Coronary artery atherectomy reduces plaque shear strains: An endovascular elastography imaging study

Zahra Keshavarz-Motamed a, Yoshifumi Saijo b,c, Younes Majdouline a, Laurent Rioud d, Jacques Ohayon e,f, Guy Cloutier a,b,c,1

a Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
b Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
c Department of Cardiology, Tohoku University, Sendai, Japan
d INSERM, UMR-S 1039, Bioclinical Radiopharmaceutic, Faculty of Medicine, University Joseph-Fourier, Grenoble, France
e Laboratory TIMC-IMAG/DyCTiM, University Joseph-Fourier, CNRS UMR 5525, Grenoble, France
f University of Savoie, Polytech Annecy-Chambery, Le Bourget du Lac, France
g Department of Radiology, Radio-Oncology and Nuclear Medicine, and Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada

A R T I C L E I N F O

Article history:
Received 11 October 2013
Received in revised form 16 April 2014
Accepted 16 April 2014
Available online 30 April 2014

Keywords:
Vascular elastography
Vulnerable coronary atherosclerotic plaques
Shear strain imaging
Image processing
Intravascular ultrasound
Human study

A B S T R A C T

Mechanical response and properties of the arterial wall can be used to identify the biomechanical instability of plaques and predict their vulnerability to rupture. Shear strain elastography (SSE) is proposed to identify vulnerable plaque features attributed to mechanical structural heterogeneities. The aims of this study were: 1) to report on the potential of SSE to identify atherosclerotic plaques; and 2) to use SSE maps to highlight biomechanical changes in lesion characteristics after directional coronary atherectomy (DCA) interventions. For this purpose, SSE was imaged using in vivo intravascular ultrasound (IVUS) radio-frequency data collected from 12 atherosclerotic patients before and after DCA intervention. Coronary atherosclerotic plaques (pre-DCA) showed high SSE magnitudes with large affected areas. There were good correlations between SSE levels and soft plaque content (i.e., cellular fibrosis, thrombus and fibrin) (mean SSE vs. soft plaque content: $r = 0.82$, $p < 0.01$). Significant differences were noticed between SSE images before and after DCA. Stable arteries (post-DCA) exhibited lower values than pre-DCA vessels (e.g., pre-DCA: mean $SSE = 3.9 \pm 0.2%$ vs. $1.1 \pm 0.2%$ post-DCA, $p < 0.001$). Furthermore, SSE magnitude was statistically higher in plaques with a high level of inflammation (e.g., mean SSE had values of $4.8 \pm 0.4%$ in plaques with high inflammation, whereas it was reduced to $1.8 \pm 0.2%$ with no inflammation, $p < 0.01$). This study demonstrates the potential of the IVUS-based SSE technique to detect vulnerable plaques in vivo.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Sudden death is the leading consequence of coronary artery disease in middle age and stands at the most dreadful end of the spectrum of acute coronary syndromes. In more than 50% of cases, the sudden death is related to an atherosclerotic plaque rupture [1]. The primary trigger for myocardial infarction is inflammatory-related biological destabilization of atherosclerotic plaques [2]. The prospective evaluation of the clinical success of a surgical intervention would benefit of an active identification of the rupture risk of detected lesions.

From autopsy studies in patients who had died of coronary artery diseases, the most common underlying plaque morphology was a ruptured thin-cap fibroatheroma (TCFA) with a superimposed thrombosis [3,4]. The TCFA is the precursor lesion that once ruptured, may lead to the formation of a thrombus causing an acute syndrome and possibly death [3]. Despite years of research on the subject, all biomechanical factors and mechanisms that make the vulnerable plaque (VP) susceptible to rupture are still not confidently known. However, it is generally believed that a large lipid pool, a thin fibrous cap (<100 μm), a high content of...
inflammatory cells and a scarcity of smooth muscle cells are main contributors of plaque vulnerability [5].

Intravascular ultrasound (IVUS), optical coherence tomography, computed X-ray tomography and magnetic resonance imaging currently provide promising biomarkers because of their ability to detect plaques [4,6–12]. However, since morphological features are insufficient predictors of risks [13,14], prospective prediction of plaque rupture is still imprecise. Therefore, there is a need for a precise characterization of mechanical properties of plaque components [15]. In this context, several IVUS-based technologies were developed for the evaluation of vessel lesion characteristics and for therapy planning, namely endovascular elastography (EVE) [16,17], palpography [18,19] and virtual histology [20,21]. However, these technologies later became controversial and failed to properly quantify plaque mechanical and compositional properties [22–26].

From a biomechanical point of view, elevated shear strain is increasingly being considered to be an important factor for initiating and/or stimulating the development of a plaque into a rupture prone one by cap weakening leading to ulceration [27–29]. According to [28], the shear strain induced in the adventitial layer by the axial movement of the artery may promote vasa vasorum neovascularization, which in turn may lead to plaque progression by intraplaque inflammation and bleeding. In addition, Lawrence-Brown et al. [30] hypothesized that shear stresses could cause repeated intramural micro hemorrhages followed by a healing process leading to accelerated plaque development. Indeed,
stiffness differences in plaque components may change structural shear stresses [31] and thus shear strains. This may lead to shear failure at the interface of tissue components with different stiffnesses [32,33]. Identifying shear strain within the arterial wall with imaging methods, therefore, should improve our ability to detect early functional abnormalities and may become a potential quantity to provide risk assessment of plaque vulnerability.

In the context of EVE imaging over cross-sections of an artery, early technical advances relied on the intraplaque radial [34,35] and circumferential [36,37] strain estimates. As a response to this need, we developed EVE based on the Lagrangian Speckle Model Estimator (LSME) [38] to estimate shear strain elastograms (SSE) [39]. In the latter study, this new development was validated against in vitro data acquired on polyvinyl alcohol cryogel vessel phantoms using standard finite element simulations. The potential of the SSE method to localize and identify vulnerable plaque features was also performed by applying it to in vivo data in atherosclerotic and diabetic pigs [39,40].

The aims of the present work were, therefore, 1) to study the potential of SSE to identify atherosclerotic plaques, and 2) to highlight the potential of SSE to investigate the evolution of mechanical properties following therapy and thus, the instability of atherosclerotic plaques. For this purpose, SSE maps were estimated by processing in vivo IVUS radio-frequency data collected from 12 atherosclerotic patients before and after directional coronary atherectomy (DCA) interventions. This pilot study demonstrates a reduction in magnitude of the shear strain field following DCA and thus the potential of the SSE-LSME technique to detect and characterize vulnerable plaques in vivo.

2. Materials and methods

2.1. Clinical data

Twelve patients (including two no re-flow cases and one perforation case) were studied under a research protocol approved by the Review Ethical Committee of Sendai University, Miyagi Social Insurance Hospital [41,42].

Before DCA, routine IVUS observations (Galaxy II® echograph, Boston Scientific, Natick, MA, USA, 40 MHz mechanically rotating probes) and radio-frequency (RF) signal acquisitions were processed to estimate shear strain elastograms (SSE) [39].

Table 1

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Histology measurements (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thrombosis</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

Mean ± SD 4.2 ± 5.4 21.0 ± 13.2 37.2 ± 16.5 12.3 ± 8.9 25.2 ± 14.0

2.2. Systemic pressure, level of inflammation (0: no inflammation, 1: medium level, 2: high level), and calcium detection (0: absence of calcium, 1: presence) for each patient.

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Pressure (mmHg)</th>
<th>Inflammation level</th>
<th>Calcium detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138/80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>124/68</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>132/80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>158/88</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>142/78</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>152/92</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>138/82</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>114/76</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>162/94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>128/74</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>168/94</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>132/88</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
performed. RF signals were digitized with a CS8500 8-bits 500 MHz acquisition card (GAGE, Lockport, IL, USA). For each patient, at a fixed axial catheter location to image the same atherosclerotic cross section during the cardiac cycle, a sequence of 30 images (at a frame rate of 30 images/s) was acquired. IVUS scanning was performed at the maximum stenosis site for all patients (i.e., the cross-section with the smallest vessel lumen).

After DCA, another IVUS scan with RF data acquisition was performed at approximately the same axial position for a given patient. Because the DCA procedure removed most of the lesion, it was difficult to scan exactly the same ROI (region of interest) as pre-intervention. In order to keep the scan location as close as possible between pre- and post-DCA, the interventional cardiologist recorded the distance of the IVUS scan location from the closest upstream coronary bifurcation branch by measuring the time of auto-pull-back under angiography guidance. Regarding the clockwise rotation in the IVUS image, the cardiologist marked the origin of small side branches. He first performed a test cut so as to confirm the location and do the main cut by comparing the images.

2.2. Histology study on excised DCA lesions

Patients underwent a DCA procedure in which the atherosclerotic plaque was excised with a Flexicut catheter (Guidant Corporation, Santa Clara, CA, USA). Excised specimens were fixed in 10% formalin, embedded in paraffin using standard protocols, and then used to obtain 4-μm thick slices (n = 2–4/patient) with a microtome. The DCA procedure inherently leads to fragmentation and homogenization of excised atherosclerotic lesions. This implies that the overall in situ morphology of lesions cannot be inferred from coronary plaque specimens retrieved from the DCA procedure. In accordance with previously published studies [43,44], we assumed that the histological analysis of 2–4 slices, obtained from paraffin-embedded samples retrieved from the DCA procedure, allows one to have a representative view of the overall composition of the excised lesion. Histology analysis was performed using Elastica-Masson’s trichrome (EMT) and CD68 immunochemical staining. Based on EMT staining, excised atherosclerotic lesions were subdivided into distinct components (Fig. 1). The thrombotic (Thb) and the fibrin (Fi) regions consisted of high density of red blood cells and fibrin, respectively; the cellular fibrous (CeFb) region included smooth muscle cells or other cells admixed with a low collagen content or elastic fiber; the hypocellular fibrous (HyFb) region contained extracellular connective tissue matrix with collagen and few cells; and the collagen (Co) region was defined as the site with a high density of collagen fibers. The intensity of the blue staining color revealed the amount of collagen content (strong blue indicates sites with high collagen content while light blue or no blue corresponds to sites with low collagen content). The area occupied by each component (thrombosis, fibrin, cellular fibrosis, hypocellular fibrosis and collagen; see Table 1) was determined on each of the 2–4 slices and the total area occupied by a given constituent

![Fig. 3. Evolutions of estimated SSE before and after directional coronary atherectomy (DCA) for patient #8.](image-url)
was obtained by summing areas found on each slice using ImageJ software and color segmentation (ImageJ, NIH, Bethesda, MD, USA). This was done fully automatically with fixed threshold values to prevent any user bias. In each patient, the total lesion area being analyzed was also determined by summation of total areas of each of the 2–4 slices. The proportion of each component was determined as the ratio of the total area occupied by a given constituent to the total lesion area being analyzed. Lipid-rich regions could not be identified because of detachment during atherectomy and lipid removal over the process of tissue fixation and staining. However, the presence of macrophage-derived foam-cells and lipid crystals was analyzed. Representative microscopic histology stained samples are given in Fig. 2.

From this histological analysis performed by biologists, atherosclerotic lesions were subdivided in two groups. Soft plaque areas were considered to be regions with low-collagen components including thrombosis, fibrin and cellular fibrosis, whereas hypo-cellular fibrosis and collagen areas were considered stiffer, in agreement with previous published studies performed in both mouse and human [45–49]. Excised specimens were also semi-quantitatively analyzed for the presence of macrophages through CD68 immunochemical staining (0 = no, 1 = moderate and 2 = high inflammation; see Table 2). Table 2 also gives systolic/diastolic pressures of every patient pre-DCA, and detection of calcium on histology slices (0 = no calcium, 1 = calcium detected).

2.3. Plaque shear strain reconstruction

2.3.1. Image segmentation

IVUS images were segmented to detect the lumen and adventitia boundaries using a fast-marching model combining region and contour information [50]. Resulted contours were validated by a cardiologist (YS) before performing further processing. Pre-DCA, analyses were done on the ROI corresponding to the plaque burden (i.e., the area between the lumen and adventitia boundaries). Post-DCA, the ROI represented the treated artery wall.

2.3.2. LSME elastography algorithm

RF image processing on detected ROIs was done with the Lagrangian Speckle Model Estimator (LSME) [38]. We used a developed version of this algorithm to calculate shear strain elastograms in polar coordinates with artifact corrections in cases of catheter eccentricity within the vessel lumen [39]. A brief summary of the algorithm is given in Appendix.

2.4. Correlation between SSE maps and histology study on excised DCA lesions

To investigate the correlation between SSE maps and excised lesion components, pre- and post-DCA elastograms (i.e., mean and
maximum absolute values of shear strains labeled mean \(S_j \) and max \(S_j \) were compared with relative areas of soft plaque components over the entire vessel-wall cross sections. More specifically, the soft plaque areas were considered to be regions with low-collagen constituents including thrombosis, fibrin and cellular fibrosis (see Table 1).

2.5. Statistical analyses

Results were expressed as mean \(\pm \) standard deviation (SD). Statistical analyses were performed with the SigmaStat software (version 3.1, Systat Software, San Jose, CA, USA). Analyses of variance (ANOVA) were used to detect any significant relation between \(S_j \) magnitude and plaque components or inflammation status. Association and agreement between variables were assessed by Pearson’s correlations.

3. Results

3.1. The magnitude of SSE decreases post-DCA

Figs. 3 to 6 reveal differences between estimated SSE maps before and after DCA in few typical examples. Pre-atherectomy, intensified SSE magnitudes in large affected areas can be noticed. Regions of high SSE values in coronaries with atherosclerotic plaques are located, for these examples, between 5 and 10 o’clock in patient #8, between 9 and 2 o’clock in patients #9 and #11, and between 12 and 3 o’clock in patient #10 (Figs. 3b–6b). Post-atherectomy, stable arteries typically displayed low SSE magnitudes (Figs. 3c–6c). Post DCA, both mean and maximum \(S_j \) (i.e., absolute values of SSE) showed significant reductions from \(3.9 \pm 0.2\% \) and \(5.7 \pm 0.4\% \) pre-DCA, to \(1.1 \pm 0.2\% \) and \(1.9 \pm 0.1\% \), respectively (see Table 3). Reported values were computed over the entire vessel-wall cross section (i.e., ROI) defined with detected lumen and adventitia boundaries.

3.2. The magnitude of SSE increases with soft plaque content

According to histology, all excised lesions had significant proportions of cellular fibrosis, collagen and fibrin (mean values: \(37.2 \pm 16.5\% \), \(25.2 \pm 14.0\% \) and \(21.0 \pm 13.2\% \), respectively). Relative areas of hypocellular fibrosis and thrombosis were lower with mean values of \(12.3 \pm 8.9\% \) and \(4.2 \pm 5.4\% \), respectively (Table 1). Non-significant proportions of calcified inclusions (less than 1%) were present in 3/12 samples. Table 2 summarizes our observations in this regard. As reported in Fig. 7a (pre-DCA), strong correlations were noticed between soft plaque content (i.e., cellular fibrosis, thrombosis and fibrin) and mean (or maximum) \(S_j \) computed over the entire vessel-wall cross section: \(r = 0.82, p < 0.01 \) for mean \(S_j \), and \(r = 0.88, p < 0.01 \) for max \(S_j \). Moreover, strong correlations were still observed between soft plaque content and the
difference of pre- and post-DCA $|\text{SSE}|$ (mean $|\text{SSE}|$: $r = 0.88$, $p < 0.01$; max $|\text{SSE}|$: $r = 0.92$, $p < 0.01$).

3.3. The magnitude of SSE increases with plaque inflammation

Table 4 illustrates the correspondence between the inflammation status and SSE values. The worse was the inflammation status the higher were mean and max $|\text{SSE}|$. For example, the mean $|\text{SSE}|$ had values of $1.8 \pm 0.2\%$ with no inflammation, and higher magnitudes of $3.1 \pm 0.2\%$ and $4.8 \pm 0.4\%$ for medium and high inflammation, respectively.

4. Discussions

Many strategies aimed to diagnose patients at risk of plaque rupture [51–53], though available screening and diagnostic methods are insufficient to identify victims before the clinical event occurs. There is, therefore, considerable demand for diagnosis and treatment of pathologic conditions that underlie sudden cardiac events [5].

As introduced earlier, there are evidence supporting the hypothesis that elevated shear strain initiates and/or stimulates the development of a plaque into a rupture prone one [27–29]. The accurate estimation of the shear strain is also imperative for accurate quantification of both the morphology and mechanical properties of the diseased artery at any given instant of the remodeling process. The morphology and mechanical properties are crucial for the prediction of plaque rupture [15,54] and such information may also lead to the development of specific therapies for the prevention of acute coronary events.

The following important findings can be deduced from results obtained in this study:

1) It is known that plaque instability at the cellular level is driven by factors such as inflammation, reduced collagen synthesis, local over expression of collagenase and smooth muscle cell apoptosis [2,32,55], altering mechanical properties of the plaque surface [56]. Inflammation has a central role in the pathogenesis of atherosclerosis and greatly influences the collagen composition of the plaque [57–60]. This made active inflammation as one of the major criteria for detection of vulnerable plaques [5]. In fact, inflammatory cells in the cap overlying the atheromatous

Table 3

| Status | Mean $|\text{SSE}|$ in % (mean ± SD) | Max $|\text{SSE}|$ in % (mean ± SD) |
|--------------|----------------------------------|-------------------------------|
| Pre-DCA (n = 12) | 3.9 ± 0.2 (N = 7) | 5.7 ± 0.4 (N = 7) |
| (Δ: $p < 0.001$) | (Δ: $p < 0.01$) |
| Post-DCA (n = 12) | 1.1 ± 0.2 (N = 6) | 1.9 ± 0.1 (N = 6) |

Δ: compared with post-DCA status.

N: required minimum population of patients for a 95% of confidence.
Table 4

<table>
<thead>
<tr>
<th>Inflammation status</th>
<th>Mean</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inflammation (n = 6)</td>
<td>1.8 ± 0.2 (N = 6)</td>
<td>2.9 ± 0.5 (N = 6)</td>
</tr>
<tr>
<td>Medium level of inflammation (n = 2)</td>
<td>3.1 ± 0.2 (N = 6)</td>
<td>4.5 ± 0.4 (N = 6)</td>
</tr>
<tr>
<td>High level of inflammation (n = 4)</td>
<td>4.8 ± 0.4 (N = 6)</td>
<td>5.6 ± 0.1 (N = 7)</td>
</tr>
</tbody>
</table>

![Fig. 7. Correlation analyses between mean and max SSE and soft plaque content (expressed as percent of the total excised plaque area). Multiply the y-axis by 100 for SSE values in percent. (a) Pre-DCA, (b) Difference of pre- and post-DCA.](image)

4.1. Soft plaque characterization

This study reported SSE magnitudes as a function of soft plaque content. Percentages of soft plaque with respect to whole histology sections were defined as the amount of cellular fibrosis, thrombosis and fibrin. Ultrasound images acquired at the site of minimum cross-sectional lumen area were used to ensure that SSE map assessment was performed at the site where most atherosclerotic tissues would next be excised over the course of the DCA procedure. Thereby, the assumption that the histological analysis of fragmented and homogenized coronary plaque specimens from DCA is representative of the overall composition of the excised lesion seemed supported by results of Fig. 7, despite the unavoidable difficult morphometric matching between pre-DCA and post-DCA IVUS scans, and in vitro histological slices.

Our group [48] recently described the elastic material properties of mouse atherosclerotic lesion components. We found that hypocellular fibrotic areas were stiffer than cellular fibrotic zones. These results were partially confirmed a few months later by Hayenga et al. [49] on a similar experimental model. Importantly, similar findings were obtained earlier from human tissues by Lee et al. [45], Loree et al. [46], and Williamson et al. [47]. As observed in mice, these studies demonstrated that the stiffness of hypocellular fibrotic areas is greater than that of cellular areas. The analysis of the present study allowed identification of cellular nuclei (through Elastica-Masson's trichrome staining) and macrophages. Both of these were classified as pertaining to the cellular fibrotic zone and therefore were qualified to be considered as soft constituents of atherosclerotic lesions.

4.2. Potential clinical implications

The data presented in this study were based on a rather small population with data acquired in twelve patients. However, the aforementioned results explored that shear strain elastography, which is a new IVUS imaging modality, may appear promising to detect atherosclerotic plaques and assess their vulnerabilities before they become unstable. The ability of this method to monitor evolutions of a plaque and its response to therapies was substantiated by the observation of the reduction in SSE magnitudes post-atherectomy. More specifically, the followings can be considered:

- Core modulate collagen synthesis by positive and negative growth factors [60]. Metalloproteinases derived from activated macrophages also degrade collagen through the effect of inflammation [60]. We noticed, in this study, significant correlations between plaque SSE magnitudes, and the level of inflammation and soft plaque content, respectively. SSE, therefore, may detect the effect of these two interrelated cellular mechanisms influencing the mechanical stability of the plaque. This correspondence needs to be further investigated with larger sample sizes in humans.

2) Results of the current study revealed that areas with elevated SSE may correspond to soft and potentially vulnerable plaques. Indeed, stable arteries (post-DCA) exhibited significantly lower values than pre-DCA arteries, without any region of elevated SSE. Unfortunately, our data did not allow assessing the comparison between healthy tissues and SSE maps since we did not record any IVUS RF sequences in the healthy part of coronaries. However, in a recent study, the estimated SSE maps calculated from in vivo RF data were compared with histological observations in carotid plaques of atherosclerotic pigs [39]. In that study, we observed that all plaques were characterized by high magnitudes in SSE maps that correlated with American Heart Association atherosclerosis stage classifications. Also, normal parts of vascular walls (parts without any pathologic lesion) typically displayed low SSE values [39]. Therefore, the SSE-enabled LSM imaging technique may have the potential to localize and identify vulnerable plaque features in vivo.
1) The stability of a vulnerable plaque is sensitive to small structural changes [61,62]. Therefore, the early detection of plaque instability and timely treatment to prevent myocardial infarctions may be provided with SSE imaging. However, this needs to be clinically validated afterward.

2) The ability to characterize material properties paves the road to clinical studies evaluating the performance of new drugs targeting on modifying plaque component mechanical properties (e.g., rigidifying of the lipid core) for prevention of acute coronary events [15,54]. Mechanical properties of a plaque may be characterized more precisely if conventional elastograms are supplemented with SSE maps.

3) The inflammation status is a major determinant for the detection of vulnerable plaques [5]. We observed that high SSE is linked with plaque inflammation. In this regard, integration of SSE into the current clinical practice, once clinically validated, may help identifying patients who are at a higher risk and in need for closer follow-ups and further investigations. SSE may also improve risk stratification and facilitates clinical decision making.

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (Collaborative Health Research program #323405-6 and International Strategic program #381136-09), and by the Canadian Institutes of Health Research (#CPG-80085). This research was also supported by a joint international program #323405-6 and International Strategic program #381136-09. This research was supported in part by a post-doctoral fellowship of the Fonds de la Nature et Technologies (FQRNT).

Appendix

Elastography algorithm

LSME processes RF IVUS data in the polar coordinate system to estimate the strain tensor based on the detailed displacement field and its spatial derivative. To compensate for rigid motions of the catheter, RF images were first registered and overlapping measurement windows (MWs) within ROIs of two consecutive temporal images were analyzed. Subsequently, 2D correlation coefficients between the two images for each MW were calculated. Shifts of the maximum correlation point were taken as the motion of the catheter to be compensated in the second temporal image. Taylor series expansion of the optical flow equation in the polar coordinate system at each point of the MW around the center of that window was written. This makes an over-determined system of equations in terms of the optical flow components and their partial spatial derivatives. This system of equations was solved in a least squares sense. The 2D–displacement gradient matrix (Δ) in the polar coordinate is defined as:

\[
\Delta = \begin{bmatrix}
\frac{\partial U_r}{\partial r} & \frac{1}{r} \left(\frac{\partial U_r}{\partial \theta} - U_\theta \right) \\
\frac{\partial U_\theta}{\partial r} & \frac{1}{r} \left(\frac{\partial U_\theta}{\partial \theta} + U_r \right)
\end{bmatrix}
\]

(A1)

Components of the strain tensor in polar coordinates \(\varepsilon = \frac{1}{2}(\Delta_{ij} + \Delta_{ji})\) can be calculated as:

\[
\varepsilon = \begin{bmatrix}
\varepsilon_{rr} & \varepsilon_{r\theta} & \varepsilon_{\theta\theta} \\
\varepsilon_{r\theta} & \varepsilon_{\theta\theta} & \varepsilon_{\phi\phi} \\
\varepsilon_{\theta\phi} & \varepsilon_{\phi\phi} & \varepsilon_{\phi\phi}
\end{bmatrix} = \frac{1}{2} \begin{bmatrix}
\Delta_{rr} & \Delta_{r\theta} & \Delta_{r\phi} \\
\Delta_{r\theta} & \Delta_{\theta\theta} & \Delta_{\theta\phi} \\
\Delta_{r\phi} & \Delta_{\theta\phi} & \Delta_{\phi\phi}
\end{bmatrix}
\]

(A2)

where \(\Delta, \varepsilon, U\) are the displacement gradient tensor, the strain tensor and the displacement vector, respectively. Reported SSE corresponds to \(\Delta_{rr}\), as further explained in Ref. [39].

Another issue limiting the performance of IVUS elastography is the eccentricity of the catheter within the vessel lumen, due to the pulsatile flow and cardiac motion, potentially leading to erroneous strain estimates. The method used to estimate the eccentricity and to correct strain estimates in the polar coordinate system is also detailed with complete equations elsewhere [39]. In this study, sizes of 2D MWs were 120 × 30 pixels (0.924 mm × 0.369 radian), with 90% radial and circumferential overlaps. The size of each RF image was 800 × 512 pixels. Shear strain elastograms (SSE) were computed and analyzed during diastole, and smoothed using a 5 × 5 pixels median filter padded with symmetric expansion at the boundaries. The timing within each cardiac cycle was the same pre- and post-DCA.

References
