χ^* (Pa)</td>
<td>63.18 (14.07)</td>
<td>22.17 (1.17)</td>
<td>54.47 (14.87)</td>
</tr>
<tr>
<td>Generalized Maxwell</td>
<td>μ_1 (Pa)</td>
<td>518.42 (140.82)</td>
<td>797.76 (40.70)</td>
<td>629.15 (145.16)</td>
</tr>
<tr>
<td></td>
<td>μ_2 (Pa)</td>
<td>1.30×10^{15} (0.34 x 10^{15})</td>
<td>8.49×10^{15} (3.66 x 10^{15})</td>
<td>969.88 (409.16)</td>
</tr>
<tr>
<td></td>
<td>η_1 (Pa)</td>
<td>0.13 (0.01)</td>
<td>0.08 (0.01)</td>
<td>0.20 (0.02)</td>
</tr>
<tr>
<td></td>
<td>η_2 (Pa.s)</td>
<td>748.66 (71.40)</td>
<td>216.79 (39.65)</td>
<td>316.13 (126.59)</td>
</tr>
<tr>
<td></td>
<td>χ^* (Pa)</td>
<td>45.25 (16.65)</td>
<td>15.51 (2.21)</td>
<td>40.71 (20.48)</td>
</tr>
</tbody>
</table>

Fig. 4. The frequency dependence of storage G' and loss G'' moduli obtained with 1-D transient ultrasound elastography (Gennisson et al., 2006a) and in rheometry (Tynngard et al., 2006; Williams et al., 2006; Evans et al., 2008b). As noted in Table 1, the temporal evolution of elasticity reached a mean value of 953.9 Pa (after 120 min of coagulation). Since no previous works had similar conditions (animal vs. human blood, blood sample volume, frequency range, hematocrit, etc.), quantitative comparison with the literature is difficult.

Interestingly, the difference in gelation stabilization time between G' and G'' reported in Fig. 4 is supported by a model describing the kinetics of blood clot structure formation (Kaisura, 1996). As proposed in that model, the increase in G' is attributed to the conversion of the fibrin monomer to fibrin polymer, followed by an increment in G'' because of fibrin network formation from fibrin polymer. During coagulation, we also observed a transient increase in G'' that could be accompanied by an inflection in the G' rate of increase (gray zones in Fig. 4). This phenomenon may be due to clot retraction. Indeed, around 30–60 min after blood clots begin to form, platelets entrapped within the fibrin network shrink because of protein activity and contractile force (Carr, Jr., 2003). As a result, the clot diminishes in size, expelling free serum (seen experimentally during blood coagulation). A similar clot retraction phase was also detected in mechanical rheometry measurements of shear moduli (Williams et al., 2006; Evans et al., 2008b), or by acoustic methods quantifying sound velocity (Libgot-Calle et al., 2008) or integrated attenuation coefficient (Calle et al., 2009). These latter acoustic studies confirmed that this sudden, small “thrust” occurred at the precise moment of serum expulsion. Note that the time appearance of such G'' modal increase at t_e could be affected by the initial blood composition, by the age of the sample (Solheim et al., 2004; Uyuklu et al., 2009) or by chemical interactions between the agar-gelatin block surface of the phantom and the blood sample.

4.2. Blood clot rheological behavior

Among five rheological models that differ from each other by their level of complexity (2 to 5 viscoelastic parameters), residue calculation proved statistically ($p < 0.05$, Fig. 5) that the Kelvin–Voigt model
is less adapted to characterize blood clot dynamic behaviors. This allows to conclude that such a simple 2-parameter model, contrary to the simplifying assumption made by us and others (Viola et al., 2004; Gennisson et al., 2006a), cannot predict the viscoelasticity of whole porcine blood clots in the frequency range of 50–160 Hz.

As listed in Table 2, the residue χ^a averaged over all measurements (9 experiments) was minimum for the generalized Maxwell model. However, the second elastic modulus (G'') of that model tended to infinity for animals #1 and #2. This implies convergence of the generalized Maxwell law towards a 4-parameter viscoelastic model equivalent to Kelvin–Voigt in parallel with Maxwell. Moreover, the fit of G and G'' by such 4-parameter model (3 elasticities and 1 viscosity) did not improve results compared to the generalized Maxwell model, since the calculated residue χ^a of 34.05 ± 19.04 Pa was superior to χ^a_M. Third-order models of this study (Jeffrey and Zener) may thus be considered advantageous because stable (realistic finite estimates) second-order elasticity or viscosity parameters allowed independently to adjust storage and loss moduli to consider strong stiffness dispersion over frequency, significant viscosity at low frequencies, or local frequency profile irregularities. However, recent studies with human whole blood reported interesting results that typified clot viscoelasticity evolution over excitation frequencies ranging from 0.1 to 10 Hz (Williams et al., 2006; Evans et al., 2008b). Elastic and viscous parameters increasing with frequency were shown. At quasi-static frequency (0.1 Hz), G'' was different from zero, suggesting that only Zener and generalized Maxwell models could be valid (see Fig. 3 for extrapolation at a frequency of zero). According to the above-mentioned discussion, the Zener model is thus recommended to typify blood clot viscoelasticity.

Other experiments (Roberts et al., 1974), with platelet-rich plasma, concluded that the elasticity remains nearly constant over the 0.01 to 160 Hz frequency range, whereas the loss modulus is proportional to frequency. These results, compared to ours, highlight the impact of red blood cells on clot mechanical properties. Indeed, viscoelastic characterization of individual human erythrocytes in the 0.1 to 100 Hz frequency range, by magnetic twisting cytometry, disclosed a nearly frequency-independent apparent storage modulus up to 30 Hz, while the loss modulus increased as a power law (Puig-de-Morales-Marinkovic et al., 2007). Because blood clot samples characterized in our study comprise trillions of red blood cells, this result is very complex to draw a parallel with independent dynamic mechanical behavior of individual red blood cells. Most importantly, the data reported here also permitted to explore the effect of red blood cells on the dynamic mechanical behavior of blood clots, which could be the key of novel medication strategy for DVT management.

Conflict of interest statement

None of the authors in this work has conflict of interests with other people and organizations.

Acknowledgements

This research was supported by a grant from the Canadian Institutes of Health Research (#MOP-84358). Cédric Schmitt received a partial Ph.D. scholarship and Dr. Anis Hadj Henni, a partial post-doctoral fellowship, from the Groupe de recherche en sciences et technologies biomédicales of the Institute of Biomedical Engineering of the University of Montreal. The authors thank J. Brochu from “Les Viandes ULTRA Meats Inc.” for blood supplies.

The editorial assistance of Dr. Ovid Da Silva, Research Support Office, CHUM Research Centre, is acknowledged.

References

