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A B S T R A C T

In this paper, we develop a three dimensional (3D) segmentation algorithm of the lumen visualized using in-
travascular ultrasound (IVUS) imaging. These images are known for their various granular textures (speckles)
that make the discrimination of different tissues very difficult, especially as a result of the presence of artifacts
and shadows generated by tissue calcification. Our model consists of a helical active contour initialized auto-
matically over the sequence, that evolves based on the analysis of the Rayleigh distribution of gray levels in
order to extract the luminal border. This novel algorithm is fast, uses an adaptive simple space curve for 3D
extraction of the lumen, and is fully automatic. Consequently, it does not require an initialization close to the
lumen border. Segmentation was carried out on 19 IVUS sequences with a total of 8918 images acquired in vivo
on nine femoral and ten coronary arteries using a 20MHz probe. These sequences showed many difficulties, such
as severe stenosis, bifurcations, side vessels, shadows, and other artifacts. The quantitative evaluation of our
algorithm compared to the ground truth for the femoral and coronary datasets showed an overlap greater than
89% for the Jaccard index and greater than 94% for the Dice index, yielding an accuracy of more than 98.5%.
Several other metrics are also presented that confirm the efficiency of our helix model compared to other recent
methods reported in the literature using a similar ultrasound probe.

1. Introduction

According to Ref. [1], cardiovascular diseases (CVDs) are the
leading cause of death globally. An estimated 17.9 million people died
of CVDs in 2016, representing 31% of all deaths. A frequent cardio-
vascular disease is atherosclerosis in which plaque (made of fat, cho-
lesterol, calcium and other substances) develops in artery walls. Plaque
can cause a heart attack by severely reducing or stopping the blood flow
through an artery. Moreover, plaque can rupture and form blood clots
capable of blocking arteries. The investigation of the severity of
atherosclerosis is therefore very important for the diagnosis of patients
and the development of a therapeutic strategy (medication, bypass
surgery, angioplasty [dilation] with or without a stent). For this pur-
pose, intravascular ultrasound (IVUS) produces images of artery cross-
sections, providing helpful information about the health of the vessel.
To acquire IVUS images, a miniaturized ultrasonic transducer at the end
of a catheter is inserted into the artery lumen, brought beyond the

lesion of interest, and then slowly withdrawn manually or auto-
matically at a constant speed to image a sequence of equidistant vessel
cross-sections. IVUS produces echographic images (Fig. 1) showing
cross-sections of arteries that reveal the lumen, walls, and plaque.
Given that a typical IVUS exam results in several hundred images per
patient, which can be of poor quality due to speckle noise, ring-down
artifacts (ultrasound reverberation, Fig. 1d), or shadows (Fig. 1c) in the
images, IVUS data are hard to analyze quantitatively.

In the past, many IVUS image segmentation techniques have been
reported in order to facilitate the identification of different regions of
the artery. Some techniques use a graph-search algorithm based on the
image gradient and a priori information on the edge orientation [2–5].
However, these methods were not suficiently accurate for clinical
practice and were limited to a succession of two-dimensional (2D)
segmentations. A 3D model with new cost functions was proposed in
Refs. [6,7]. This model was later improved by Downe et al. [8], who
used sliding windows for principal component analysis- (PCA-) based
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filtering, an active contour for initial segmentation, followed by graph-
search segmentation and, eventually, an interactive re-segmentation to
refine the results. Recently, Sun et al. [9] proposed a method based on
Layered Optimal Graph Image Segmentation of Multiple Objects and
Surfaces (LOGISMOS) with computer-aided refinement for the im-
provement of the segmentation result.

Using the framework of IVUS segmentation based on active contours
or snakes, several methods using bi-dimensional parametric, geometric,
geodesic, and region-based active contours (fast-marching method)
have been developed [10–13]. An extension to 3D active contour
methods based on local properties of the image gradient and image
intensity have also been developed to successfully extract contours in
IVUS sequences [14–16]. Likewise, our group has developed a level set
approach to detect IVUS-relevant regions based on a mixture of Ray-
leigh probability distribution [17]. This method was enhanced by a
combination of gray level probability density functions and the in-
tensity gradient embedded in the interface speed function [18]. Unal
et al. [19] proposed a statistical shape-driven approach in which the
shape evolved by the estimation of the non-parametric probability
distributions computed with Parzen windows instead of Rayleigh dis-
tributions.

Artificial intelligence (AI) and supervised learning techniques are
also used for IVUS segmentation and interpretation [20–24]. A multi-
agent system designed for high-level knowledge-based control of low-
level image segmentation algorithms was elaborated in Ref. [20]. This
system uses six agents specialized in the detection of the lumen, vessels,
calcified plaque, shaded branches, and the overall status in order to
segment IVUS images. Olszewski et al. [21] proposed a fully automated
segmentation that mimics the procedure performed by human experts.
Another machine learning algorithm based on artificial neural networks
(ANN) was also proposed for the detection of lumen and media-ad-
ventitia (MA) in Ref. [22]. This algorithm includes a double structure of
ANN in which the first network classifies the pixels roughly while the
second ANN optimizes the results of the first network. Finally, an active
contour model is applied to smooth both the lumen and MA borders. Lo
Vercio et al. [24] defined several feature detectors and applied a

Support Vector Machine (SVM) classifier to assign pixels to an arterial
area. Sequential feature selection was performed using the area under
the precision-recall curve (AUC-PR) in order to select relevant features.
Mendizabal-Ruiz et al. [23] proposed a probabilistic approach for the
segmentation of the lumen border in IVUS images based on the de-
formation of a parametric curve via minimization of a probabilistic cost
function. The likelihood of each pixel belonging to the lumen was de-
termined by a Support Vector Machine (SVM) trained on the first frame
of the sequence. Recently, deep learning architectures designed speci-
fically for biomedical image segmentation have also been introduced
[25,26]. They have significant potential, but more development is
needed to assess their full utility in IVUS segmentation.

Gao et al. [27] developed an automated framework using an un-
supervised clustering and adaptive region-growing for detecting lumen
and media-adventitia borders separately. Recently, Jodas et al. [28]
used a combination of many algorithms to extract the lumen border,
which involved a Gaussian pyramid that reduced the resolution of the
input image, K-means and subtractive clustering algorithms that sepa-
rated the regions of the image according to the grayscale intensity, a
convex hull algorithm to identify the lumen region, and a refinement of
the lumen contour using an active contour approach with a post-pro-
cessing step. Faraji et al. [29] extracted the lumen and media-adventitia
in four steps. They began by a preprocessing step to remove artifacts.
Then, they applied a region detector called EREL (Extremal Regions of
Extremum Levels) followed by a region selection strategy to extract the
contours of the lumen and media. Finally, these contours were
smoothed by an ellipse fitting algorithm. Moraes and Furuie [30] used
the polar domain and combined pre-processing and feature extraction
involving discrete wavelet packet frames (DWPF) for an automatic
segmentation. Finally, a binary morphological image reconstruction
and a contour extraction were used to detect the lumen and media-
adventitia contours. Haas et al. [31] used an algorithm based on the
optimization of a Maximum-A-Posteriori (MAP) estimator, im-
plementing the Rayleigh distributions of speckles and a priori in-
formation about the contours to segment IVUS images.

A state-of-the-art review and survey of segmentation algorithms

Fig. 1. Cross-sections of IVUS images. (a) Healthy artery, (b–c) Diseased arteries, (d–e) Arteries with artifacts, (f) Arteries with bifurcation: 1- Catheter, 2- Lumen, 3-
Intima, 4- Media, 5- Adventitia, 6- Athero-plaque, 7- Tissue calcification, 8- Ring-down artifact, 9- Guidewire artifact, and 10- Bifurcation.

A. Hammouche, et al. Computers in Biology and Medicine 107 (2019) 58–72

59



used in IVUS imaging can be found in Refs. [32–34].
All of these methods suffer from one or several drawbacks. For in-

stance, some of them operate only on 2D images. Others are complex to
implement with dynamic 3D meshes or propagating surfaces with
cumbersome initialization, while others use a combination of many
methods [28]. Most of these methods use a pre-processing step. Some
authors allow an interaction with the user for refinement of the seg-
mentation result [8,9]. To simplify the extraction of the region
boundaries in IVUS images, our group has previously introduced a
space curve active contour segmentation technique with a helical
geometry that evolves until it reaches the artery lumen [35]. The al-
gorithm uses simple global properties of the image and facilitates a full
3D reconstruction without heavy techniques involving 3D meshes,
propagating interfaces, etc. However, it is less accurate than these state-
of-art methods and requires good initialization.

The lumen segmentation technique developed in this paper greatly
improves upon our previous work [35]. The 3D active contour is more
flexible, fully automatic, and does not require an initialization close to
the lumen boundary with a priori displacement direction. The model is
an adaptive helicoidal space curve with easy adjustment of the number
of turns. Moreover, the evolution of the 3D contour is based on Rayleigh
(instead of basic Gaussian) textural properties of the image estimated
with radial 3D cubic windows. Finally, a simple pre-processing step is
introduced to remove the ring-down artifact and catheter calibration
marks.

This paper is also a substantial extension of our preliminary work in
Ref. [36], employing an improved methodology (e.g., automatic and
adaptive models, 3D windows, improved a priori displacement, more
explanations and justifications), better experimental results with addi-
tional femoral sequences, a new dataset of coronary sequences, and
more evaluation criteria.

2. Method

The method we developed is carried out in four steps. After a pre-
processing step to reduce the effect of the ring-down artifact, we in-
itialize our helix snake for the detection of the lumen border. Then, in a
key step, the algorithm deforms the helix toward the luminal border by
minimizing an energy function. At the end of the segmentation process,
we proceed to the 3D reconstruction of the lumen.

2.1. Pre-processing step

The greatest difficulty encountered in the process of segmentation of
IVUS images is the presence of artifacts; in particular, the ring-down
artifact (Fig. 2 b). This artifact is constant over the entire length of the
sequence (Fig. 2 a) and has high gray level intensities, which, in some
cases, distorts the segmentation results. This is especially the case when
the walls of the intima are close to the catheter. To reduce or eliminate
the effect of the ring-down artifact, we use the technique proposed in
Ref. [19], which consists of calculating a minimal image Imin on a set of
frames I i{ }, 1, ,i = . In this paper, the minimal image is computed
from the whole length of the sequence such that every pixel with the
coordinates x y( , ) of the minimal image I x y( , )min is computed using the
following formula:

I x y I x y( , ) min ( , ).min
i

i= (1)

Then, we subtract the minimum image from all the images in the
sequence as follows:

I x y I x y I x y i( , ) ( , ) ( , ), 1, , .i i min= = (2)

Fig. 2c shows an example of a longitudinal view of a sequence after
artifact removal by this pre-processing. Notice that annoying calibra-
tion marks are also removed at the same time.

2.2. 3D-helical snake segmentation method

Introduced by Kass et al. [37], the parametric active contour (a.k.a.
snake) is one of the most popular algorithms in image processing. Our
snake model, consists of a three-dimensional spiral space curve similar
but more flexible than the one proposed in Ref. [35]. This helical snake
is constituted of a set V of N control points, where each point
v V i N, 1, ,i = is radially moved in order to minimize the energy
function, noted ES:

E V E v E v( ) ( ) 1 ( ) ,S
i

N

int i ext i
1

= +
= (3)

where α is a weighting parameter adjusted by the user. The energy of
the snake is the sum of two terms. The first term represents the internal
energy, noted Eint , which depends on the geometrical properties of the
model such as continuity and curvature and which manages the reg-
ularity of the snake shape. The second term represents the external
energy, noted Eext, calculated from local gray level distributions.

2.2.1. Automatic 3D-helical snake initialization
The three-dimensional helical snake is initialized on the whole se-

quence, where each complete helix turn is constituted of a set of points.
Each point v V i N, 1, ,i = … evolves until it coincides with the lumen
contour. It is defined by the Cartesian coordinates [38]:

x v r
y v r

z v z

( ) cos( )
( ) sin( )

( )
,

i i i

i i i

i i

=
=

= (4)

where ri, i and zi are respectively the radius, the angular position and
the axial length (or height) of the spiral at the point vi.

The helical snake is automatically initialized over the sequence by
the generation of a centered helix model with a radius equal to 2 mm.
The number of points and the number of turns can be chosen before-
hand by a user according to the length of the sequence and smoothness
of the luminal border1. Fig. 3 shows an example of the initial 3D helical
snake. Since the points v x y z( , , )i i i i are radially moved, they will be
represented by cylindrical coordinates v r z( , , )i i i i , which correspond to
the radial positions, angular positions and depth in the sequence,
respectively.

2.2.2. Helical snake energies
For each helical snake point v r z( , , )i i i i , the algorithm searches for a

new position that minimizes the energy function defined by equation
(3). A point of the snake is radially moved in a neighborhood of points
(potential future position) w Wj , withW W Win out= , whereWin and
Wout represent respectively the neighborhood inside and outside of the
current contour with the same angular position i and the same depth zi
of the control points vi.

In this subsection, we define the internal energy and the external
energy used to compute the potential future position.

2.2.2.1. Internal energy. To ensure a smooth curve and to maintain the
cohesion of the points and the rigidity of the curve, we followed the
same idea proposed by Ref. [39] and adapted by Ref. [35]. The internal
energy is related to the difference in radial positions between
consecutive points vi, vi 1 and vi 1+ of the snake [36]. This energy is
minimal if the helix is circular as expected for a normal lumen. It is
defined as follows:

E v r r r r( ) ( ) ( ) ,int i i i i i1
2

1
2= + + (5)

where ri , ri 1 and ri 1+ are respectively the radial coordinates of the
points vi, vi 1 and vi 1+ .

1 More (less) points and/or turns also involve more (less).
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Fig. 2. Ring-down artifact and catheter calibration marks removal. (a) A longitudinal view of the original sequence, (b) Original IVUS frame, (c) A longitudinal view
of the sequence after artifact removal, (d) IVUS frame after artifact removal.

Fig. 3. Initialization of the 3D helical snake. (a) The helix model, (b) Helix snake Initialized over the IVUS sequence.

Fig. 4. (a) Selection of cubic windows, inside (yellow) and outside (green) for each point of the snake. (b) Top view.
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2.2.2.2. External energy. The external energy corresponds to the
adequacy of the helical snake with the image data (gray level
distributions). The minimization of this energy attracts the snake
towards the lumen boundary with highest likelihood (i.e. lumen on
one side and tissue on the other side) similarly to the likelihood energy
proposed by Mignotte et al. [40] and later adapted by Refs. [35,36]. To
compute the proposed external energy term, for each point vi, we select
two radial cubic windows v( )in i and v( )out i that contain, respectively,
the cubic neighborhood inside and outside of the point vi as illustrated
in Fig. 4.

The external energy term takes into account the gray level Rayleigh
distributions to seek the minimum sum of the negative log-likelihood of
the inside in and outside out windows:

E v P µ v a P µ v a( ) (log( ( ( )| )) log( ( ( )| ))),ext i in i l out i t
2 2= + (6)

with and P µ v a( ( )| )out i t
2 the estimated Rayleigh distributions around the

point vi, such that:

P y a y
a

y
a

( | ) exp
2

.2
2

2

2= (7)

al and at are the Rayleigh distribution parameters estimated from the
averages of the lumen grayscale µl and surrounding tissue µt on a re-
presentative image of the sequence during the initialization step:

a µ 2 .=
(8)

The mean gray levels µ v( )in i and µ v( )out i are calculated from the points
located in v( )in i and v( )out i windows, respectively.

Fig. 5 illustrates the behavior of the likelihoods and P µ v a( ( )| )out i t
2

for each point vi (eq. (6)) for 3 cases. Overall, the sum of all E v( )ext i is
minimized when the contour is right on the luminal border (Fig. 5(c and
f)). In comparison, Jourdain et al. [35] used only simple Gaussian
distributions with a constant variance set by the user in their external
energy term.

2.2.3. Helical snake evolution
In classical snake methods, an initialization close to the contour of

the intended object is required. To alleviate this constraint, we propose
to choose the direction of the displacement of the point v Vi ac-
cording to two log-likelihood ratios calculated on the two windows

v( )in i and v( )out i :

R v
log P µ v a
log P µ v a

( )
( ( ( )| ))
( ( ( )| ))in i

in i l

in i t

2

2=
(9)

R v
log P µ v a
log P µ v a

( )
( ( ( )| ))
( ( ( )| ))out i

out i l

out i t

2

2=
(10)

Fig. 5. Three cases for window localization. (a) in the lumen, (b) in the tissue, (c) on the luminal border and (d–f) the distribution of the likelihood of the internal in
(yellow dots) and external out (green dots) windows for each vi in the mixtures of lumen and tissue distributions for cases (a–c), respectively.
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when R v( ) 1out i > , the point vi is in the lumen (Fig. 5a) and requires a
displacement towards the surrounding tissue (outward) and inversely,
when R v( ) 1in i < , the point vi is in the tissue (Fig. 5b) and requires a
displacement towards the lumen (inward). Afterwards, the points of the
snake are finely moved radially and the new position of the point v Vi
is chosen as the neighbour w Wj that minimizes the energy function.

A normalization procedure adjusts the values of Eint and Eext, mea-
sured on different scales, to a common scale [0,1] prior to their weighted
sum.

Algorithm 1 summarizes all the steps of the proposed helical snake
algorithm.

2.3. 3D reconstruction of the lumen

To reconstruct the final volume of the lumen artery, we extract the
lumen contour in each frame of the sequence as follows [36]:

• For images which are in the first turn of the helix, the lumen contour
is obtained by direct projection of all points constituting the first
turn.
• For images lying between two consecutive turns of the helix, the
lumen contour is determined by linear interpolation between all
points constituting the two consecutive turns [35].
• For images that are in the last turn of the helix, the lumen contour is
detected by a direct projection of the points making up the last turn.

Fig. 6, illustrates the steps of 3D reconstruction of the lumen artery.

3. Experimental results

In this section, we present experimental results to provide an insight
into the behavior of the 3D helical active contour and demonstrate its
interest for IVUS lumen segmentation. The performance of the proposed
method was compared with several other IVUS segmentation methods.
All programs were implemented using MATLAB R2017a (The
MathWorks Inc., Natick, MA, USA) on a computer equipped with Intel
(R) core (TM) i7-4500U CPU (1.80 GHz) and 16.0 GB of RAM memory.

3.1. Datasets and parameter setting

The evaluation of our algorithm was performed on two different
datasets extracted from in vivo pullbacks of human femoral and coronary
arteries with a 20MHz probe. The sequences had different lengths
(150–1200 frames), and the size of the images was 10mm × 10mm with
a resolution of 384 × 384 pixels. The pixel size was µ26 m µ26× m.
All data were stored in the DICOM format.

The femoral dataset consisted of nine IVUS sequences acquired with
Jomed equipment (In-vision gold, Helsingborg, Sweden). The acquisi-
tion frequency was 10 images/sec for a catheter pullback velocity set to
1mm/s [17,35]. The sequences were acquired during an examination
of the superficial femoral arteries of either one or both legs of seven
patients before undergoing balloon angioplasty. In all cases, the disease
was advanced, and the sequences showed severe stenosis (mean plaque
burden of 0.46 ± 0.13 with 35% of plaque burden > 50%), bifurcation,
calcification, ring-down, and guide wire artifacts. This database derived
from a sub-study of a randomized clinical trial published in Ref. [41] in
which the details of inclusion and exclusion criteria of patients and
lesions are described. A total of 654 images were obtained with ground
truth manually segmented by one experimented expert from an accre-
dited IVUS core laboratory at the Montreal Heart Institute.

The coronary dataset was a publicly available dataset described in
Ref. [42]. It consisted of 10 IVUS sequences acquired on 10 patients
using the Si5 imaging system (Volcano Corporation, California, USA)
equipped with a 20MHz Eagle Eye monorail catheter. A total of 435
images with ground truth were provided. All images contained a plaque
(mean plaque burden of 0.43± 0.09 with 22% of plaque burden> 50%)
and were categorized as follows: 225 images without any serious arti-
facts, 60 images with bifurcations, 94 images with a side vessel, and
106 images with a shadow artifact. Among these images, 44 contained
more than one artifact.

The proposed IVUS lumen segmentation was dependent on the
number of points for each turn, the number of turns of the helix, the
number of neighbors in Win and Wout , the cubic window dimensions of

in and out (length, width and depth), the weighting parameter α, and
the maximum number of iterations. The number of points in each turn
of the helical snake was fixed to 35 points. The number of turns of the
helix model varied between one and six turns every 10 frames (see
Section 3.3). The length of the windows, in and out , was initialized at
20 pixels and decreased to 10 pixels as the number of iterations in-
creased. Similarly, the depth of the windows decreased from seven to
three images, while the width was adapted automatically according to
the distance between two consecutive points (Fig. 3b). This procedure
refined the contour detection locally as the helix approached the lumen
border. The number of neighbors, wj, was set to W 3in = and W 3out = .
The weighting parameter, α, was determined empirically and fixed to
0.65, and the maximum number of iterations was set to 45 for femoral
arteries and 35 for coronary arteries2.

3.2. Evaluation criteria

The assessement of the IVUS segmentation algorithms was based on
several evaluation criteria: Average Distance (AD), Hausdorff Distance
(HD) [43,44], Percentage of Area Difference (PAD) [42], Dice index
(DC) [45], Jaccard index (JM) [46], sensitivity, specificity, and accu-
racy [47]. These criteria evaluated the error measurements between the
manual contour (ground truth) and the contour obtained by a seg-
mentation method. The evaluation was carried out on the set of 2D
images of a sequence for the 2D performance, and on the whole volume
of the lumen in voxels for the 3D performance.

Let C a a a a{ , , , , }a m1 2 3= … be the set of m points of the lumen contour
detected by a segmentation algorithm and let C b b b b{ , , , , }b n1 2 3= … be

2We found empirically that no improvement occurred with more iterations.
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the set of n points of the ground truth. ai and bj are represented by their
Cartesian coordinates a x y( , )i ai ai and b x y( , )i bi bi . We note by Aa and Ab
the areas surrounded by the contours Ca and Cb, respectively.

Here are the formulas of each measure.
Average Distance (AD) represents the average of all Euclidean

distances between all points that form the algorithm's contour and the
ground truth.

AD
min m n

x x y y1
( , )

( ) ( ) .
i

min m n

ai bi ai bi
1

( , )
2 2= +

= (11)

Hausdorff distance (HD) computes the maximum error distance

Fig. 6. 3D Reconstruction of the lumen artery. (a) Computation of 2D contours by interpolation between 2 consecutive turns of helix and direct projection for the first
and last turn of the helix, (b) Final 3D Reconstruction.

Fig. 7. Influence of the number of helix turns on the segmentation results of femoral arteries. First column: Two IVUS cross-sectional images. Second, third and fourth
columns: Detected lumen contours by the helical snake algorithm in red and the ground truth in dotted yellow, with 1, 2 and 3 turns every ten frames, respectively.

Table 1
Evaluation criteria (mean ± standard deviation) and computation time per frame (CTF ) for different number of helix turns.

Dataset Turns Number AD HD JM DC PAD CTF

every ten frames (mm) (mm) (%) (%) (%) (s)

Femoral 1 Turn 0.129 ± 0.065 0.331 ± 0.175 88.80 ± 6.76 93.92 ± 4.17 7.18 ± 10.42 0.05
2 Turns 0.117 ± 0.060 0.318 ± 0.174 89.92 ± 6.02 94.58 ± 3.63 6.36 ± 8.27 0.10
3 Turns 0.114 ± 0.061 0.315 ± 0.182 90.15 ± 6.13 94.70 ± 3.76 6.31 ± 9.04 0.15

Coronary 1 Turn 0.147 ± 0.060 0.363 ± 0.155 83.74 ± 6.50 91.01 ± 4.03 7.94 ± 8.62 0.04
3 Turns 0.110 ± 0.047 0.285 ± 0.141 87.79 ± 5.44 93.40 ± 3.22 5.64 ± 6.49 0.09
6 Turns 0.103 ± 0.046 0.272 ± 0.138 88.59 ± 5.06 93.87 ± 2.94 5.39 ± 5.53 0.17

Table 2
Improvement of segmentation results between 1 and 3 helix turns every ten
frames in stenosis of the femoral dataset.

Sequence Stenosis
(Frame #)

AD(mm) HD(mm) JM (%) DC(%) PAD(%)

1 170–330 0.024 0.048 1.94 1.12 0.95
5 280–480 0.035 0.059 3.58 2.11 3.08
6 430–660 0.019 0.059 1.82 1.00 0.62
7 390–540 0.045 0.059 4.90 2.95 7.44
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between two contours. It is calculated for each 2D frame of each se-
quence in two steps: For each point ai, we compute all distances with all
the points Cb and we choose the minimum distance:

d a C b a( , ) min .i b j i= (12)

The same step is applied for all points bj :

d b C a b( , ) min .j a i j= (13)

The Hausdorff distance is:

HD max d a C max d b Cmax{ ( , )}, { ( , )} .
i

i b j i a=
(14)

Dice index (DC) is an empirical measure that varies linearly with
similarity and describes how one set is similar to another. It is defined
as twice the intersection of two areas divided by their sum:

DC A A
A A
2| |
| | | |

.a b

a b
=

+ (15)

Jaccard index (JM) is a statistical measure that does not vary lin-
early with similarity. It is defined by the intersection of areas divided by
the union of areas:

JM A A
A A

| |
| |

.a b

a b
=

(16)

Percentage of Area Difference (PAD) computes the ratio of the
difference between the two lumen areas (algorithm and ground truth)
to the ground truth area:

PAD A A
A

| | .a b

b
=

(17)

The sensitivity, specificity and accuracy metrics are determined
from the four basic cardinalities of the confusion matrix, which are true
positives (TP: number of pixels correctly identified as lumen), false
positives (FP: number of pixels incorrectly identified as lumen), true
negatives (TN: number of pixels correctly identified as non-lumen), and
false negatives (FN: number of lumen pixels misclassified by the
method).

Sensitivity represents the ability of the model to correctly identify
the lumen pixels:

Sensitivity TP
TP FN

.=
+ (18)

Specificity defines the ability of the model to correctly identify the
non-lumen:

Specificity TN
TN FP

.=
+ (19)

Accuracy represents the ability of the model to correctly differ-
entiate the lumen and non-lumen pixels:

Accuracy TP TN
TP TN FP FN

.= +
+ + + (20)

Comparisons of lumen areas with linear regression and
Bland–Altman graphs are also provided. Bland–Altman graphs help to
visualize potential bias in errors with respect to area detection [33].

3.3. Influence of the number of turns

The reconstruction of the final volume of the artery depends on the
spacing between turns. In this section, we show the influence of the

Fig. 8. Results of the helical snake algorithm (red contours) superimposed with the ground truth (yellow dotted contours) on femoral arteries with various diffi-
culties.
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number of turns. For this purpose, we performed different measures by
varying the number of turns from one to three (every ten frames) on the
nine femoral IVUS sequences and from one to six (every ten frames) for
the 10 coronary IVUS sequences3. Fig. 7 shows the segmentation results
(cross-sectional images) on femoral arteries according to the number of
turns.

Table 1 displays values of evaluation criteria obtained on all se-
quences according to the number of turns. Analysis of the qualitative
and quantitative results revealed the influence of the number of turns of
the helix. For instance, in Fig. 7, we see an improvement in the seg-
mentation results when the number of turns doubles or triples. For the
femoral dataset, the overall improvement was 1.35% for the Jaccard
measure, 0.015mm for the average distance, 0.007mm for the Haus-
dorff distance and 0.87% for the percentage of area difference when the
number of turns was three times higher. For the coronary dataset, the
improvement was 4.85% for the Jaccard measure, 0.044mm for the
average distance, 0.091mm for the Hausdorff distance and 2.55% for
the percentage of area difference when the number of turns was six
times higher. This improvement was small over the entire sequence, but
it was considerable when rapid variations in the lumen volume oc-
curred (e.g., severe stenosis). Table 2 displays the difference in per-
formance between two segmentation results (1 and 3 turns every ten
frames) in the presence of severe stenosis (parts of sequences 1, 5, 6 and
7 extracted in femoral arteries). An improvement of 4.90% for the
Jaccard index and 2.95% for the Dice index was mainly noted in the
seventh sequence. However, this improvement was achieved at the

expense of the calculation time which increased with the number of
helix turns.

To remedy to this precision/computation-time dilemma, we used a
simple strategy that increased the speed of the algorithm without losing
accuracy. This strategy involved initializing a helix with a reduced
number of turns (one turn every ten frames). Ten iterations before the
end of the process, we increased the number of helix turns to three turns
for femoral and six turns for coronary (every ten frames) to refine the
contour detection locally as the active contour was approaching the
lumen border. This procedure reduced the overall computing time ap-
proximately by half.

Another possible solution for optimizing the computation time is to
increase the number of turns only at the locations of rapid change in the
lumen shape (e.g., stenosis) for additional accuracy in these critical
regions. Starting with a basic helix with one turn every ten frames, the
algorithm could identify the locations of rapid change and then increase
the number of turns only in these portions of the sequence for the final
iterations.

3.4. Evaluation of the algorithm

We applied the proposed segmentation algorithm on nine femoral
IVUS sequences and on 10 coronary IVUS sequences. Figs. 8 and 9
display the segmentation results obtained on some IVUS frames of fe-
moral and coronary datasets, respectively. We can see in both datasets
that the detected contours follow correctly the borders of the lumen and
often coincide with the ground truth, even in the presence of difficulties
like guide wire artifacts, bifurcations, side vessels, stenosis and sha-
dows. Figs. 10 and 11 show that the whole helix obtained by our seg-
mentation method is similar to the ground truth for femoral and

Fig. 9. Results of the helical snake algorithm (red contours) superimposed with the ground truth (yellow dotted contours) on coronary arteries with various
difficulties.

3 There was no gain with more than 3 turns every 10 frames for femoral
arteries and 6 turns every 10 frames for (smaller) coronary arteries.
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coronary arteries. In most cases, the algorithm has correctly followed
the shape of the lumen. However, some confusion between the
boundaries of the media layer and lumen can be observed on some parts
of the 3D reconstructions. This was due to the very small thickness and
the low brightness of the intima wall (e.g., sequence 6 in Fig. 10).

For a better evaluation of adequacy between the manual and au-
tomated segmentations of lumen areas, linear regression analysis and
Bland-Altman plots were performed on the IVUS sequences (Fig. 12 for
femoral arteries and Fig. 13 for coronary arteries). They indicate both a
good agreement with R2= 0.97 and a slight bias of −0.27mm2 and of
0.02mm2 for femoral and coronary arteries, respectively.

Tables 3 and 4 give the values of the evaluation criteria for each
sequence of femoral and coronary datasets, respectively. Overall, the
results were very good for both datasets. For the femoral dataset, the
second sequence offered the best results with an overlap of 95.91% for
the Dice index and 92.21% for the Jaccard index. The best Hausdorff
distance was 0.24mm obtained on the seventh sequence, while the
eighth sequence provided the poorest performance with 0.431mm. For
the coronary dataset, the best performance was obtained on the ninth
sequence with a Dice index of 96.11% and a Hausdorff distance of
0.090mm, while the eighth sequence gave the poorest results with
81.62% for the Jaccard measure and 0.472mm for the Hausdorff

distance. These variations were due to the presence of different types of
artifact and contrast/brightness.

Table 5 displays the average 2D performance, compared to the
inter-observer variability4. The values obtained with the algorithm
were close to the inter-observer variability for the femoral dataset and
lower for the coronary dataset. This is important because it shows that
our segmentation errors were comparable or smaller than the typical
differences between manual contours traced by two experts, thus con-
firming the quality of our results. The results also showed the efficiency
of our method for the segmentation of IVUS images with an accuracy
higher than 98.5%. Table 6 displays the average 3D performance that
shared approximatively the same values as the 2D assessment.

3.5. Comparison with other methods

A quantitative comparison with other methods using a similar
20–30MHz transducer, was performed in order to validate the perfor-
mance of our IVUS lumen segmentation method. Table 7 gives some
details about these methods. Table 8 displays the evaluation criteria
(mean ± standard deviation) organized according to the type of artery

Fig. 10. Helical segmentation results in blue and the ground truth contours in red, for the 9 IVUS femoral sequences.

4 Computed with contours manually traced by a second expert [18, 42].
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(femoral or coronary). Table 9 displays a comparison with methods
which used the same coronary dataset [42], for various categories. The
best results are highlighted in bold.

Different datasets, data dimension (2D/3D), artery type and manual
or automatic initialization make comparison difficult in Table 8.
However, in a general way, our method provided very satisfying results.

First, our method outperformed the methods in Refs. [17,35] that
used the same femoral dataset. Indeed, the improvement against [35]

was 0.13mm for average distance and 0.30mm for Hausdorff distance.
Recall that [35] used a basic helical snake and required an initial
contour close to the lumen borders. Our method was also better in term
of accuracy than more complex methods using 3D meshes and propa-
gation surfaces with manual initialization [17,18]. The comparison
with 3D methods [17,18,35] showed the superiority of the proposed
method.

For coronary arteries, our method also outperformed all others

Fig. 11. Helical segmentation results in blue and the ground truth contours in red, for the 10 IVUS coronary sequences.
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methods using the same dataset [42], except the methods reported in
Refs. [12,27] for AD and HD, and [22] for HD and JM . This can be
explained by the fact that these methods were applied on another da-
taset. It is also important to note that these methods run only on 2D
images and the number of tested frames was small in Ref. [12]. In Refs.
[22,27], the selected subjects contained only moderate or mild ather-
osclerosis, without bifurcation, dense calcifications, or other complex
lesions. However, our method gave better results than the more com-
plex method using 3D contour, developed in Ref. [42]. Table 9 shows

that our algorithm performs well in all vessels with various morpho-
logical characteristics.

Table 7 also displays the computation times obtained by our method
and those reported in the literature. Although the running times are
computer dependent, they gave an idea of the computation time re-
quired by the algorithms according to artery type (femoral/coronary),
the dimension of contours (2D/3D) and the number of segmented re-
gions (lumen alone or with media). Our method appeared faster than
other techniques working under the same conditions.

Fig. 12. Comparison of the femoral lumen areas between algorithm and ground truth. (a) Linear Regression. (b) Bland-Altman plot.

Fig. 13. Comparison of the coronary lumen areas between algorithm and ground truth. (a) Linear Regression. (b) Bland-Altman plot.

Table 3
Evaluation criteria (mean ± standard deviation) for each femoral sequence.

Sequence Plaque Burden (%) AD(mm) HD(mm) JM (%) DC(%) PAD(%)

1 49.67 ± 11.13 0.135 ± 0.061 0.368 ± 0.153 89.64 ± 4.11 94.50 ± 2.32 3.84 ± 2.72
2 42.01 ± 10.46 0.106 ± 0.047 0.279 ± 0.138 92.21 ± 3.64 95.91 ± 2.00 6.26 ± 4.81
3 48.58 ± 8.29 0.122 ± 0.058 0.354 ± 0.187 90.04 ± 4.59 94.69 ± 2.62 4.50 ± 3.62
4 44.27 ± 11.59 0.100 ± 0.049 0.317 ± 0.171 89.43 ± 7.50 94.24 ± 4.55 7.38 ± 10.94
5 41.85 ± 16.40 0.118 ± 0.076 0.309 ± 0.187 90.43 ± 6.67 94.84 ± 3.99 9.53 ± 9.95
6 33.40 ± 8.44 0.108 ± 0.055 0.284 ± 0.133 91.89 ± 3.89 95.73 ± 2.17 3.10 ± 5.34
7 55.29 ± 12.29 0.089 ± 0.048 0.241 ± 0.145 91.09 ± 5.97 95.23 ± 3.51 5.34 ± 5.58
8 37.71 ± 12.34 0.155 ± 0.067 0.431 ± 0.206 88.91 ± 5.54 94.03 ± 3.26 5.87 ± 4.27
9 53.77 ± 9.73 0.100 ± 0.043 0.264 ± 0.104 89.21 ± 5.19 94.21 ± 3.03 7.49 ± 7.03
All Frames 45.55 ± 13.14 0.113 ± 0.058 0.311 ± 0.165 90.29 ± 5.36 94.81 ± 3.13 5.89 ± 6.48
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Finally, we can conclude that overall, our method was competitive
with the top segmentation algorithms with the important advantages of
a simple implementation, easy initialization and best computing time
with 0.07 s per frame. The reported computing time was obtained with
MATLAB code without any optimization or GPU acceleration and
consequently our method could be implemented for real-time mon-
itoring with these enhancements.

In this paper, the Rayleigh distribution parameters of the lumen and
the tissue were estimated in the initialization step on a representative
image of the sequence. However, improvements in segmentation results
could be obtained by re-estimating these parameters at evenly-spaced

intervals in the sequence and updating them at each iteration. This
technique would not significantly increase the computing time for large
intervals (e.g., 50 or more frames).

4. Conclusion

In this research, we proposed a 3D helix snake segmentation tech-
nique for the identification of the blood vessel lumen using IVUS ima-
ging. Experimental results for several IVUS sequences acquired in large-
diameter arteries (femoral arteries) and small-diameter arteries (cor-
onary arteries) typically affected by different artifacts showed the

Table 4
Evaluation criteria (mean ± standard deviation) for each coronary sequence.

Sequence Plaque Burden (%) AD(mm) HD(mm) JM (%) DC(%) PAD(%)

1 40.52 ± 7.70 0.124 ± 0.032 0.304 ± 0.132 88.06 ± 3.23 93.62 ± 1.85 4.25 ± 4.25
2 37.39 ± 5.51 0.093 ± 0.025 0.272 ± 0.114 91.26 ± 2.58 95.41 ± 1.42 3.92 ± 3.05
3 44.32 ± 4.48 0.115 ± 0.037 0.300 ± 0.089 83.83 ± 5.68 91.10 ± 3.40 5.28 ± 3.52
4 43.31 ± 7.62 0.082 ± 0.018 0.229 ± 0.081 88.87 ± 3.23 94.08 ± 1.83 3.61 ± 2.37
5 41.69 ± 7.77 0.079 ± 0.033 0.247 ± 0.178 91.86 ± 3.71 95.72 ± 2.08 4.52 ± 3.32
6 52.52 ± 9.02 0.102 ± 0.041 0.284 ± 0.160 86.32 ± 5.40 92.57 ± 3.18 8.89 ± 7.52
7 44.52 ± 12.71 0.093 ± 0.044 0.262 ± 0.151 87.45 ± 6.11 93.18 ± 3.73 7.43 ± 10.30
8 43.69 ± 9.33 0.207 ± 0.060 0.472 ± 0.161 81.62 ± 3.70 89.84 ± 2.26 8.37 ± 7.33
9 39.95 ± 4.83 0.090 ± 0.025 0.227 ± 0.082 92.53 ± 2.27 96.11 ± 1.24 3.62 ± 2.34
10 37.73 ± 7.64 0.110 ± 0.044 0.250 ± 0.072 88.16 ± 4.32 93.65 ± 2.47 5.34 ± 4.09
All Frames 42.63 ± 0.04 0.104 ± 0.046 0.275 ± 0.139 88.55 ± 5.09 93.85 ± 2.97 5.38 ± 5.68

Table 5
Average 2D performance.

AD (mm) HD (mm) JM (%) DC (%) PAD (%) Sensitivity (%) Specificity (%) Accuracy (%)

Femoral Our method 0.11 ± 0.06 0.31 ± 0.16 90.29 ± 5.36 94.81 ± 3.13 5.89 ± 6.48 96.15 ± 3.93 99.01 ± 0.66 98.59 ± 0.78
Inter-observer 0.10 ± 0.04 0.25 ± 0.09 91.31 ± 4.32 95.40 ± 2.46 6.69 ± 5.29 92.81 ± 4.17 99.78 ± 0.20 98.83 ± 0.46

Coronary Our method 0.10 ± 0.05 0.27 ± 0.14 88.55 ± 5.09 93.85 ± 2.97 5.38 ± 5.68 94.26 ± 4.37 99.42 ± 0.38 98.94 ± 0.64
Inter-observer 0.11 ± 0.04 0.28 ± 0.13 87.97 ± 5.10 93.52 ± 3.00 10.70 ± 7.89 98.13 ± 2.63 99.08 ± 0.54 99.02 ± 0.45

Table 6
Average 3D performance.

JM (%) DC (%) PAD (%) Sensitivity (%) Specificity (%) Accuracy (%)

Femoral Proposed method 90.97 ± 1.17 95.27 ± 0.64 5.03 ± 1.42 96.07 ± 1.73 98.87 ± 0.44 98.54 ± 0.41
Inter-observer 92.22 ± 1.69 95.95 ± 0.92 5.93 ± 1.18 93.40 ± 1.18 99.79 ± 0.07 98.83 ± 0.21

Coronary Proposed method 88.00 ± 3.48 93.59 ± 1.99 5.34 ± 1.82 93.58 ± 2.40 99.39 ± 0.26 98.86 ± 0.57
Inter-observer 88.45 ± 2.86 93.85 ± 1.63 9.65 ± 4.12 98.01 ± 1.11 99.12 ± 0.31 99.05 ± 0.24

Table 7
Details about our method and others reported in the literature.

Authors 2D/3D Initial Category Frames Artery Hardware used Time per

contour type frame

Faraji et al. [29] 2D Auto Lumen and media 435 Coronary Core i7-4700HQ 2.4 GHz 0.16 s
Jodas et al. [28] 2D Auto Lumen 326 Coronary Core i7-4700HQ 2.4 GHz 5.72 ± 1.54 s
Su et al. [22] 2D Auto Lumen and media 461 Coronary Xeon E5-2650 2.0 GHz –
Lo Vercio et al. [24] 2D Auto Lumen 149 Coronary Core i7-3630QM 2.4 GHz [1.27 4.59] s
Gao et al. [27] 2D Auto Lumen and media 337 Coronary Pentium Dual-Core 3.19 GHz 16.39 ± 9.62 s
Destrempes et al. [13] 2D Manual Lumen and media 435 Coronary Core i7- Q740 @ 1.73 GHz 8.64 s
Mendizabel et al. [23] 2D Manual Lumen 435 Coronary Core i7 2 GHz 4.96 s
Alberti et al. [42] 3D Manual Lumen 435 Coronary Core 2, Duo 2.13 GHz 13 s
Vard et al. [12] 2D Auto Lumen and media 40 Coronary – –
Roy-Cardinal et al. [18] 3D Manual Lumen and media 440 Femoral AMD Athlon 64 2 GHz 1.7± 0.3 s
Jourdain et al. [35] 3D Manual Lumen 540 Femoral – –
Taki et al. [10] 2D Auto Lumen and media 420 Coronary – –
Unal et al. [19] 2D Auto Lumen and media 435 Coronary Pentium 6200 2.13 GHz 3.25 s
Downe et al. [8] 3D Auto Lumen and media 435 Coronary Core 2 2.4 GHz 0.16 s
Roy-Cardinal et al. [17] 3D Manual Lumen and media 540 Femoral Pentium IV 2.6 GHz 1 s
Our method 3D Auto Lumen 435 Coronary Core i7-4500U 1.8 GHz 0.07 s

3D Auto Lumen 654 Femoral Core i7-4500U 1.8 GHz 0.07 s

A. Hammouche, et al. Computers in Biology and Medicine 107 (2019) 58–72

70



efficacy of the proposed method. The performance matched or out-
performed the best segmentation algorithms that have been reported in
the literature. In addition to a high level of accuracy, the main ad-
vantages of this method are its simplicity (an evolving curve instead of
surface), fast computation time, and no need for initialization of the
snake close to the contour to be segmented (lumen).

The helical model can also be adapted for the segmentation of the
media-adventitia with another set of parameters. Preliminary tests
yielded good results on easy IVUS sequences, but more work is needed
for sequences that contain difficulties (such as a shadow, bifurcation, or
a side vessel). We plan to investigate the simultaneous segmentation of
lumen and media in our future work. Adding another helix to segment
the media would only slightly increase the processing time with an
independent parallel implementation (e.g., with two or more pro-
cessors) with some interactions between both contours.

Thanks to its speed, the helix model we have developed can easily
be adapted with code optimization to display real-time segmentation
for the benefit of the clinician.
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Table 9
Errors and overlap (mean ± standard deviation) evaluated on 435 frames of
coronary dataset (B) [42] and categorized according to the morphological
characteristics of each frame.

Authors HD (mm) JM PAD

No Artifact Proposed method 0.26 ± 0.11 0.90 ± 0.04 0.05 ± 0.04
Faraji et al. [29] 0.29 ± 0.17 0.88 ± 0.05 0.08 ± 0.07
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Downe et al. [8] 0.46 ± 0.19 0.77 ± 0.08 0.15 ± 0.11
Alberti et al. [42] 0.47 ± 0.24 0.79 ± 0.07 0.17 ± 0.09

Shadow Proposed method 0.28 ± 0.13 0.86 ± 0.07 0.06± 0.06
Faraji et al. [29] 0.29 ± 0.20 0.86 ± 0.07 0.08 ± 0.09
Destrempes et al. [13] 0.39 ± 0.18 0.87 ± 0.05 0.06 ± 0.05
Downe et al. [8] 0.55 ± 0.26 0.76 ± 0.11 0.14 ± 0.13
Alberti et al. [42] 0.53 ± 0.29 0.78 ± 0.08 0.18 ± 0.09
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