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Abstract: This paper presents a semi-analytical model of shear wave scattering by a viscoelastic 

elliptical structure embedded in a viscoelastic medium, and its application in the context of 

dynamic elastography imaging. The commonly used assumption of mechanical homogeneity in 

the inversion process is removed introducing a priori geometrical information to model physical 

interactions of plane shear waves with the confined mechanical heterogeneity. Theoretical results 

are first validated using the finite element method for various mechanical configurations and 

incidence angles. Secondly, an inverse problem is formulated to assess viscoelastic parameters of 

both the elliptic inclusion and its surrounding medium, and applied in vitro to characterize 

mechanical properties of agar-gelatin phantoms. The robustness of the proposed inversion method 

is then assessed under various noise conditions, biased geometrical parameters, and compared to 

direct inversion, phase gradient and time-of-flight methods. The proposed elastometry method 

appears reliable in the context of estimating confined lesion viscoelastic parameters. 

 

1. Introduction 

Mechanical properties of biological tissues may vary during pathological diseases/processes 

such as cancer (Samani et al., 2007), fibrosis (Andersen et al., 2009), or with heating (Bharat et 

al., 2005). A wide variety of techniques has been developed to map tissue elasticity for diagnosis, 

screening or in the context of surgery (Parker et al., 2011). Within the last twenty years, the 

ultrasound modality has been widely used to investigate mechanical properties of biological 

tissues (Lerner et al., 1990; Ophir et al., 1991). Static elastography takes advantage of the 

Hooke’s law in the linear domain to establish relative strain maps, called elastograms. In-vivo 

studies using static elastography demonstrated the relevance of the technique for breast 

(Wojcinski et al., 2010; Schaefer et al., 2011) and prostate cancer screening (Castaneda et al., 
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2009), despite operator dependency limitations. Shear wave elastography imaging (SWEI) 

(Sugimoto et al., 1990; Rudenko et al., 1996; Sarvazyan et al., 1998) is another technique 

allowing quantitative estimation of the shear modulus, by assessing velocity of propagating shear 

waves. The concept has also been applied to magnetic resonance imaging (Muthupillai et al., 

1995; Plewes et al., 2000; Sinkus et al., 2005) and magnetic resonance elastography (MRE) has 

received attention in the last decade (Mariappan et al., 2010). 

Most inversion methods used in dynamic SWEI, such as the direct inversion (DI) (Sandrin et 

al., 2002; Nightingale et al., 2003; Catheline et al., 2004; Bercoff et al., 2004), the phase gradient 

(PG) (Chen et al., 2004), and the time-of-flight (TOF) (Tanter et al., 2008) methods rely on 

global or local mechanical homogeneity, linearity and isotropy assumptions. The DI method 

estimates the shear modulus by solving the Helmholtz equation from displacement spatial and 

time derivatives (Catheline et al., 2004). PG and TOF methods estimate the shear wave speed 

from the phase shift or the time-of-arrival between two distant points to quantitatively assess the 

Young’s elasticity modulus E= 3ρc2, where ρ is the density of the medium and c the estimated 

shear wave speed. The last two methods assume non-dispersive material because the shear wave 

tracking only allows assessing the group velocity (Tanter et al., 2008; Palmeri et al., 2008). 

The major source of variability of the DI method is the computation of displacement 

numerical derivatives on noisy data to solve the Helmholtz's equation. Data filtering may thus be 

required to obtain reliable assessment (Nightingale et al., 2003). For both PG and TOF methods, 

since the shear modulus is proportional to the square of the celerity, the variability follows the 

same quadratic non-linear relation, which increases for small regions of interest (Chen et al., 

2004). Moreover, during the propagation of shear waves, scattering and attenuation affect the 

wavefront pattern challenging tracking algorithms (McLaughlin et al., 2006). To minimize those 

effects, directional filtering has been proposed (Deffieux et al., 2011), allowing suppression of 
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reflected waves in tracked patterns. Another alternative is to take into account the pattern of shear 

wave spreading along the propagation path (Klein et al., 2012). 

Since biological tissues are not purely elastic but viscoelastic, viscous effects have been 

introduced in theoretical models. Viscosity is related to the shear wave attenuation during 

propagation and to dispersion (i.e, the frequency dependence of the shear wave speed). For this 

goal, the DI method takes advantage of the imaginary part of the wavenumber (Catheline et al., 

2004), related to dissipative effects, whereas PG and TOF methods use dispersion curves (Chen et 

al., 2004; Deffieux et al., 2009). Another way to highlight viscous effects is to take advantage of 

the phase shift between applied stress and measured strain (Sridhar et al., 2007; Vappou et al., 

2009). 

In the breast cancer screening context, the distinction between benign and malignant lesions 

is challenging and often leads to unnecessary biopsies (Seltzer, 1997; Mitka, 2007). Such 

procedure induces stress for the patient (Jatoi et al., 2006; Keyzer-Dekker et al., 2012), and 

avoidable high costs to health systems (Greif, 2010). In this context, increasing diagnostic 

specificity using elastography is a recognized challenge with potential high impact (Berg et al., 

2012; Cho et al., 2012). In the current work, it was assumed that low grade tumors can be 

described geometrically by ellipses (Madjar and Mendelson, 2008), and mechanically as 

viscoelastic materials. Such geometrical fitting of the shape of breast tumors has recently been 

proposed in static elastography, in the context of axial-shear strain imaging (Thittai et al., 2010). 

Therefore, the problem of shear wave scattering by viscoelastic elliptical inclusions was 

addressed and presented as a generalization of the circular case (Hadj Henni et al., 2008). The 

manuscript is organized as follows: first, a semi-analytical model of shear wave scattering is 

presented and validated using the finite element method (FEM) for an inclusion softer or harder 

than the surrounding material. Then, an iterative inverse problem is formulated and applied to in 
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vitro results obtained using agar-gelatin phantoms to provide elastometry mechanical measures. 

The robustness of the inversion method is finally presented considering input data with low 

signal-to-noise ratios (SNR) and biased geometrical parameters. The impact of the phase of the 

stationary displacement field on elastometry estimates was also evaluated. The viscoelastic 

characterization was done without any assumption on the rheological behavior of each material, 

and did not necessitate computation of numerical derivatives, likely improving robustness. 

 

2. Methods: 

2.1 Theoretical model: 

Two dimensional (2-D) scattering of elastic plane shear waves by a viscoelastic elliptical 

structure (inclusion) embedded in an infinite viscoelastic surrounding medium is considered here 

(figure 1). The polarization vector is contained in the (xy)-plane (i.e, shear vertical waves or SV-

waves). The incidence angle θ  is defined as the angle between the incident wave vector and the 

x-axis, the latter corresponding to the large axis of the ellipse. In the following, subscript 

{ },j incl surr=
 
refers to the elliptic inclusion and surrounding medium, respectively. Time-

dependence terms in eiωt are omitted and assumed understood. The complex shear modulus jG
 

can then be written as: 

' ''
j j jG G iG= +   (1) 

where ' '',j jG G  are storage and loss moduli, respectively of medium j. Inserting (1) in the motion 

equation gives (Achenbach, 1973):  

2 ( 2 ) ( . ) ( )j j j j j j jG Gρ ω λ+ + − × × =U U U 0∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇   (2) 
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with jρ , ω, jU  and ` jλ  being respectively the density of medium j fixed at 1100 kg/m3 for both 

media, the angular frequency, the displacement field, and the first Lamé coefficient. Using the 

Helmholtz decomposition and by considering ϕ  as an irrotational scalar potential related to the 

compression wave, and ψ  a vector potential describing the shear wave, one obtains:  

( ( , ) ( , ) 0)Tx yU x y U x y ϕ= = ∇ + ∇×U ψ   (3) 

Two Helmholtz equations are obtained by inserting (3) in (2) for both shear and compressional 

components of the displacement field (referred below by subscripts S and C, respectively). 

Namely, 

2 2 0j Cj jkϕ ϕ∇ + =
 

 (4) 

2 2 0j Sj jk∇ + =ψ ψ
 

 (5) 

 

In (4) and (5), longitudinal and transverse wavenumbers are respectively: 

  

( )
2 2

2
22

j
Cj

Cj j

k
cG

ρ ω ω
λ

= =
+

   (6)

 

2 2
2

2

j
Sj

j S

k
G c

ρ ω ω= =    (7) 

  
with cC and cS the longitudinal and shear wave speeds, respectively. 

According to the geometry considered, Helmholtz equations are solved in elliptical 

coordinates (Abramovitz and Stegun, 1965), where (η, ξ) 
 
are the angular and radial components, 

respectively. Using the separation of variable method, solutions of the Helmholtz equations in 

elliptical coordinates are expressed in terms of infinite series of angular and radial Mathieu 

functions (Chaos-Cador, 2002). A plane incident shear wave propagating in the infinite 

surrounding medium with an incidence angle θ  is thus expressed in elliptical coordinates as:  



 

 7

, , ,
0

2 ( , ) ( , ) ( , ) 

0

n p p p
inc n surr S n surr S n surr S

p n

inc

i ce q Ce q ce qη ξ θ

ϕ

∞

=

=

=

∑∑ψ
 (8) 

where 2( , )p
nce qη , 2( , )p

nCe qξ  are respectively angular and radial Mathieu functions of order n, 

with parity 0,1p =  for even and odd functions, respectively. In (8), ,surr Sq  is a dimensionless 

parameter that depends on the geometry and mechanical properties of the medium through the 

wavenumber (Chaos-Cador, 2002). It is given by: 

  
2 2

,
, 4

S surr
surr S

f k
q =

 
 (9) 

where 2 2f a b= −  with f, the distance interfoci of the considered ellipse, and a, b its large and 

small half axes, respectively. Refracted waves, which are regular at the origin, are described using 

radial Mathieu functions of the first kind, whereas scattered waves, which are outgoing waves are 

expressed in terms of radial Mathieu functions of the third kind, called Mathieu-Hankel functions. 

Scalar and vector potentials of both refracted and scattered waves can therefore be expressed as: 

0

( ) ( , ) ( , )kr j p rp
j npk n jk n jk

p n n

A ce q Ce qω η ξ
∞

=

ϒ =∑∑
 

  (10) 

where { },k C S=
 
refers to longitudinal and transverse wave polarization, respectively, { }1,3r =

 
denotes the kind of radial Mathieu function used. The parameters jkq

 
are determined from (9) 

using wavevectors expressed in (6)-(7). In (10), 0 {0,1}n =
 is the first order of computation for 

even and odd Mathieu functions, respectively, andj
npkA  are unknown scattering coefficients to be 

computed. 

Since angular Mathieu functions of different q parameters are not orthogonal (due to 

existing mechanically different media, as in the present case), the angular dependency cannot be 

easily removed as in the circular case (Faran and James, 1951; White, 1958). In this sense, it has 

been proposed to express angular Mathieu functions in the Fourier domain (Seyyed and Sanaei, 

2008). Here, the difficulty is overcome by writing elastic boundary conditions, i.e. the continuity 
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of both radial and tangential components of displacement and stress, over a finite set of points 

along the elliptic contour 0ξ ξ= : 

0 0

0 0

0 0

0 0

0

0

0

0

incl surr

incl surr

incl surr

incl surr

U U

U U

ξ ξξ ξ ξ ξ

η ηξ ξ ξ ξ

ξξ ξξξ ξ ξ ξ

ξη ξηξ ξ ξ ξ

σ σ

σ σ

= =

= =

= =

= =

− =

− =

− =

− =

 (11) 

 

Assuming a homogeneous isotropic and linear medium, second order stress and strain 

tensors are expressed respectively as: 

( ). 2Gλ= ∇ +σ U I ε  (12) 

( )1

2
= ∇ + ∇ε U U  (13) 

where I is the identity matrix. Inserting (10) in (12) and (13) allows writing (11) as a linear 

system of equations under the form A x = b, x containing unknown scattering coefficients 

introduced in (10). Each line of A describes one boundary condition of (11) expressed at one 

discrete point of the elliptic contour ( 0, [0,2 ]ξ ξ η π= ∈ ). Since the displacement field in the 

surrounding medium is the sum of the incident and scattered displacement fields, known incident 

terms are indexed in b for each boundary condition. Finally, solving the formulated system allows 

thereafter the computation of both refracted and scattered waves at any point in space using (3) 

and (10). Details on the construction of the linear system are provided in Appendix. 

2.2 Simulations with the finite element method: 

The geometry of figure 1 and mechanical configurations listed in table 1 were 

implemented using the finite element method (COMSOL Inc., Burlington, MA, USA, ver. 3.3) in 
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two dimensions, as considered in the theoretical model. The surrounding medium was modeled as 

a square region (20 × 20 cm2). Plane shear wave generation was ensured by imposing a harmonic 

displacement at each node of the left boundary. To encounter the infinite medium assumption 

made in the theoretical model, i.e. to avoid undesired reflections on domain boundaries, 

mechanical absorbers were mimicked on the remaining three boundaries by imposing the same 

shear modulus as for the surrounding medium, but with an exponentially increasing viscosity with 

thickness. The thickness of mechanical absorbers was arbitrary defined as four wavelengths to 

allow vanishing of shear waves. The mesh element sizes were fixed at one quarter of a 

wavelength. The elliptical inclusion embedded in the surrounding medium was defined by 

specifying elastic boundary conditions (i.e., stress and displacement continuity at the boundary). 

Both media were mechanically described as linear, homogeneous and isotropic. 

2.3 Experiment protocol:  

In vitro experiments were realized with two distinct one-liter agar-gelatin phantoms 

(product numbers G-1890 and A-9799 for gelatine and agar, respectively, Sigma Chemical, Saint-

Louis, MO, USA), with mixture proportions given in table 2. The mechanical heterogeneity 

(inclusion) was a cylinder having an elliptic cross-section with major and minor radii of 5 mm 

and 3.8 mm, respectively. The ultrasonic beam-axis was oriented normal to the cylinder axis to 

assess displacements occurring in its cross-section (xy-plane). As presented in figure 2, transient 

excitation signals (typically 300 Hz central frequency, six-period long, weighted by a Hamming 

window) were generated by a function generator (model 33250A, Agilent, Palo Alto, CA, USA), 

then amplified (type 2706, low frequency amplifier, Brüel&Kjær) before supplying a vibrator 

(type 4810, Brüel&Kjær, Nærum, Denmark) mechanically linked to a plaque embedded in the 

phantom. To avoid any effects along the z-axis and hence encounter 2-D assumption formulated 

in both theoretical model and FEM simulation, z-axis dimensions of both plaque (120 × 120 

mm2) and cylinder (110 mm) were fixed more than ten times the major diameter of the inclusion 
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(10 mm). Radiofrequency data (RF-lines) were acquired using an ultrasonic scanner (Sonix RP, 

Ultrasonix Medical Corporation, Burnaby, BC, Canada) and a 10 MHz central frequency probe 

(model L14-5/38, 38 mm width, 128 elements, Ultrasonix Medical Corporation). Synchronization 

of excitation-acquisition sequences derived from an ECG-gated method (Chérin et al., 2006) were 

trigged by the scanner computer and allowed achieving a reconstructed frame rate of 3850 Hz. 

Such frame rate was obtained by receiving data from only two elements of the probe over a 8-cm 

depth, while the transmission sequence consisted in 32-element aperture beams, with a 4-cm 

depth of focus (F-number = 4). To cover the whole probe width, 64 acquisitions were 

successively repeated, shifting active elements from 1 to 128. One thousand frames were acquired 

for each acquisition, and final images were reconstructed from the 64 acquisition sequences. 

Displacements were estimated from RF data using a dedicated parallel 1-D normalized 

cross-correlation algorithm implemented on a graphical processor unit (GPU) (NVIDIA CUDA, 

2008; Montagnon et al., 2012). By taking advantage of the low latency of the GPU cache 

memory, the whole computing task was divided into blocks, each one processing data from one 

element of the ultrasound probe. This allowed quasi real-time processing of RF data, achieving a 

processing frame rate greater than 150 frames/sec for an 80 × 38 mm2 field of view. From 

temporal transient displacements, the complex amplitude of each pixel at the excitation frequency 

was computed using temporal Fast Fourier Transforms (FFT) leading to complex stationary 

displacement maps (Schmitt et al., 2011). Three acquisitions were realized for each phantom by 

translating the probe along the cylinder-axis (z-axis) over a minimum distance of two millimeters 

between each recording to consider data from various cylinder cross-sections. This allowed 

assessing the reproducibility of the proposed inversion method. 

2.4 Inverse problem:  
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Due to the mechanical impedance contrast between the inclusion and surrounding 

medium, the incident shear wave is simultaneously refracted inside the inclusion and scattered in 

the surrounding medium. Displacements occurring in the inclusion thus depend on mechanical 

properties of both media; therefore, considering both media as one global system is of interest. In 

sake of generality, no assumption was made neither about the surrounding medium viscoelasticity 

nor about rheological models; consequently, the inverse problem allowed assessing shear storage 

and loss moduli of both media. 

Initial viscoelastic moduli for both media were arbitrarily fixed to: Gj = 10 + 0.1 iω kPa, 

for j = 1, 2. This configuration describes a mechanically homogeneous medium and thus no a 

priori  information about the elasticity contrast was introduced in the inversion process. Since 

experimentally assessed displacements are a projection of the real displacement vector on the 

ultrasonic beam axis, theoretical displacement components ( ),x yU U  were projected on an axis 

corresponding to the experimental ultrasonic beam. Therefore, both displacement components 

assessed by the theoretical model were fully taken into account in the inversion process. 

Viscoelastic parameters of both media were finally estimated by minimizing a cost function using 

a non-linear least square solver. The cost function was formulated as the distance between 

normalized experimental and theoretical displacement profiles: 

( ) { }2

, argmin  Re U Re U  T E
incl surrG G    = −   

  
 (14) 

 

where Re indicates the real part operator, and U ,UT E

 are theoretical and experimental 

displacement profiles, respectively. 

The minimum of the cost function (14) was determined using the non linear Levenberg-

Marquardt least-square solver (lsqnonlin function of Matlab, The MathWorks Inc., Natick, MA, 
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USA, version 6.5). The elliptical inclusion location was determined from B-mode images, 

allowing the definition of the elliptical system of coordinates, which origin coincided with the 

ellipse center. From Fourier transforms computed in Section 2.3, stationary experimental 

displacement profiles at 250 Hz and 300 Hz for ''soft'' and ''hard'' cases, respectively, were then 

extracted along the line normal to the ultrasonic beam axis (i.e., along the image width) crossing 

the inclusion through its center (see figure 2). The phase was arbitrarily chosen to zero for the 

first point of considered displacement profiles (i.e., at x = -2 cm). The effect of the phase on the 

inversion is discussed later in sections on robustness. 

2.5 Robustness study 

The robustness of the inversion method was first addressed by considering variability of 

estimated viscoelastic parameters from noisy input data. Normalized displacement profiles 

obtained by using the ‘hard’ configuration B in the FEM model were used as reference (table 1). 

A zero-mean random noise following a standard uniform distribution was added to the reference 

displacement profile and weighted to produce different SNRs. The noiseless data had an infinite 

SNR that was reduced to values between 22 and 10 dB. The SNR was computed from: 

1020 log signal

noise

RMS
SNR

RMS

 
=  

 
 (15) 

 

where signalRMS , noiseRMS  indicate the root mean square of the reference signal and added 

noise, respectively. For each SNR, the inversion algorithm was applied ten times, with a different 

random noise generation (new seed), at each iteration. Since breast tumors are mostly expected to 

be harder than surrounding tissues, robustness results are only presented for the hard case 

inclusion. 
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As mentioned earlier, the inversion method requires a priori on ellipse dimension (large 

radius a = 5 mm and small radius b = 3.8 mm) and location to define the elliptic coordinate 

system. The effect of those parameters on the inversion accuracy was also addressed by 

considering biased inclusion dimensions and locations for both soft (ATh) and hard (BTh) 

configurations used in the forward problem (table 1). Biased input values were expressed in 

percentage of the initial geometry and location, and errors on estimated mechanical parameters 

were computed using: 

 (%) estimated reference

reference

X X
Err

X

−
=    (16) 

 

where ,estimated referenceX X
 
indicate estimated and reference values of either G’ incl or G’’ incl. 

Additionally, an evaluation was conducted to test the influence of the phase of considered 

stationary displacement profiles on G’ incl and G’’ incl. The inversion process was tested for various 

phase values in the range [ ]0;π  for both hard and soft configurations. 

Mechanical configurations presented in table 1 are within the range of viscoelastic 

properties of agar-gelatin phantoms (Hadj Henni et al., 2011), which are known to exhibit low 

G’’/G’  ratios, also designated as tanδ . For biological tissues such as the liver, kidney or breast, 

tanδ  has been measured in the range [0.3; 0.6] (Sinkus et al., 2005; Valtorta et al., 2005). To 

assess robustness of the proposed method for such biological materials, two additional 

mechanical configurations (CTh and DTh) derived from ATh and BTh were simulated by specifying 

the inclusion loss modulus to half the shear modulus (i.e., G’’/G’  = 0.5). 

3. Results: 

 

3.1- Forward problem: 
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To simulate experimental configurations where induced displacements are parallel to the 

illuminating beam (figure 2), theoretical displacement vector components were projected along 

the y-axis of figure 1. Normalized displacement profiles obtained using the FEM and the semi-

analytical model, using configurations of table 1, are presented in figure 3 (soft inclusion) and 

figure 4 (hard inclusion). Normalized root mean square errors (NRMSE) between the reference 

and the simulated profiles are 0.8% and 0.7% for the soft and hard cases, respectively. Those 

values become 3.5% and 5% when considering 2-D fields of view of 4 x 4 cm2 centered on the 

ellipse. In figure 3, displacements are greater in the soft inclusion due to the lower shear modulus 

than in the surrounding medium. Furthermore, at the interface inclusion/surrounding medium, 

refracted waves are dominantly reflected with attenuated transmission to the surrounding medium 

due to the mechanical contrast impedance. Therefore, multiple internal reflections contribute to 

the enhanced displacements within the inclusion. As observed in (Hadj-Henni et al., 2010; 2012), 

reflected waves in the inclusion lead to constructive interferences at specific frequencies, leading 

to a mechanical resonance phenomenon. For the hard inclusion case in figure 4, opposite trends 

are observed; due to the mechanical contrast, incident waves are predominantly reflected by the 

inclusion toward the external mechanical vibrator. 

3.2- Inverse problem:  

The experimental stationary displacement maps in the long-axis of the inclusion were used to 

formulate the inverse problem. To assess reproducibility, three data sets corresponding to three 

positions of the probe along the cylinder axis were processed for each phantom. Means and 

standard deviations of estimated storage and loss moduli are presented in table 3. Angles between 

the long-axis of the elliptic inclusion and the incident wave vector were -15º and 45º for the soft 

phantom A and hard phantom B, respectively. Such angle values were arbitrarily chosen in sake 

of generality aiming in-vivo application of the proposed method. By considering the estimated 

viscoelastic parameters in table 3, theoretical displacement maps are compared to experiments in 
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figure 5 for the soft inclusion and in figure 6 for the harder one. The NRMSE between 

experimental displacement maps and theoretical ones computed from estimated viscoelastic 

parameters are 9% and 10% for soft (AExp) and hard (BExp) phantoms, respectively. Since shear 

wave speed increases with shear modulus, wavefronts are disturbed within the inclusion and 

either decelerate for the soft case or accelerate for the harder one, as seen in both theoretical and 

experimental maps. 

3.3- Robustness study: 

Estimated mechanical parameters for different noise amplitudes are presented in figure 7. 

Estimated shear moduli are little affected by noise (differences of 1.94% for the hard inclusion 

and 1.3% for the surrounding medium in the case of the minimum SNR of 10 dB). However, loss 

moduli are more variable with errors on mean assessments, at a SNR of 10 dB, of 16.4% and 

11.6%, for the inclusion and surrounding medium, respectively. An example of solution for a 

SNR of 10 dB is presented in figure 8. With that noise magnitude, mean estimated storage moduli 

from 10 measures are 16670 ± 516 Pa for the inclusion and 2961 ± 24 Pa for the surrounding 

medium, instead of the simulated values of 17000 Pa and 3000 Pa for the same components. 

Estimated loss moduli are 786 ± 769 Pa and 168 ± 18 Pa instead of 940 Pa and 190 Pa, 

respectively. 

Errors on estimated viscoelastic parameters in the case of biased large and small elliptic radii 

for both hard and soft configurations with G''/G' = 0.05 and G''/G ' = 0.5 are presented in figure 9. 

Biases applied to both large and small axes range from -15% to 15% of initial ellipse dimensions. 

As seen in figure 9, the largest impact of the large axis dimension variation was on the accuracy 

of the inclusion loss modulus G’’ . It was maximum for the hard case inclusion at both G''/G' 

values. Errors for G''/G' = 0.5 were globally lower than for the low viscous configuration, 

especially for the hard configuration. 
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Changing the location of the inclusion (i.e., of the displacement profile line used in the 

inversion process) was done by shifting the origin of the elliptical coordinate system along (x) 

and (y) axes from -15% to 15% of initial ellipse dimensions (figure 10). Again, largest errors 

were noted for G’’  of the hard inclusion, especially for the low G''/G' ratio. Shear modulus 

estimations were little affected by biased location of axes, especially for y-axis shifts. 

Figure 11 presents the impact of various phases of the reference stationary displacement 

profile on storage and loss moduli. As noticed for other abovementioned robustness tests, G’ 

presented few variations, whereas G’’  were more variable. The initial phase had the largest 

impact on G’’  of the hard inclusion. Loss modulus estimation errors could achieve 90% for the 

low viscous inclusion (figure 11-a), but did not exceed 16% for G''/G' = 0.5 (figure 11-b). 

4. Discussion: 

4.1 Forward problem based on simulated results: 

An excellent agreement between semi-analytical and FEM results was obtained for 

various configurations of viscoelasticity contrasts, incidence angles and frequencies. The main 

advantage of the semi-analytic simulation is the ability to compute displacement fields at any 

points in space, once scattering coefficients are determined, with a better time efficiency than 

FEM. This property makes the proposed approach relevant in a clinical context.  

4.2 Inverse problem validation with phantoms: 

The formulated inverse problem converged and allowed to assess viscoelastic parameters 

of both media with good reproducibility for the two phantoms. It is important to note that unlike 

the DI method, no spatial derivatives are needed in the proposed inversion algorithm; therefore no 

additional post-processing such as filtering of estimated displacements were required.  
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The accuracy of the solution depends on the formulated cost function (14). Here, we 

considered displacement profiles determined by the mechanical property of the inclusion and 

surrounding medium, and by the inclusion geometry. However, a challenge was to obtain reliable 

solutions for inclusion sizes at a fraction of the wavelength. Indeed, as one can see in figure 4 for 

the inclusion domain (between the two dashed lines), roughly half a wavelength is observed 

within the hard inclusion at the vibration frequency of 300 Hz. Estimating the loss modulus for 

the soft inclusion was less critical because close to a complete wavelength could be available at a 

frequency of 250 Hz, as seen in figure 3. Therefore, an inverse problem formulation estimating 

only inclusion mechanical parameters might be problematic and encounter more than one solution 

(i.e., local minima). In our formulation, since the displacement profile was extracted along a line 

crossing both media (inclusion and surrounding medium), both reflected and scattered waves 

were taken into account to estimate viscoelastic shear moduli of both structures. Reflected waves 

are thus considered valuable in the inversion method. Such approach is at the exact opposite of 

directional filtering techniques (Deffieux et al., 2011) where reflected waves are suppressed to 

minimize decorrelation in the shear wave tracking. Furthermore, the low NRMSE obtained 

between experimental and theoretical displacement maps demonstrate the goodness of estimated 

viscoelastic parameters. Thus, from a 1-D experimental displacement profile, the proposed 

method allowed estimating viscoelastic parameters of both media and retrieving 2-D maps. 

4.3 Robustness study: 

As one can see in figure 8, the elasticity estimation remained robust and not significantly 

affected by noise. Such robustness to noise is mainly explained by the 2-D formulation of the 

scattering phenomenon. Indeed, two x-y components of theoretical displacements are used to 

retrieve the 1-D displacement on which the inverse problem was formulated. Another explanation 

for robustness is the absence of numerical derivatives to assess the viscoelasticity. However, as 
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discussed above, the inclusion loss modulus estimation was more sensitive to noise than the 

storage modulus assessment. 

Introducing biased inclusion dimensions in the inverse problem did not affect drastically 

the storage modulus estimation for both configurations, whatever tan δ (figure 9). Indeed, despite 

geometrical variations, shear wave scattering occurs roughly under similar conditions compared 

to the unbiased case. However, while errors on loss modulus for the soft ATh case remained 

acceptable for geometrical variations within ±15%, the hard inclusion exhibited large errors 

(figure 9). This trend for the BTh case was generally reduced for the larger G''/G' ratio (figure 9-c, 

d). 

Figure 10 reported errors on viscoelastic parameters related to biased inclusion locations, 

corresponding to an elliptical coordinate system not centered on the inclusion geometry. As in 

previous cases, the real part of the complex shear modulus remained stable, unlike the imaginary 

part, especially in the case of the inclusion stiffer than the surrounding medium at the low G''/G' 

ratio. Estimation errors related to changes in the reference displacement profile phase, presented 

in figure 11, exhibited the same general trends as in figures 9 and 10, i.e. that the loss modulus 

estimation for the low viscous condition was sensitive to input parameter variations. These 

observations naturally raise the question as to whether viscous parameters are really achievable 

using the proposed model for low G''/G' ratios, and more generally, does small inclusion viscosity 

really affect shear wave scattering for such conditions? 

To address this question, we present in figure 12-a the reference profile obtained for the 

hard case using FEM and the theoretical profile computed from estimated parameters considering 

an initial phase of zero and G''/G' = 0.05. As notice, an excellent agreement is obtained (NRMSE 

= 0.7%), despite a large error on the estimated inclusion loss modulus (81.4%). Therefore, it 

clearly appears that for the hard inclusion configuration, its loss modulus has a very weak 
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influence on observed displacement profiles. This can be explained by the fact that for a 

viscoelastic medium with a low tan δ, the loss modulus mainly affects displacement magnitude 

over distance and time. In the hard case, since the wavelength became greater than the inclusion 

dimension (λ = 1.13 cm for the example of figure 12-a), the decrease in displacement magnitude 

had little impact. In the case of the soft inclusion, the wavelength within its boundary was much 

smaller (λ = 0.59 cm), thus reducing errors in G’’  estimates. Overall, the performance of the 

proposed inversion approach was improved for the case of more viscous contrast (i.e., high tan δ). 

According to our observations, errors on the inclusion loss modulus are expected to 

decrease in the case of larger inclusions, higher shear wave excitation frequencies, and higher tan 

δ. As an example, changing the excitation frequency for the hard configuration from 300 Hz to 

450 Hz, which is still a frequency achievable in practice with shear wave imaging, the error in the 

estimate of the inclusion loss modulus dropped to 21 % (figure 12-b), which is roughly four times 

smaller than at 300 Hz. At the opposite, for very low frequencies, if wavelengths are larger than 

the inclusion dimension, no scattering occurs, and thus errors on viscoelastic parameters are 

expected to increase. This robustness study allowed highlighting key parameters for reliable 

viscoelastic measurements using the proposed method. First, at a constant G''/G' ratio, the loss 

modulus estimation is affected by the “elastographic signature”, i.e. displacement profiles 

containing few but enough oscillations in both media, highlighting elastic and viscous effects 

through changes in wavelength and attenuation. Secondly, it has been shown that for poorly 

viscous media, despite excellent fittings (figure 12-a), errors can still achieve unacceptable 

values. However, considering materials with G''/G' ratios in the same range as those measured on 

biological tissues, both storage and loss moduli can be suitably assessed.  

4.4 Approximation of the elliptic model by the cylindrical case: 
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In continuity of the above discussion on robustness, in the case the inclusion would be 

close to circular, a 2-D shear wave scattering model by cylinders (Hadj Henni et al., 2008) would 

be applicable. However, to prove the flexibility of the current model and to assess how the 

cylindrical scattering model would depart from expected results in the case of elliptical inclusions 

with different b / a ratios (i.e., different ellipticities), displacement profiles of the current study 

were fitted to both models. The circular inclusion with radius r was matched to the area of the 

ellipse by using r ab= . Results for the hard configuration Bth (table 1) and G''/G' = 0.05 or 0.5 

with b / a ratios from 0.40 to 0.76 are plotted in figure 13. Errors reported using the circular 

model are highly variable and most results are irrelevant. Such errors can be explained by the 

combination of the inability of circular Bessel functions (see Hadj-Henni et al., 2008) to describe 

displacement fields related to elliptical geometries, and the presence of local minima during the 

inversion process. For the elliptical model, b / a ratios were obtained by decreasing small axis 

values. An increase in estimation errors is observed for low b / a values. This can be explained 

bacause for ''flat'' ellipses, the small axis dimension is smaller than the incident wavelength and 

thus scattering is barely inexistent. In such cases, increasing the excitation frequency, and thus 

reducing incident wavelengths, is expected to provide better accuracy. Nevertheless, this figure 

clearly highlights limitations of the cylindrical model and demonstrates the flexibility of the 

elliptical one to fit different tumor geometries. 

4.5 Comparison with other dynamic elastography methods: 

To assess the impact of the mechanical homogeneity and one dimensional displacement 

assumptions on the inversion accuracy in the case of a heterogeneous medium, the DI (Sandrin et 

al., 2002; Bercoff et al., 2003; Nightingale et al., 2003) and PG (Chen et al., 2004) methods (both 

aiming quantitative estimation of the complex shear modulus) were implemented and applied to 

previously validated displacement profiles presented in figure 4. The goal was not to presume on 

the relevance or validity of those algorithms in other elastography contexts, but to highlight 



 

 21 

consequences of assuming mechanical homogeneity in the case of a heterogeneous medium, 

without directional filtering. We recall here that DI and PG methods have been applied to map 

elasticity even in the case of heterogeneous media through spatial variations of shear wave speeds 

(ignoring diffraction and scattering effects), while the present approach requires the inclusion 

geometry to be known and assumes its homogeneity within the heterogeneous medium in order to 

take into account physical interactions. As mentioned earlier, low noise and high frequency 

sampling are required to compute numerical derivatives. Here, noiseless analytical displacements 

are considered, with a spatial sampling of 0.2 mm (less than roughly the 0.3 mm pitch of the 

probe). From the Helmholtz equation, the shear wave celerity corresponding to the direct 

inversion method was assessed as (Nightingale et al., 2003): 

( , )
( )

( , )

U x
k

U x

ωω
ω

−∆=   (17) 

( )
Re( ( ))

c
k

ωω
ω

=   (18) 

 

The phase gradient inversion method was applied on the same datasets; the celerity of shear 

waves was computed as (Chen et al., 2004): 

φ
ω
∆
∆= r

cs   (19) 

 

with ω  the angular frequency and φ∆  the phase shift between two points separated by a 

distance r∆ , fixed to 1 mm in this case. 

To provide fair comparisons, the time-of-flight (ToF) method with directional filtering 

was also implemented and applied to simulated data. As for phantom experiments, the temporal 

excitation signal was modeled as a 300 Hz transient plane shear wave with a length of six periods. 

The simulated frame rate was 4 kHz. Using the theoretical model, displacement profiles were 
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computed over the frequency range of the excitation signal (as in Hadj Henni et al., 2008) and 

weighted by respective complex amplitudes in the Fourier domain. Transient temporal 

displacements resulting from shear wave interactions with the elliptic cylinder were retrieved 

through inverse Fourier transforms. 

Directional filtering, as described in (Deffieux et al., 2011), was applied to simulated 

displacement profiles. Briefly, negative k-space components of the displacement spatio-temporal 

2-D Fourier transform, which are related to reflected waves in the time domain, were set to zero. 

Directionally filtered temporal displacements were recovered by using inverse 2-D Fourier 

transforms. Shear wave pattern tracking was performed using a cross-correlation algorithm on 

filtered data. To increase the accuracy of the shear wave speed estimation, the cross-correlation 

function was oversampled ten times before maximum search. Finally, estimated shear moduli 

were obtained from estimated velocities using: G`= ρc2. 

Results are presented in figure 14. As one can see, both DI and PG methods are affected 

by the presence of the mechanical heterogeneity. Particularly, the PG method presents strong 

oscillations over the whole profile. Those oscillations are most likely due to the presence of 

reflected and scattered waves. On the other hand, the DI method, despite the absence of noise and 

a high spatial resolution, highlights variability and underestimates the inclusion shear modulus by 

approximately 15%. In figure 14-b, the unwrapped phases of studied profiles are presented. 

Variations of the phase slope depending on the propagating medium were low, even with an 

elasticity contrast greater than 5. It is important to recall that an infinite medium is considered 

here; therefore all changes in wavefront are due to the inclusion only, which are unavoidable even 

in transient elastography. Therefore, DI and PG methods may appear more appropriate for large 

homogeneous areas because the inversion accuracy decreases in the presence of a mechanical 

heterogeneity since physical interactions are not taken into account. One has to note that results 

obtained using ten times oversampled data exhibited the same trends. 
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According to figure 14-c, the ToF method with directional filtering allowed good 

estimation of the inclusion storage modulus and inclusion delineation, but overestimated the 

surrounding storage modulus by about 40%. For this configuration, the ToF method clearly 

outperforms DI and PG. The incident wave was a plane shear wave propagating in a non 

dispersive medium, i.e. with equal group and phase velocities. Therefore, the shear wave pattern 

did not change when propagating in the surrounding medium. At the opposite, shear waves 

induced by an acoustic radiation force are affected by geometric scattering, thus leading to 

deformation of the induced shear wave pattern over the propagation path. Such behavior 

challenges pattern tracking methods (McLaughlin et al., 2006) and might affect elasticity maps. 

Furthermore, it has been demonstrated in (Tanter et al., 2008) that breast parenchyma highlighted 

frequency dependant shear wave speeds and thus can be considered as dispersive. As presented in 

(Deffieux et al., 2011), shear wave spectroscopy allows estimating shear wave speeds over a 

large frequency range. However, for dispersive confined mechanical heterogeneities such as 

tumors, errors on velocity measurements over short distances are expected to increase with 

frequency, likely affecting the accuracy of dispersion curve fitting. 

4.6 Limitations and future perspectives 

Since in vivo applications are ultimate goals, assuming a mechanically homogeneous 

surrounding medium along the whole probe width, as in our experiments, might be irrelevant and 

a source of noise in the inversion process. Considering multiple short displacement profiles or 

scattering patterns in the cost function might provide additional characteristic information about 

the inclusion. In the current form, the method is only applicable to visible lesions since an a 

priori  on the geometry is needed. In the case of non-visible lesions, it would be feasible to use 

other elastography methods as an initial step, if one assumes that those methods provide a better 

detection than clinical B-scans (Hiltawsky et al., 2001), for localization and geometrical fitting of 

the lesion. According to results previously obtained with various elastography methods, the ToF 
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combined with directional filtering appears most suitable for inverse problem initialization in the 

case of non-visible lesions. The model of the current study can easily be extended to consider 

cylindrical waves either by using plane wave decomposition or by expressing incident shear 

waves as outgoing waves using Hankel functions (Stamnes, 1995). Such a model thus might be 

efficiently applied to radiation force experiments, especially in the case of supersonic shear 

imaging (SSI) excitations since plane waves are remotely induced (Bercoff et al., 2004). 

Moreover, the proposed inversion strategy is not limited to ultrasound elastography and would be 

relevant to process magnetic resonance elastography data.  

In term of computational time, the semi-analytical method proposed in this paper only 

requires solving one linear system (11), for computation of scattering coefficients and 

displacements at desired spatial positions (with 10). In the case of the FEM, the whole geometry 

must be considered (i.e., surrounding medium, inclusion, boundary conditions). The FEM 

execution time depends on various parameters such as the mesh density, size of the surrounding 

medium and mechanical absorbers. Without claiming to provide a computationally optimized 

FEM model, one displacement profile computation, for the hard configuration, required 41.1 ± 

0.85 seconds compared to 0.82 ± 0.11 seconds for the semi analytical model (mean and standard 

deviations obtained from 10 iterations). The computation time required for the inversion is related 

to various parameters, such as initial mechanical parameters or search ranges, and typically 

requires 90 seconds using the semi-analytical model, which barely equals two iterations of the 

finite element model. 

The extension of this work to a three-dimensional scattering problem appears as a logical 

next step. However, such model would require the use of non-orthogonal spheroidal wave 

functions (Abramovitz and Stegun, 1965), discretization of three dimensional volumes, and 

finally inversion of large ill-conditioned systems. Moreover, on a practical point of view, 

estimating mechanical properties of 3-D structures would require a 3-D scan, then segmentation 
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procedure and finally the assessment of the plane to display within the entire volume. Such 

procedure would considerably complicate the clinical exam. This question highlights the global 

trade off between estimation accuracy and algorithm complexity, with in mind clinical 

applications. 

In this study, scattering coefficients were computed using discrete points along an elliptic 

contour. Malignant tumors are known to exhibit irregular contours (American College of 

Radiology, 2007). Because small fluctuations of the contour geometry are much smaller than 

considered wavelengths in elastography, this is not expected to induce major effects on shear 

wave scattering, and the elliptic contour approximation may still be valid (see Schmitt et al., 2013 

for such assessment in the context of shear wave induced resonance elastography of deep vein 

thrombi). The model can consider more complex geometries by writing elastic boundary 

conditions on contours slightly different from an ellipse. However, in the case of very complex 

shapes, basic functions used to describe the displacement field might be irrelevant, leading to ill-

conditioned linear systems. In those cases, FEM might be more appropriate.  

 

5. Conclusion 

In the context of viscoelastic characterization of confined mechanical heterogeneities, a 

semi-analytical model of shear wave scattering has been presented and validated. Experimental 

results demonstrated a good reproducibility and robustness to added noise. In our approach, the 

lesion geometry was an a priori measurable parameter that was fitted by ellipses and then used as 

an input parameter to the proposed model. Computing G' and G'' over a wide frequency range 

would allow the determination of the underlying general rheological model, which could be 

assessed a posteriori. At the opposite, viscoelasticity quantification methods using dispersion 

curves rely on a priori known rheological models (which choice may be unclear for biological 
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tissues). To conclude, it is to note that the proposed plane incident wave model can be extended 

to consider cylindrical waves, offering perspectives for radiation force applications with in situ 

localized shear wave generation. 
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Appendix 

 

This appendix aims to detail the construction of the linear system used to describe the 

scattering of shear waves by ellipsoids. Let us first consider the first boundary condition 

expressed in (11), i.e. the continuity of radial displacements across the inclusion boundary. Both 

scattered and incident waves propagate through the surrounding medium. Therefore, one can 

write: 

surr scattered incidentU U U= +  (20) 

According to the Helmholtz decomposition (3):  

1
U

hξ
ϕ ψ
ξ η

 ∂ ∂= + ∂ ∂ 
  (21) 

with h a scale factor related to the coordinate system used: 

( )
1

2 2 2sinh sin 1h h hξ η ξ η= + == f              (22) 

 hz = 1 

From (11) rewrites as A x = b, (20) can be expressed in terms of infinite series of radial 

and angular derivatives of Mathieu functions. Due to the parity of Mathieu functions, each 

potential is described as a series of two distinct coefficients. Since displacements are a 

combination of two distinct potentials (see 3), four series of coefficients are to be computed for 

each component of displacements ( ),U Uξ η=U . Finally, eight series of unknown coefficients 

are determined and x is then a (8N×1) column-vector. 

For each discrete point of the contour geometry defining the mechanical lesion, four 

boundary conditions were imposed to meet viscoelastic conditions defined by (11). Matrix A was 

built such that each row describes one boundary condition at one discrete point, leading to 4Npts 

rows, with Npts the number of discrete points considered in 8N columns. Owing to that, in order to 
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obtain a square matrix, one can see that the number of contour points considered and the 

truncature order N are linked by a factor of 2. The matrix A of (11) thus has a dimension of (2N × 

4N). 

As explained by Leon et al. (2004), the truncature order N depends on the ''ellipticity'' of 

the geometry and increases when ellipse flattens. N also depends on the product ka, with k the 

wavenumber and a the large axis of the ellipse. Considered frequencies and ellipse dimensions in 

our application typically lead to ka close to unit. We used N = 25, which is close to the value 

proposed by Leon et al. (2004): N = 2N* + 1 with N* = ka + 10. 
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Figures: 1 

 2 

 

Figure 1 Geometrical configuration of the 2-D semi-analytical shear-wave scattering model. Plane shear 

vertical waves polarized along sk
r

 (red arrows) propagate into an infinite medium 2, before impinging an 

elliptic inclusion 1, stiffer or softer than the surrounding medium. The dimensions of the inclusion are a = 5 
mm and b = 3.8 mm. 
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Figure 2 Flow chart of the experimental setup and data processing. Transient displacements are 
mechanically induced using a mechanical shaker. Those displacements are assessed from RF data acquired 
at an ultrafast frame rate using a standard 1-D cross-correlation algorithm. Stationary displacement maps 
are computed using Fourier transforms. Experimental displacement profiles are then extracted to compute 
the cost function defined as the distance between theoretical (UT) and experimental (UE) profiles. 
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Figure 3 Normalized displacement profiles obtained by using the finite element method (dashed line) and 
the semi-analytical model (dots) in the case of a soft inclusion (configuration A of table 1). The NRMSE 
between both theoretical models was 0.8%. 
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Figure 4 Normalized displacement profiles obtained by using the finite element method (dashed line) and 
the semi-analytical model (dots) in the case of a hard inclusion (configuration B of table 1). The NRMSE 
between both theoretical models was 0.7%. 
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Figure 5 Experimental (left) and theoretical (right) stationary displacement maps obtained by using the 
solution of the inverse problem at 250 Hz (phantom A with a soft inclusion). The blue ellipse indicates the 
location of the inclusion insonified at an angle θ  of -15 degrees. Field of view depth and width axes are 
centered on the ellipse. 
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Figure 6 Experimental (left) and theoretical (right) stationary displacement maps obtained by using the 
solution of the inverse problem at 300 Hz (phantom B with a hard inclusion). The blue ellipse indicates the 
location of the inclusion insonified at an angle θ  of 45 degrees. Field of view depth and width axes are 
centered on the ellipse. 
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Figure 7 Viscoelastic parameters estimated for increasing noise amplitudes applied to FEM results in the 
case of the hard inclusion B. G’ indicates the storage modulus, G’’  the loss modulus, the subscript incl 
refers to the inclusion, whereas the subscript surr indicates the surrounding material. The label Inf on the x-
axis indicates an infinite SNR (i.e., the zero noise condition). 
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Figure 8 Theoretical displacement profiles obtained at the optimization convergence of the inverse 
problem for a signal-to-noise ratio (SNR) of 10 dB (red line) compared with simulated data corrupted with 
noise at the same SNR (blue line). 
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(a) (b) 

 
 

(c) (d) 
 

Figure 9 Errors on inclusion viscoelastic parameters (in % of reference values given in table 1) obtained by 
using biased ellipse large and small radii as inversion input parameters for soft and hard configurations 
with G''/G' = 0.05 (a, b) and G''/G' = 0.5 (c, d). 
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(a) (b) 

  
(c) (d) 

 

Figure 10 Errors on inclusion viscoelastic parameters (in % of reference values given in table 1) obtained 
by using biased inclusion locations along the x-axis and y-axis as inversion input parameters for soft and 
hard configurations with G''/G' = 0.05 (a, b) and G''/G' = 0.5 (c, d). 
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(a) (b) 

 

Figure 11 Errors on inclusion viscoelastic parameters (in % of reference values given in table 1) obtained 
for various phases of the reference stationary displacement profile for soft and hard configurations with 
G''/G' = 0.05 (a) and G''/G' = 0.5 (b). 
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(a) 

(b) 

Figure 12 Reference (full line) and estimated (dots) displacement profiles at convergence of the 
optimization procedure for the hard inclusion case at 300 Hz (a); the NRMSE was 0.7% while the error on 
the inclusion loss modulus was 81.4%. Same as (a) but at 450 Hz (b); the NRMSE was 1.3% and the error 
on the inclusion loss modulus was 21.0%. The error on the inclusion loss modulus estimation decreases 
with frequency. 

 

 

 

 

 

 

 

 

 

  

 

 

 



 

 

 
41 

 

 

  
(a) (b) 

Figure 13 Errors on inclusion storage and loss moduli obtained by applying an inverse problem, based on a 
cylindrical shear wave scattering model (Hadj Henni et al., 2008) denoted by subscript ''circ'' and elliptical 
model (''ell''), to displacement profiles corresponding to various b/a ratios. Hard case with G''/G' = 0.05 (a) 
and G''/G' = 0.5 (b) . 
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Figure 14. (a) Simulated displacement profile along the large axis of the hard inclusion (configuration Bth 
of table 1). (b) Unwrapped phase corresponding to the displacement profile in (a). (c) Shear moduli 
obtained using the direct inversion method (dotted blue line), the phase gradient method (dashed red line), 
the time-of-flight method (green line, circles) and simulated shear moduli (full black line). 
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Table 1. Mechanical parameters, excitation frequencies and incidence angles used in the forward 
problem approach; subscript Th indicates “theory”. 

 

Medium Gincl (kPa) Gsurr (kPa) f (Hz) Incidence (deg) 

Soft ATh 2.4+ i 0.09 17+ i 1.0 250 -15 
Hard BTh 17+ i 0.94 3+ i 0.19 300 20 

 

 

Table 2. Agar and gelatin concentrations (in % of water weight) for phantoms A and B 
mimicking the theoretical conditions of table 1. 

 

Phantom Inclusion Surrounding 
medium 

 Agar 
(%) 

Gelatin 
(%) 

Agar 
(%) 

Gelatin 
(%) 

Soft AExp 1 3 3 4 
Hard BExp 3 5 1 3 

 
 

 

Table 3. Means and standard deviations of estimated storage and loss moduli for inclusions and 
surrounding media; subscript Exp indicates “experiments”. 

 

Phantom Gincl’ (kPa) G incl’’ (kPa) Gsurr’ (kPa) Gsurr’’ (kPa) 
Soft AExp 2.24 ±  0.09 0.32 ± 0.09 16.40 ± 0.09 2.26 ±  1.34 
Hard BExp 15.67 ± 0.12 2.3 ± 0.19 5.0 ± 0.03 0.32 ± 0.03 
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