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Segmentation of Plaques in Sequences of Ultrasonic
B-Mode Images of Carotid Arteries Based on

Motion Estimation and a Bayesian Model
François Destrempes, Jean Meunier, Marie-France Giroux, Gilles Soulez, and Guy Cloutier*

Abstract—The goal of this paper is to perform a segmentation
of atherosclerotic plaques in view of evaluating their burden and
to provide boundaries for computing properties such as the plaque
deformation and elasticity distribution (elastogram and modulo-
gram). The echogenicity of a region of interest comprising the
plaque, the vessel lumen, and the adventitia of the artery wall in
an ultrasonic B-mode image was modeled by mixtures of three
Nakagami distributions, which yielded the likelihood of a Bayesian
segmentation model. The main contribution of this paper is the es-
timation of the motion field and its integration into the prior of the
Bayesian model that included a local geometrical smoothness con-
straint, as well as an original spatiotemporal cohesion constraint.
The Maximum A Posteriori of the proposed model was computed
with a variant of the exploration/selection algorithm. The starting
point is a manual segmentation of the first frame. The proposed
method was quantitatively compared with manual segmentations
of all frames by an expert technician. Various measures were used
for this evaluation, including the mean point-to-point distance and
the Hausdorff distance. Results were evaluated on 94 sequences of
33 patients (for a total of 8988 images). We report a mean point-
to-point distance of 0.24 ± 0.08 mm and a Hausdorff distance
of 1.24 ± 0.40 mm. Our tests showed that the algorithm was not
sensitive to the degree of stenosis or calcification.
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H2L-2W5, Canada, with the Department of Radiology, Radio-Oncology and
Nuclear Medicine, University of Montreal, Montréal, QC H3T-1J4, Canada,
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I. INTRODUCTION

PRECISE segmentations of plaques in a sequence of ul-
trasonic B-mode images of the carotid artery allow the

computation of various biomechanical and anatomical proper-
ties of the artery wall that may be useful to clinicians to follow
the evolution of the atherosclerotic disease. In fact, in [1]–[4],
an elasticity map is computed in a region of interest (ROI) of the
artery wall along a few cardiac cycles to help determining the
vulnerability of the plaque. Thus, it is useful to have a segmen-
tation of the ROI through a whole sequence of ultrasound (US)
images to track time-varying elasticity changes. Considering the
amount of time required to perform manually the segmentation
task as well as the intraobserver or interobserver variability that
is usually associated with this task, an algorithm that performs
the segmentation based on minimal user interaction is important
in the research context.

Several algorithms for the segmentation of carotid arteries
that present a plaque have been proposed in US imaging (see
Table I). In [5] and [6], various snake segmentation methods,
with initialization based on the blood flow image, were tested
in the context of 2-D longitudinal images of carotid plaques.
The plaque in 2-D longitudinal images is segmented in [7]–[9]
using a combination of gradient-based segmentation, a snake
segmentation method, and a fuzzy K-means algorithm, with
an initialization based on pixel intensity. Hough transforms are
used in [10] to perform the segmentation of 2-D longitudinal and
cross-sectional images of plaques. Other papers (e.g. [11]–[15])
have presented atherosclerotic carotid segmentation techniques,
but for the segmentation of the lumen rather than the plaque
itself. The reader may consult [16]–[18] for numerous other
references on US imaging, including intravascular ultrasound
segmentation methods and tissue characterization.

In this paper, we present a method for the segmentation
of plaques in video sequences of US images of the internal
carotid artery (ICA). We formulate the proposed method in a
Bayesian framework. The proposed Bayesian model is inspired
by the model presented in [19]. As in [19], the likelihood
of the proposed segmentation model is based on mixtures of
Nakagami distributions, which are used to describe the statis-
tical properties of the intensity in a B-mode image. The main
addition to our previous paper [19], that was limited to healthy
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TABLE I
OVERVIEW OF ATHEROSCLEROTIC CAROTID PLAQUE SEGMENTATION TECHNIQUES FOR ULTRASOUND IMAGING

carotids, is the consideration of more complex and moving echo
textures of heterogeneous plaques, as well as variable shapes of
the plaque. It includes a tracking method that uses an estimation
of the motion field of the plaque in the video sequence based
on optical flow estimates. The prediction of the position and
shape of the plaque at the current frame (based on the motion
field estimates) is then integrated directly into a spatiotemporal
cohesion prior term of the proposed Bayesian model. We
also consider an original geometrical local smoothness prior
for the plaque boundaries. The segmentation problem is then
formulated as the computation of the Maximum A Posteriori
(MAP) of the Bayesian model. All computations are performed
after the manual segmentation of the plaque in the first B-mode
image of the video sequence (which is the only user interaction
in the proposed method). Thus, the proposed method is semi-
automatic. See [20] for a brief account of the proposed method.

The strategy of exploiting optical flow estimates to track mo-
tion has appeared in [21] and it was adopted in this study. In [21],
it was used as an initialization of the velocities in an active con-
tour segmentation method. In our case, the optical flow estimates
are based on a first-order tissue dynamics model (i.e., motion
field), which simplifies their computation. We show that for
the database used in the reported tests, the hypothesis of opti-
cal flow is self-consistent, due mainly to small deformations of
the plaque from one frame to the next one. Moreover, in our
case, the optical flow estimates are integrated into the prior of a
region-based segmentation model, rather than a contour-based
segmentation model (as in [21]).

The proposed method was tested on 94 sequences of 2-D lon-
gitudinal images of internal carotid arteries of 33 patients, for
a total of 8988 images. The size of our database compares very
favorably with previous studies [6] (80 images), [8] (56 images),
and [10] (4 images) that are also testing a segmentation method
of longitudinal images of plaques. Additional material includ-
ing a segmented video sequence can be found at our website
http://www.lbum-crchum.com (see the publication section).

II. MATERIALS

A. Image Acquisition

The RF images were acquired with a 10-MHz 38-mm lin-
ear array transducer of a Sonix RP echograph (Ultrasonix,

Vancouver, BC, Canada). The frame rate was set by the radiol-
ogist and depended on the video sequence. It varied between 19
and 24 Hz, and the average duration of the sequences acquired
over consecutive cardiac cycles was about 7 s. For 74 of the
video sequences used in the tests reported in Section VI, 1 mm
corresponds to 51.9 pixels in the axial direction, whereas in the
lateral direction, 1 mm is equal to about 6.7 pixels (i.e., 256
scan lines for 38 mm). For the other 20 sequences, the axial
resolution had been changed at the acquisition step, and 1 mm
corresponds to about 26 pixels in the axial direction (due to a
new version of the Sonix RP echograph software).

B. Data

We considered 94 video sequences of B-mode images (i.e.,
the uncompressed envelope of the acquired RF images) from 33
patients with carotid plaques. Women and men of 40 years or
older for which at least one of the carotid arteries presented a
stenosis of at least 50% (in diameter reduction) were included in
our study. Pathological subjects for whom carotid atherosclero-
sis was newly diagnosed were recruited by vascular radiologists,
neuroradiologists or neurologists of the University of Montreal
Hospital Center (CHUM) and by the service of Vascular Neu-
rology of CHUM. The Institutional Review Board approved this
health insurance portability and accountability act-compliant re-
search project, and patients signed an informed consent. There
were 22 men and 11 women with a mean age of 71.5 ± 7.5
years. Their body mass index was 25.7 ± 3.4 Kg/m2 . For most
patients, longitudinal views of the left and right proximal inter-
nal carotid arteries were acquired independently by two expert
radiologists, for a total of four video sequences per patient.
However, in some cases, only the left or right proximal internal
carotid was acquired (seven patients), so that the total number
of carotid arteries was actually 59. Some of the sequences were
not acquired on both sides due to the presence of a thrombosis
or a past surgery on the carotid artery. Also, in some cases, only
one of the expert radiologists performed an acquisition (on 24
carotid arteries). The degrees of stenosis and calcification [22]
for the 94 sequences are indicated in Table II. When available,
stenoses were graded on angiography by computed tomogra-
phy (CT), magnetic resonance (MR) or conventional angiogra-
phy, using North American Symptomatic Carotid Endarterec-
tomy Trial (NASCET) criteria [23]. If MR, CT, or catheter
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TABLE II
DEGREE OF PLAQUE STENOSIS IN DIAMETER REDUCTION AND CALCIFICATION

FOR THE 94 SEQUENCES OF B-MODE IMAGES IN THE DATABASE

USED FOR THIS STUDY

angiography were not available, the degree of carotid stenosis
was determined on Doppler ultrasound examination, using the
following criteria [22]: 1) <30% when the ICA peak systolic
velocity (PSV) was less than 125 cm/s and no or minimal (less
than 30% in B-mode) plaque or intimal thickening was visi-
ble; 2) 30%–50% stenosis when ICA PSV was less than 125
cm/s and a plaque or an intimal thickening between 30% and
50% was visible on B-mode; 3) 50%–70% stenosis when ICA
PSV was 125–230 cm/s and a plaque was visible on B-mode;
4) >70% stenosis to near occlusion when ICA PSV was greater
than 230 cm/s and a visible plaque and a lumen narrowing were
seen; 5) 95% for near occlusion when there was a markedly nar-
rowed lumen on color Doppler US; and 6) 100% or total occlu-
sion when there was no detectable patent lumen on grayscale US
and no flow on spectral power, and color Doppler US. Note that a
100% stenosis or an occlusion was not included in our database.

III. TRACKING THE POSITION AND SHAPE OF THE PLAQUE

USING MOTION VECTOR FIELDS

A. Motion Field

Given a sequence of T RF images, r(x, y, t) denotes the
brightness of the B-mode envelope of the RF signal in the tth
frame at pixel (x, y), where x and y denote the lateral and
axial directions, respectively. Similarly to [24], we adopted the
following first-order tissue dynamics:

(x, y) �→ τ + L(x, y) (1)

where

τ =
(

τx

τy

)
; L(x, y) =

(
δ11 + 1 δ12

δ21 δ22 + 1

) (
x
y

)
.

(2)
Concretely, this means that a point of the plaque or its surround-
ing tissues with coordinates (x, y) at frame t gets mapped to
the point with coordinates τ + L(x, y) at frame t + 1. In par-
ticular, τ + L can be viewed as a motion field of the plaque and
its surrounding tissues, where τ denotes a translation and L a
deformation.

In Section III-B, we propose the use of optical flow to esti-
mate the motion field τ + L. Thus, one is interested in the cor-
relation between the gray level of the B-mode image r(x, y, t)
at frame t and the registered B-mode image r(x∗, y∗, t + 1),
where (x∗, y∗) = (τ + L)(x, y), i.e., the B-mode envelope of
the Lagrangian speckle image of [25]. The optical flow hy-

pothesis is equivalent to a perfect correlation between the two
images r(x, y, t) and r(x∗, y∗, t + 1), and the conservation of
their mean gray level (MGL).

We present in Section VII-B empirical tests for verifying the
hypotheses of the correlation between the B-mode images and
the conservation of their MGL from one frame to the next, in
the case of our database. The outcome is that the use of optical
flow is self-consistent on our database.

B. Estimating the Motion Field

As discussed in Section III-A, we assumed only small defor-
mations, and this hypothesis was verified on the database as re-
ported in Section VII-B. In other words, we assumed the conser-
vation of the B-mode gray level over time: r(x, y, t) ≡ constant,
t ≥ 1, which yields the well-known identity of the optical flow

∂

∂x
r(x, y, t)d x +

∂

∂y
r(x, y, t)d y

= − ∂

∂t
r(x, y, t)d t. (3)

Taking dt = 1 (corresponding to frames t and t + 1), under the
tissue dynamics of (1), we have(

d x
d y

)
= τ + L(x, y) −

(
x
y

)
= τ +

(
δ11 δ12
δ21 δ22

) (
x
y

)
.

(4)
Thus, given a segmentation R of the plaque at the tth frame,
each pixel (x, y) within a neighborhood of the segmented region
gives rise to the linear equation

∂

∂x
r(x, y, t)(τx + δ11x + δ12y)

+
∂

∂y
r(x, y, t)(τy + δ21x + δ22y) = − ∂

∂t
r(x, y, t) (5)

in the six variables τx , δ11 , δ12 , τy , δ21 , and δ22 . In our appli-
cation, the number of points (and hence of equations) is greater
than 6, and therefore, we obtained an overdetermined system
of linear equations. This system of equations (and hence, the
motion field) was then estimated in the sense of the least mean
square (LMS). In our implementation, we took as neighborhood,
the region encompassed by the set of points within 2 mm of the
segmented region R. Considering a neighborhood of the plaque
allows us to take into account the motion field at the boundary
of the plaque and slightly beyond, rather than only in its interior.

For the computation of the partial derivatives in (5), we
first applied a uniform low-pass spatial filter of size 0.75 ×
0.25 mm2 (laterally, axially)1 to the B-mode image, resulting in
an image r̄(x, y, t). We then made use of the following second-
order approximations:

∂

∂x
r(x, y, t)

≈ 1
8
(r̄(x + 1, y − 1, t − 1) − r̄(x − 1, y − 1, t − 1)

1That is 5 × 13 pixels2 for the first 74 video sequences and 5 × 7 pixels2 for
the 20 remaining ones.
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+ r̄(x + 1, y + 1, t − 1) − r̄(x − 1, y + 1, t − 1)

+ r̄(x + 1, y − 1, t + 1) − r̄(x − 1, y − 1, t + 1)

+ r̄(x + 1, y + 1, t + 1) − r̄(x − 1, y + 1, t + 1)) (6)

and similarly for ∂
∂y r(x, y, t) and ∂

∂ t r(x, y, t). At the boundaries
of the video sequences (i.e., t = 1 or t = T ) or at the boundaries
of the images, the second-order approximations of (6) were
adjusted accordingly, making use of first-order approximations
if necessary. For instance, if t = 1 and x coincides with the left
boundary of the image, we used the first-order approximation

∂

∂x
r(x, y, t)

≈ 1
4
(r̄(x + 1, y − 1, t) − r̄(x, y − 1, t)

+ r̄(x + 1, y + 1, t) − r̄(x, y + 1, t)

+ r̄(x + 1, y − 1, t + 1) − r̄(x, y − 1, t + 1)

+ r̄(x + 1, y + 1, t + 1) − r̄(x, y + 1, t + 1)). (7)

C. Propagation of a Segmented Region Through
Successive Motion Fields

Given two frames, t′ < t, let R be a segmented region at
frame t′. Then, the motion fields (τ + L)t ′ , . . . , (τ + L)t−1

were learned recursively as follows, in our implementation. The
motion field (τ + L)t ′ was estimated on a neighborhood of the
segmented region R at frame t′, as explained in Section III-B;
applying that motion field pointwise [using (1) and (2)] to the
boundary of the region R yielded a new region R′ at frame t′ + 1;
then, the motion field at the next frame t′ + 1 was learned on a
neighborhood of R′, and so on. Combining these motion fields
for frames t′ up to t − 1, in that order, yielded the propagation
of the region R in frame t′ to a region in frame t.

D. Average of Propagations of Segmented
Regions at Previous Frames

At the first frame, we took the manual segmentation of the
plaque as initial segmentation. At an ulterior frame t > 1, one
could take the segmentation of the plaque at the previous frame
t − 1 and use its propagation at frame t (using the propagation
method of Section III-C) as a prediction of the segmentation
at frame t. For more robustness, we considered the various
segmentations of the plaque at previous frames, and each of
these segmentations was propagated at frame t according to the
method of Section III-C. We then considered the average of
these propagations as a prediction of the segmentation at frame
t. In our implementation, we considered the immediate previous
frames, corresponding to about 1 s of the video sequence.

IV. SEGMENTATION OF THE PLAQUE USING

A PREDICTION OF THE SOLUTION

In this section, we present a refinement of the Bayesian model
introduced in [19] that takes into account the great variability
in the shape of a plaque, as well as its displacement [26] and
deformation [1] from one frame to the next. Based on the pre-

Fig. 1. Curves appearing in the figure are from top to bottom, γ−, γ1 , γ2 ,
and γ+ . The curves γ1 and γ2 delimiting the IMT and the plaque are con-
strained within the region between γ− and γ+ . The region between γ− and γ1
consists mainly of the lumen; the region between γ2 and γ+ consists mainly
of the surrounding tissues (including the adventitia). The solution (γ1 , γ2 )
of the proposed method is viewed as the MAP of a Bayesian model (see
Section IV-D).

diction of the segmented plaque described in Section III-D, one
considers the following Bayesian model.

A. Random Fields

Given r(x, y, t) the gray level of the B-mode image in the
tth frame at pixel (x, y), I(x, y, t) = r(x, y, t)2 is called the
intensity. The field I(t) = (I(x, y, t)) is viewed as the observ-
able random field. We converted here the gray level r of the B-
mode image into its intensity I = r2 for convenience. Namely, a
Nakagami distribution on the variable r is equivalent to the sim-
pler gamma distribution on the intensity I = r2 .

Consider a ROI that includes the plaque in the carotid wall
on a longitudinal (lateral) view, some portion of the lumen, and
the adventitia, and let the ROI be delimited by two curves γ

(t)
−

and γ
(t)
+ , where the first one is within the lumen and the second

one outside the carotid wall. We wish to determine the curves
γ

(t)
1 and γ

(t)
2 representing the interface between the plaque and

the lumen or the adventitia, respectively, in the tth frame. Note
that these two interface curves are located within the ROI (see
Fig. 1).

B. Likelihood of the Segmentation Model

The intensity of each tissue (or layers of tissues) was char-
acterized by a mixture of three gamma distributions, with pro-
portions specific to the tissue: fj (I) =

∑3
i=1 qj

i G(I | ki, θi),
where j = 1, 2, 3 corresponds, respectively, to the lumen, the
plaque, and the adventitia of the carotid artery. Here, the weights
satisfy

∑3
i=1 qj

i = 1, for j = 1, 2, 3, as well as qj
i ≥ 0, for

i, j,= 1, 2, 3. Recall that the gamma distribution G(I | k, θ) is
defined by I k −1

Γ(k)θk e−
I
θ (where the symbol Γ stands for the Euler

gamma function). Note, as in [19], that a gamma distribution on
the intensity I is equivalent to a Nakagami distribution on the
amplitude

√
I . For each tissue j = 1, 2, 3 (i.e., lumen, plaque, or
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adventitia), the three coefficients qj
i , i = 1, 2, 3, were estimated

using a straightforward expectation–maximization (EM) algo-
rithm [27]. This latter point is the only difference with [19], as
far as the likelihood is concerned. In fact, due to the hypothesis
of a healthy carotid artery, the lumen had been matched with the
gamma distribution having the lowest mean intensity, the adven-
titia corresponded to the gamma distribution having the highest
mean intensity, whereas the IMT corresponded to a mixture of
the three gamma distributions. Details on the likelihood can be
found in [19] and [20].

Now, let the pair of curves (γ(t)
1 , γ

(t)
2 ) represent the interface

between the lumen and the plaque or the plaque and the ad-
ventitia, respectively. Using the identification of each tissue to
a mixture of distributions, the likelihood Pt(I(t) | γ

(t)
1 , γ

(t)
2 ) of

the segmentation model was defined as in [19]∏
s∈R1

f
(t)
1 (I(t)

s ) ×
∏

s∈R2

f
(t)
2 (I(t)

s ) ×
∏

s∈R3

f
(t)
3 (I(t)

s ) (8)

where R1 is the region delimited by the pair of curves (γ(t)
− , γ

(t)
1 )

(the lumen), R2 is the region delimited by (γ(t)
1 , γ

(t)
2 ) (the

plaque), and R3 is the region delimited by (γ(t)
2 , γ

(t)
+ ) (the

adventitia).

C. Prior of the Segmentation Model

In the case of healthy carotids, anatomical information could
be used to construct a prior for the segmentation model (see
[19]), namely, the average IMT, as well as its spatial and tem-
poral variances (in the sense of [28]). However, these values
cover only the expected dimensions of healthy carotids. As we
are interested in patients presenting pathologies of the carotid
wall in this paper, a prior based on a manual segmentation of
the plaque in the first frame was used instead. Namely, two
constraints that regularize the segmentation process were con-
sidered. These constraints differ from the ones presented in [19].

1) Geometrical Smoothness Constraint: Let γ be a contin-
uous piecewise linear curve of the form γ(l) = (x(l), y(l)), for
l ∈ [1, L], with vertices (x(1), y(1)), . . . , (x(L), y(L)), where
the first coordinate indicates the lateral position and the second,
the axial position. To take into account the different scaling
along the axial and lateral directions, we considered the ra-
tio ρ = 51.9/6.7 (1 pixel in the lateral direction corresponds
to ρ ≈ 7.7 pixels in the axial direction), or ρ = 26/6.7 ≈ 3.9
(depending on the axial resolution). Accordingly, we consid-
ered the curve γρ(l) = (ρx(l), y(l)). Doing so yields the ratio
between the lateral and axial coordinates in the real scene (in
millimeter), rather than the ratio of the coordinates in the image
(in pixels). For simplicity of notation, we drop the subindex ρ
in what follows, so that γ now stands for γρ .

A geometrical smoothing constraint Δsm ,d(γ) was then de-
fined as the line integral

ρ

∫
γ

Gd d γ = ρ

∫ L

1
Gd(γ(l)) ‖γ̇(l)‖ d l (9)

where γ̇(l) denotes the derivative of the curve γ(l), and Gd(γ(l))
is a local measure of the abruptness of the curve γ in a neigh-

borhood of the given point γ(l) (see below for additional infor-
mation). If γ is rectilinear at the given point, then Gd has a value
of 0, and the more the γ is abrupt at the given point, the higher
is the value of Gd . The parameter d controls the size of the local
neighborhood.

Now, consider the direction vector of the tangent vector to the
curve γ (i.e., ( ẋ√

ẋ2 + ẏ 2
, ẏ√

ẋ2 + ẏ 2
), where the “dot” denotes the

derivative). Then, a natural choice of measure of abruptness is
the variance of the coordinates of that direction vector in a neigh-
borhood of radius d along the curve and centered at the given
point γ(l), i.e., Gd(γ(l)) = Var[ ẋ√

ẋ2 + ẏ 2
] + Var[ ẏ√

ẋ2 + ẏ 2
]. If d

covers the entire curve, an overall rectilinear shape of the plaque
(or the IMT) is expected. Since we consider the presence of
vascular pathologies, we selected a smaller value; namely, d
corresponds to 5 pixels (0.75 mm) in the lateral direction, thus
allowing a greater variability in the shape of the plaque, since
the constraint is more local.

2) Spatiotemporal Cohesion Constraint: Let (γ1,pred ,
γ2,pred) be a predicted solution and let (γ1 , γ2) be a pair of
curves (we drop the index (t) in this paragraph). In this paper,
we used the propagations of solutions in previous frames (cf.,
Section III-D) as a predicted solution, in order to take into ac-
count the lateral and axial displacements of the plaque and its
variable shape. Preliminary tests on a few video sequences of
plaques convinced us that it was a better strategy than using only
the solution in the previous frame. A spatiotemporal cohesion
constraint at frame t encourages the curve γi to be near γi,pred .
Namely, we defined the constraint Δtm(γi, γi,pred) as

1
2σ2

t

∫ L

1
‖γi(l) − γi,pred(l)‖2(‖γ̇i(l)‖ + ‖γ̇i,pred(l)‖

)
/2 d l

(10)
where the standard deviation is taken equal to σt = 0.12 mm
(i.e., the temporal standard deviation of the IMT as in [28]). The
function Δtm(γi, γi,pred) is equal to 0 if and only if γi = γi,pred ,
and it is symmetric. We used it as a measure of the discrepancy
between the segmented curve and the predicted solution.

Altogether, combining the two constraints mentioned earlier,
we considered the prior Pt(γ

(t)
1 , γ

(t)
2 | γ

(t)
1,pred , γ

(t)
2,pred) propor-

tional to

2∏
i=1

exp(−βΔsm ,d(γ
(t)
i ) − Δtm(γ(t)

i , γ
(t)
i,pred)) (11)

for t > 1, where β > 0 is the weight of the geometrical smooth-
ing constraint. The value of β was estimated, based on the
manual segmentation of the first frame, in the sense of the
Maximum Pseudo-A-Posteriori estimator (that is closely related
to the Maximum Pseudo-Likelihood estimator of [29], [30]). See
the Appendix for details. In our tests, the estimated value of β
varied between 0.2 and 10.

D. Posterior Distribution of the Segmentation Model

Combining the likelihood of (8) and the prior of (11),
one obtains the following expression for the posterior dis-
tribution Pt(γ

(t)
1 , γ

(t)
2 | I(t) , γ

(t)
1,pred , γ

(t)
2,pred) of the proposed
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segmentation model up to a normalizing constant:

Pt(I(t) | γ
(t)
1 , γ

(t)
2 )Pt(γ

(t)
1 , γ

(t)
2 | γ

(t)
1,pred , γ

(t)
2,pred). (12)

The proposed method consisted in estimating (γ(t)
1 , γ

(t)
2 ) in the

sense of the MAP, i.e., to find (γ(t)
1 , γ

(t)
2 ) that maximizes (12).

The MAP solution was computed using the stochastic op-
timization algorithm exploration/selection (ES) of [19], with
an adaptation to the data structure that takes into account the
variable shapes of plaques.

V. COMPARATIVE MANUAL ASSESSMENT

Let M(R,Rman) be a measure of agreement or, on the con-
trary, a measure of discrepancy between two (segmented) re-
gions R and Rman . Then, if (R(t)) and (R(t)

man), t = 1, ..., T ,
are the sequences of regions corresponding to the semiauto-
matic segmentation and the manual segmentation by an ex-
pert technician, respectively, for a same video sequence (of T
frames), one can define a measure between the two segmen-
tations upon averaging the measure over all frames of that se-
quence: M = 1

T

∑T
t=1 M(R(t) , R

(t)
man). Note that R

(1)
man is the

manual segmentation in the first frame that was used as ini-
tialization of the proposed segmentation algorithm. The manual
segmentations in the other frames were used solely for the vali-
dation of the method, as described in this section.

In our tests, we considered the following four measures of
agreement based on receiver operating characteristic analy-
sis [31], [32] between a semiautomatic segmentation R and
a manual segmentation Rman . The four measures are the sensi-
tivity (also called true positive rate or recall), the specificity, the
kappa index (also called the F-measure), and the overlap which
are respectively defined as follows:

se =
|R ∩ Rman |
|Rman |

; sp =
|R ∩ Rman |
|Rman |

; (13)

KI = 2
|R ∩ Rman |
|R| + |Rman |

; ov =
|R ∩ Rman |
|R ∪ Rman |

. (14)

These four measures (together with the precision and the ac-
curacy) were used in the study [6] (R and Rman correspond to
“AS” and “GT”, respectively, in [6, eq. (1)]. Since the precision
and the accuracy are redundant with the other four measures, we
do not report them in this paper. Note that the measure of speci-
ficity requires the notion of the complement of the segmented
region, which in turn depends arbitrarily on the ROI chosen to
define the complement. For instance, if the ROI is enlarged, then
the false positive rate decreases artificially. For that reason, we
took the smallest rectangle (parallel to the axial and lateral axes)
that contained both R and Rman (see Fig. 2 for an illustration).

We also considered four measures of discrepancy. The first
one is the error of area in [12], and is defined as follows:

EArea =
|R| − |Rman |

|Rman |
. (15)

The sign indicates whether the area is overestimated (+) or
underestimated (−). We also computed the absolute error of

Fig. 2. Two segmented regions and the smallest rectangle parallel to the axial
and lateral axes that contains both of them. The dotted line: manual segmentation
and the full line: semiautomatic segmentation.

area defined by

AEArea =
‖R| − |Rman‖

|Rman |
. (16)

The two other measures of discrepancy are based on the
average point-to-point distance D and the Hausdorff point-
to-point distance HD, respectively (cf., [33]), between the
boundary of the region R and that of the region Rman . Re-
call that the Hausdorff distance between two sets A and
B is defined as HD(A,B) = max(h(A,B), h(B,A)), where
h(A,B) = maxa∈Aminb∈B ‖a − b‖ (‖a − b‖ is the Euclidean
norm). If d is the Hausdorff distance between two sets A and B,
then every point of A must be within a distance d of B and vice
versa (cf., [33]).

VI. EXPERIMENTAL RESULTS

The manual segmentations were performed by one expert
technician and reviewed by a vascular sonographer for each
frame of the 94 sequences. In our tests, the expert technician
chose the temporal interval of each sequence where good quality
images were present and with minimal transient motion artifacts
due to movements of the transducer or of the patient, and per-
formed the manual segmentations of the plaque throughout the
chosen interval. The expert technician used a software devel-
oped in our laboratory to perform the manual segmentations.
Once the sequence was loaded, a video of the full sequence
could be viewed. The manual segmentation done in a frame
could be copied on the next frame, and then adjusted through
control points of a spline curve, if necessary. In total, 8988
frames were manually segmented. Fig. 3 shows four examples
of semiautomatic segmentations of plaques.

Whenever the plaque was located on both the near and the far
carotid artery wall (this fact holds for 36 of the 94 sequences),
thus comprising two distinct connected components (see the
second and fourth examples of Fig. 3), we used the segmentation
method independently on the two components (each one with
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Fig. 3. Examples of semiautomatic (full line) and manual (dotted line) segmentations of plaques appearing at the proximal internal carotid, at the 60th frame of
the segmented sequence. Two leftmost images: left and right carotids of a patient acquired by a same operator. Two rightmost images: left and right carotids of
another patient acquired by a same operator.

TABLE III
QUANTITATIVE EVALUATION OF THE SEGMENTATIONS OBTAINED BY THE

PROPOSED METHOD, USING MANUAL SEGMENTATIONS PERFORMED BY AN

EXPERT TECHNICIAN AS GROUND TRUTH

TABLE IV
QUANTITATIVE EVALUATION OF THE SEGMENTATIONS OBTAINED BY THE

PROPOSED METHOD, USING MANUAL SEGMENTATIONS PERFORMED BY AN

EXPERT TECHNICIAN FOR THE ASSESSMENT

its own manual initialization). Henceforth, there were actually
a total of 130 video-sequence segmentations to be performed
using the proposed algorithm. This represented 12206 frame
segmentations, but the total number of images was 8988.

The quantitative results of the evaluation method are pre-
sented in Tables III and IV. Namely, the measures of agreement
or discrepancy of Section V, between the algorithmic and man-
ual segmentations, were computed. In these tables, we included
results from [6] and [10] that are discussed in Section VII-A.

The EM algorithm combined with the segmentation method
took 129 h and 41 min (this represents 63391 estimations and
12206 frame segmentations) for the 130 video sequences. Thus,
segmenting one frame took 38 s on average. The implementation
was in C++ and the tests were run on a 3 GHz Pentium 4 CPU.

VII. DISCUSSION

A. Comparison of the Segmentation Method With Other Studies

The results of Table III indicate that the proposed method
compares favorably with [6], especially for the kappa index and
the overlap measures. Note, however, that no standard deviation
of the measures was reported in that study. On the other hand,
the results reported in [10] are better than the ones obtained
in [6] and this study. But then, the database size was very small
(4 plaques) in [10].

Comparing with our previous study [19], we see in Table IV
that the mean distance (0.24 ± 0.08 mm) between the semiau-
tomatic and the manual segmentations is smaller than the mean
distance between the segmentations of the intima–media layers
of disease-free proximal internal carotid arteries performed by
two expert technicians (the mean distance was 0.33 ± 0.17 mm
for the lumen–intima interface and it was 0.40 ± 0.29 mm for
the media–adventitia interface). However, the Hausdorff dis-
tance was better in [19] (0.73 ± 0.33 mm for the lumen–intima
interface and 0.88 ± 0.67 mm for the media–adventitia inter-
face, whereas it is 1.24 ± 0.40 mm in this study). Also, let
us mention that in the study [8], reported in Table I, the seg-
mentation errors are reported in pixels rather than millimeters.
No quantitative comparison can thus be made. On the other
hand, in the study [34], the maximum and mean standard devia-
tions for manual segmentations of the carotid surface were 1.64
and 0.45 mm, respectively. We interpret those two measures as
the Hausdorff and the mean point-to-point distances between
various manual segmentations and their mean. Based on that
intraobserver variability study, we conclude that the Hausdorff
and mean point-to-point distances of 1.24 and 0.24 mm, re-
spectively, obtained in this study can be considered as good,
especially if one considers our large database.

B. Assessment of the Optical Flow Hypothesis

If our hypotheses on the correlation of the B-mode images and
the conservation of their MGL from one frame to the next are
true, then the method of Section III-B for estimating the motion
field τ + L (based on the optical flow identity) makes sense,
and we should find a good correlation between two successive
frames (taking into account the motion field), and a ratio of their
MGL near 1 in our database.
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For each of the 130 video-sequence segmentations, we esti-
mated the motion field as in Section III-B, on a neighborhood of
the segmented region at each frame t of the video sequence. We
then computed, for each frame, the correlation coefficient and
the MGL ratio between the images at that frame and the next
frame, as well as the Euclidean norm of the deformation matrix
of the estimated motion field between the two frames. We then
took the average values of these three measures over the 130
video sequences of the database. The correlation coefficient
was 0.97 ± 0.031, the MGL ratio was 1.0 ± 0.0024, and the
Euclidean norm of the deformation matrix was 0.012 ± 0.0068,
which means that the deformation L of (1) was near the identity
operator. In our opinion, this indicates that the use of optical
flow was self-consistent in the context of this application.

C. Evaluation of the Overall Movement of the Plaque

The results of Section VII-B indicate that the use of the opti-
cal flow method was reasonable to perform the tracking of the
plaque over the video sequence. But, was tracking of the plaque
necessary? To answer this question, we considered for each of
the 130 segmented video sequences, the geometric center of the
segmented plaque (xc,t , yc,t) at frame t = 1, ..., T . The curves
(xc,t)T

t=1 and (yc,t)T
t=1 yield the tracking of the geometric cen-

ter of the plaque over the video sequence in the lateral and
axial directions. The measures Dx = max(xc,t) − min(xc,t)
and Dy = max(yc,t) − min(yc,t) give the total lateral and ax-
ial displacements. We obtained Dx = 1.07 ± 0.49 mm and
Dy = 0.52 ± 0.30 mm. We conclude that tracking of the plaque
was necessary.

D. Strengths and Limitations of the Method

The average computation time was 38 s per frame. Further
efficiency can be made on a commercial version, provided one is
given a few CPUs combined with a GPU implementation. In fact,
the EM and the ES algorithms would benefit from paralleliza-
tion. So, the clinician might carry on the patient examination,
while the segmentation of the whole sequence is performed.
Thus, there is a reasonable hope to see a clinically applicable
version in the future. On the other hand, we evaluated that the
expert technician spent about 9.6 s per frame for the manual
segmentations. An average processing time of 20 s per image is
reported in [8, p. 1267, end of Section II].

The proposed method is semiautomatic, in the sense that it
requires an initial manual segmentation of the plaque in the first
frame, and then proceeds to the segmentation of the entire se-
quence without further user interaction. In particular, the method
depends on the initial segmentation. We performed segmenta-
tions on the entire database following a random perturbation of
the manual segmentation in the first frame within a distance of
0.5 mm. Note that the mean intraobserver variability reported
in [34] is 0.45 mm. Paired t-tests with a confidence level of 0.05
showed that there were no significant difference in the eight
evaluation measures used (based on the manual segmentations
without random perturbation). Thus, the method is robust to a
reasonable variability in the initialization. On the other hand, it
is understood that the initial manual segmentation is user de-

pendent, and in fact, corresponds to prior information on the
identification of the carotid artery within the image, the detec-
tion, and the localization of a plaque.

In the plaque segmentation methods of [6], [8] and [10],
the initialization of the algorithm was performed automatically,
based on blood flow, echogenicity of the lumen and the plaque,
or the Hough transform, respectively. Moreover, none of these
methods was presented nor tested in the context of a sequence of
ultrasound images. Now, in principle, if a method works well for
an individual image, it might work well for a whole sequence of
images, each one treated individually. However, we are inclined
to think that it is preferable to perform the motion tracking over
the sequence, based on a plaque segmentation in a reference
frame (for instance, the first one). Then, the plaque segmentation
in the reference frame might be done automatically with one of
the methods [6], [8], [10].

We performed one-way analyses of variance on the eight
evaluation measures of the segmentation algorithm among the
groups determined by the degree of stenosis or calcification, and
there were no statistically significant differences, except for the
kappa index and the overlap. However, a pairwise comparison
gave significant differences for the kappa index and the overlap
only between mild and moderate calcification (and not between
no calcification and severe calcification). Thus, the performance
of the algorithm is not inversely proportional to the severity of
stenosis or calcification. The evaluation measures of the algo-
rithm according to the degree of stenosis or calcification are
presented in Table V. Incidentally, Fig. 1 is an example of a
plaque with calcification.

In the studies [6], [8] and [10], the US images were B-mode
scans with further postprocessing, such as speckle reduction
filtering [6] or low-pass filtering [8], [10]. Since the segmenta-
tion methods in these studies are mainly based on gradients, a
postprocessing step was desirable. In this study, the proposed
segmentation method is based on the statistical distribution of
the gray level in the echo envelope of the RF signal. Since it
is a region-based segmentation method, we believe that it is
less likely to be sensitive to the image quality and image noise
than a method based solely on gradients, that is to say with-
out postprocessing steps, but we have not tested this aspect.
Note that Nakagami distributions, viewed as approximations of
homodyned K-distributions, are well suited to model the echo
envelope of RF images [35]. On the other hand, if the B-mode
image is postprocessed, one may consider gamma distributions,
rather than Nakagami distributions, to model the gray level of
B-mode images2. See [36] for instance. In particular, with that
slight modification in mind, the proposed method may also be
applied to B-mode scans with manufacturer proprietary post-
processing.

The proposed method is not meant as a registration method
in the context of large motion as it stands. Such a context would
require further development of the method.

2One should not confuse the gamma distribution on the gray level of the
B-mode image with the gamma distribution on the intensity of the B-mode
image (i.e., the square of the gray level). The latter is equivalent to a Nakagami
distribution on the gray level itself, as mentioned in Section IV-B.
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TABLE V
EIGHT EVALUATION MEASURES OF THE ALGORITHM ACCORDING TO THE DEGREE OF STENOSIS OR CALCIFICATION

VIII. CONCLUSION

We have included a prediction of the segmented plaque, based
on motion field estimates, into the prior of a Bayesian model,
in the form of a spatiotemporal cohesion constraint. The com-
putation of the MAP of that Bayesian model then allowed the
refinement of the prediction. Our tests showed that tracking of
the plaque is necessary, and that motion field estimates based on
the optical flow identity is self-consistent in the context of our
database. The motion fields were modeled by a first-order tissue
dynamics. In addition to the spatiotemporal cohesion constraint,
the prior of the segmentation model included a smoothing con-
straint and we proposed a method for estimating the weight of
that smoothing constraint. The likelihood of the Bayesian model
was based on mixtures of Nakagami distributions that are well
suited to model complex echogenicity observed in the B-mode
envelope of RF acquisitions. In that model, each of the tissues
(lumen, plaque, adventitia) corresponded to a weighted sum of
these Nakagami distributions that could be learned from the so-
lution at the previous frame. This flexibility of the model took
into account the variability of appearance of the tissues within
sequences, and did not require any off-line learning step. The
proposed method requires only the manual segmentation of the
plaque in the first frame of the video sequence. Our tests in-
dicate that the semiautomatic segmentations of plaques located
at internal proximal carotid arteries obtained by the proposed
method compare favorably to the state-of-the-art segmentation
method [6] (see Table III). Finally, we think that an optimized
implementation based on parallelization could provide close to
real-time processing.

APPENDIX

To estimate the weight β > 0 of the geometrical smoothness
constraint Δsm ,d appearing in (11), we considered the Markov
point process having the following likelihood:

P ((γ1 , γ2) | β)

=
exp(−β{Δsm ,d(γ1) + Δsm ,d(γ2)})∫ ∫

exp(−β{Δsm ,d(γ1) + Δsm ,d(γ2)})d γ1d γ2
(17)

where γ1 and γ2 represent two continuous piecewise linear
curves. The denominator is called the partition function and is

analytically and numerically intractable, thus making the max-
imization of (17) as a function of β practically impossible.

Let ((xl, yl))L1
l=1 and ((x̃l , ỹl))L2

l=1 be the sequences of the
vertices of the curves γ1 and γ2 , respectively. For l = 1, ..., L1 ,
γ1 \ (xl, yl) denotes the curve obtained by deleting the point
(xl, yl), whereas γ1 \ (xl, yl) ∪ (ξl , ηl) denotes the curve ob-
tained by replacing (xl, yl) with (ξl , ηl). The analogous notation
applies to γ2 . In [29], the pseudolikelihood PPL((γ1 , γ2) | β) of
a Markov model is proposed as an alternative to its likelihood:

L1∏
l=1

exp(−βΔsm ,d(γ1))∫ ∫
exp(−βΔsm ,d(γ1 \ (xl, yl) ∪ (ξl , ηl)))d ξld ηl

×
L2∏
l=1

exp(−βΔsm ,d(γ2))∫ ∫
exp(−βΔsm ,d(γ2 \ (x̃l , ỹl) ∪ (ξ̃l , η̃l)))d ξ̃ld η̃l

.

(18)

In order to handle the degenerate case, where the maxi-
mum of the pseudolikelihood is reached at infinity (corre-
sponding to Δsm ,d(γ1) + Δsm ,d(γ2) = 0), we found conve-
nient to consider a prior on the hyperparameter β of the
form P (β) = G(β | k, θ), with k > 1 and θ > 0. Indeed, in
that case, the function d log

d β PPL((γ1 , γ2) | β) + d log
d β P (β) has

a unique root and it corresponds to the maximum of the function
PPL((γ1 , γ2) | β)P (β).

In our tests, we took systematically k = 2 and θ = 1, so
that the distribution P (β) has the mean kθ = 2 and variance
kθ2 = 2. This yields a median of 1.68, a 2.5% percentile of 0.24,
and a 97.5% percentile of 5.57. With this prior, the estimated
value of β varied between 0.2 and 10, in our tests. In particular,
the estimation of β was worthwhile.
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segmentations and to É. Mercure for supervising her work with



DESTREMPES et al.: SEGMENTATION OF PLAQUES IN SEQUENCES OF ULTRASONIC B-MODE IMAGES OF CAROTID ARTERIES 2211

Dr. G. Soulez. The authors thank the anonymous reviewers for
their comments.

REFERENCES

[1] C. Schmitt, G. Soulez, R. L. Maurice, M.-F. Giroux, and G. Cloutier,
“Noninvasive vascular elastography: Toward a complementary character-
ization tool of atherosclerosis in carotid arteries,” Ultrasound Med. Biol.,
vol. 33, no. 12, pp. 1841–1858, 2007.

[2] H. Ribbers, R. G. P. Lopata, S. Holewijn, G. Pasterkamp, J. D.
BlankenSteijn, and C. L. de Korte, “Noninvasive two-dimensional strain
imaging of arteries: Validation in phantoms and preliminary experience in
carotid arteries in vivo,” Ultrasound Med. Biol., vol. 33, no. 4, pp. 530–
540, 2007.

[3] H. Shi, C. C. Mitchell, M. McCormick, M. A. Kliewer, R. J. Dempsey,
and T. Varghese, “Preliminary in vivo atherosclerotic carotid plaque char-
acterization using the accumulated axial strain and relative lateral shift
strain indices,” Phys. Med. Biol., vol. 53, pp. 6377–6394, 2008.

[4] T. Yamagishi, M. Kato, Y. Koiwa, K. Omata, H. Hasegawa, and H. Kanai,
“Evaluation of plaque stabilization by fluvastatin with carotid intima-
medial elasticity measured by a transcutaneous ultrasonic-based tissue
characterization system,” J. Atherosclerosis Thrombosis, vol. 16, no. 5,
pp. 662–673, 2009.

[5] C. P. Loizou, C. S. Pattichis, R. S. H. Istepanian, M. Pantziaris, and
A. Nicolaides, “Atherosclerotic carotid plaque segmentation,” in Proc.
29th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society
(EMBS), San Francisco, CA, Sep. 1–5, 2004, pp. 1403–1406.

[6] C. P. Loizou, C. S. Pattichis, M. Pantziaris, and A. Nicolaides, “An in-
tegrated system for the segmentation of atherosclerosis carotid plaque,”
IEEE Trans. Inform. Technol. Biomed., vol. 11, no. 6, pp. 661–667, Nov.
2007.

[7] S. Delsanto, F. Molinari, W. Liboni, P. Giustetto, S. Badalamenti, and
J. S. Suri, “User-independent plaque characterization and accurate IMT
measurement of carotid artery wall using ultrasound,” in Proc. 28th Ann.
Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS),
New York City, NY, Aug. 30–Sep. 3, 2006, pp. 2404–2407.

[8] S. Delsanto, F. Molinari, P. Giustetto, W. Liboni, S. Badalamenti, and
J. S. Suri, “Characterization of a completely user-independent algorithm
for carotid artery segmentation in 2-D ultrasound images,” IEEE Trans.
Instr. Meas., vol. 56, no. 4, pp. 1265–1274, Aug. 2007.

[9] F. Molinari, W. Liboni, E. Pavanelli, P. Giustetto, S. Badalamenti, and
J. S. Suri, “Accurate and automatic carotid plaque characterization in con-
trast enhanced 2-D ultrasound images,” in Proc. 29th Ann. Int. Conf. IEEE
Engineering in Medicine and Biology Society (EMBS), Cité Internationale,
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