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Gold Standard Testings
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Abstract—Tissue-mimicking phantoms are very useful in
the field of tissue characterization and essential in elastog-
raphy for the purpose of validating motion estimators. This
study is dedicated to the characterization of polyvinyl alco-
hol cryogel (PVA-C) for these types of applications. A strict
fabrication procedure was defined to optimize the repro-
ducibility of phantoms having a similar elasticity. Follow-
ing mechanical stretching tests, the phantoms were used to
compare the accuracy of four different elastography meth-
ods. The four methods were based on a one-dimensional
(1-D) scaling factor estimation, on two different imple-
mentations of a 2-D Lagrangian speckle model estimator
(quasistatic elastography methods), and on a 1-D shear
wave transient elastography technique (dynamic method).
Young’s modulus was investigated as a function of the num-
ber of freeze-thaw cycles of PVA-C, and of the concentra-
tion of acoustic scatterers. Other mechanical and acoustic
parameters—such as the speed of sound, shear wave veloc-
ity, mass density, and Poisson’s ratio—also were assessed.
The Poisson’s ratio was estimated with good precision at
0.499 for all samples, and the Young’s moduli varied in a
range of 20 kPa for one freeze-thaw cycle to 600 kPa for 10
cycles. Nevertheless, above six freeze-thaw cycles, the re-
sults were less reliable because of sample geometry artifacts.
However, for the samples that underwent less than seven
freeze-thaw cycles, the Young’s moduli estimated with the
four elastography methods showed good matching with the
mechanical tensile tests with a regression coefficient vary-
ing from 0.97 to 1.07, and correlations R2 varying from 0.93
to 0.99, depending on the method.
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McGill University, Montréal, Québec, H3A 2K6, Canada.

Digital Object Identifier 10.1109/TUFFC.2007.273

I. Introduction

Polyvinyl alcohol cryogels (PVA-C) are polymers that
become harder with an increase in the number of

freeze-thaw cycles. Their potential in biotechnology and
medicine is manifold [1], notably for building biological
tissue-mimicking phantoms. For phantom designs, this ma-
terial presents the advantage of being compatible to both
magnetic resonance and ultrasound imaging. Nevertheless,
the literature indicates that the physical properties depend
on possible dehydration during heating at the first step of
preparation, the speed of decreasing and increasing tem-
peratures, the minimum temperature reached, the volume
of the sample, and the number of freeze-thaw cycles [1]–
[4]. All these parameters are hardly reproducible in time,
and the elasticity can be considered as a nondeterminist
value. In this paper, we devoted undivided attention to the
preparation stage.

Beside PVA-C, other multimodality materials mimick-
ing biological tissues have been described in the literature,
especially water-based gels that are the most used [5]–[8].
Compared to these materials, cryogel phantoms are sim-
ple to prepare because gelatin-based phantoms need alde-
hydes linking to have a long life time. Another PVA big
advantage is its biocompatibility. For instance, PVA gels
are hydrophilic and likely capable of protein absorption,
thus supporting cellular growth [2].

Different methods have been developed to provide imag-
ing of the elastic properties of biological tissues. Static
elastography methods are motion estimators, which use
sequences of images acquired at different levels of com-
pression/dilation to extract tissue mechanical parameters
such as tissue displacements, strains, shears, and elastic
moduli. Motion estimators described in the literature are
based on cross-correlation algorithms [9], [10], on differ-
ent implementations of a Lagrangian speckle model [11]–
[13], on spectral techniques [14], [15], or on a zero-crossing
method [16]. Strain can be estimated by several methods;
most of the published techniques assess a displacement
field and deduce the axial strain by a derivative operation
[10], [17]–[19], whereas other methods directly estimate the
axial strain as a time-scaling factor [20], [21] or by estimat-
ing every component of the strain tensor [12]. On the other
hand, transient elastography is a dynamic method that es-
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timates mechanical properties by measuring the speed of
shear waves propagating in tissues. Shear wave speed is
directly related to Young’s modulus [22], [23]. With this
method, the medium is excited with a low-frequency pulse,
allowing the propagation of a bulk wave and a shear wave.
Shear wave speed can be estimated along an A-line, with
a cross-correlation algorithm.

In this paper, the Young’s modulus and the repro-
ducibility of PVA samples were evaluated with a mechan-
ical test instrument as a gold-standard reference. The re-
sults then were compared to those estimated with four
different elastography methods. A dynamic elastography
technique [24] and three quasistatic elastography meth-
ods were used. These last three methods were based on a
scaling factor estimation [25] and on two different imple-
mentations of the Lagrangian speckle model [26], [27]. In
Section II, the experimental setup used to prepare PVA is
described. Following that, the four methods used to mea-
sure Young’s moduli are reported, experimental setups are
presented, and the four algorithms are introduced. The
results are summarized in Section III. Section IV is dedi-
cated to the discussion about reproducibility over samples,
techniques of measurement, and the behavior of samples
according to the preparation variables. Section V draws a
brief conclusion.

II. Materials and Methods

A. PVA Sample Preparation

A rigorous preparation process was defined. The so-
lution used had a concentration of 10% by weight of
polyvinyl alcohol dissolved in pure water (CAS 7732-18-
5) and ethenol homopolymer (CAS 9002-89-5), as indi-
cated by the manufacturer. The solutions came from the
same batch for the entire experiments (lot #407101, Bea-
con, NY). The solution container was heated in hot water
to 80◦C and, to minimize dehydration, the container was
covered. When the mixture was fluid, it was mixed with
Sigmacell particles (Sigmacell Cellulose, type 20, Sigma
Chemical, St. Louis, MO). The Sigmacell particles served
as acoustic scatterers to allow good ultrasonic signals; the
average particle size was 20 µm. The weight by weight
percentage of added Sigmacell varied from 1% to 4% to
study the impact of this variable on mechanical prop-
erties. Solidification and polymerization of PVA samples
were induced by freezing-thawing cycles (from 1 to 10
cycles) in a temperature-controlled chamber. The specifi-
cally designed chamber was composed of a freezer equipped
with heated elements (type YF-204017, Supra Scientifique,
Terrebonne, QC, Canada) and of an electronic controller
(Model 981, Watlow, Winona, MN), which allowed tem-
perature regulation. As the processing conditions of the
freeze-thaw cycles play a major role on final mechanical
properties [2], they were carefully chosen. A freeze-thaw
cycle lasted 24 hours, and the freeze-thaw rate (the slope of
increase or decrease in temperature) was ±0.2◦C/minute.

The maximum and minimum temperatures were 20◦C and
−20◦C, respectively. A cycle then was constituted of two
holding stages of 8 hours 40 minutes at +20◦C and −20◦C,
and two periods of 3 hours 20 minutes when the temper-
ature changed from one extremum to the other. At the
end of the last cycle, the samples were cut to obtain flat
surfaces and put in water at room temperature.

Two series of samples were tested. For one series, the
number of freeze-thaw cycles varied. To assess operator
reproducibility, three different operators prepared 10 sam-
ples each (from 1 to 10 cycles), with 3% of Sigmacell as
acoustic scatterers. In the second series, the percentage of
Sigmacell varied. Eight samples with two freeze-thaw cy-
cles were built by one operator with an increasing ratio of
Sigmacell (two samples for 1, 2, 3, and 4% of Sigmacell).
The samples were poured into cylindrical moulds with a
60-mm diameter and cut to a height of 20 mm. All exper-
iments were performed on the same phantoms, except the
tensile tests. For the latter, small samples were required
because the mechanical test instrument is adapted for bio-
logical tissues of small size. These last measurements (de-
structive testing) were performed when all elastography
data were analyzed, and core samples of 3-mm diameter
were extruded from the center of the whole samples.

B. Density and Speed of Sound Assessments

Density and speed of sound are two intrinsic and im-
portant material parameters of interest for comparison
with biological tissues. Furthermore, these parameters
are required by some elastography methods to calculate
Young’s modulus. Their precise measurements are then
of considerable interest. Density was measured according
to Archimede’s principle. Twenty-five batches of known
density liquids were prepared at room temperature by
mixing a volume of glycerol, ρgly = 1250 kg/m3 (type
G-3730, ACP, Montreal, QC, Canada), in a volume of wa-
ter, ρwat = 1000 kg/m3. Solution densities varied from
1025 kg/m3 to 1060 kg/m3. Density was determined by
finding the solution in which the sample floated in a mid-
equilibrium position.

Speed of sound was measured in reflection mode, on
a plane surface immersed in a bath containing distillated
water at 18.7 ± 0.1◦C, with an ultrasonic wave emitted
by a single-element 5 MHz central frequency transducer
(Model V310, Panametrics, Waltham, MA). The time shift
between a reference echo acquired in distilled water, and an
echo acquired for each PVA sample, gave the ratio between
the speed of sound in water and that in PVA. The speed
of sound c in each specimen was measured by:

c = vw(T )
τ − t2
t1 − t2

, (1)

where vw(T ) is the speed of sound in distilled water, which
depends on the temperature (T), τ is the time of flight of
the reference echo from the flat reflector, t1 is the time
of flight of the echo from the reflector in the presence of
PVA, and t2 is the time of flight of the first PVA’s interface
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echo. Then (t1−t2) corresponds to the wave’s time of flight
to cross the PVA sample and (τ − t2) corresponds to the
wave’s time of flight to cross the same distance in distilled
water. To improve reliability, the speed of sound in each
PVA sample was averaged over 100 acquired signals.

C. Quasi-Static Elastography

Static elastography measurements were performed with
a homemade instrument, allowing compression and relax-
ation of samples, and simultaneous acquisitions of radio
frequency (RF) ultrasound data. The stress data were
recorded from the homemade instrument. With this setup,
the stress in the sample was calculated as the ratio of
weight over the sample section under resting condition.
We limited the region of interest to the center of each
sample, in a region covering about 50% of the sample di-
ameter. In this region, the stress was considered uniform,
and the sample surface was considered constant during
loading. Axial strains were estimated with the three qua-
sistatic elastography methods described below. Each of
these methods could provide an image of local strain dis-
tribution (an elastogram) within each sample. The mean
strain value was extracted for each elastogram, and the
cumulative sum over all compression stages was used to
plot typical stress-strain curves. Knowing the stress and
strain relationships, the Young’s moduli were measured as
the slope of the linear portion of the stress-strain curves
(strains < 7%), for the load phase (i.e., during compres-
sion).

The homemade mechanical test instrument was com-
posed of a stepper motor (Compumotor Zeta E57, Parker
Hannifin Corporation, Rohnert Park, CA), driven by a
controller (Model Zeta 6104, Parker Hannifin Corpora-
tion), commanding the compressor displacements. The
load on each PVA sample was measured as the weight on
a precision balance (Model TS4KS, Ohaus Corporation,
Florham Park, NJ). During the whole dynamic compres-
sion and relaxation of a sample, the load was continuously
monitored and sent to a personal computer via an acqui-
sition card for off-line processing (CS8500 PCI, National
Instruments, Austin, TX). Before recording RF data, a
preconditioning phase of one compression-dilation cycle at
the speed of 0.45 mm/s was imposed to the PVA samples.
The compression plate was made of Plexiglas and had a
size larger than the sample diameter, to impose a uniform
stress condition. The ultrasound RF signals were recorded
through a hole made in the plate of Plexiglas in which the
probe was positioned. As the probe fitted perfectly into the
hole, there was no problem of stress discontinuity. Stress
curves were timely registered, in postprocessing, with cu-
mulated strain curves by fitting the maxima and minima
of the load phase.

Ultrasonic acquisitions were performed with a computer-
based clinical instrument providing RF data (Model
500RP, Ultrasonix Medical Corp., Burnaby, BC, Canada).
It was equipped with a 128-elements ultrasonic linear array
(Type L12-5, Ultrasonix Medical Corp.) of 6.6 MHz cen-

tral frequency. RF images provided through the research
package had 254 RF lines; they were digitized with a sam-
pling frequency of 40 MHz, and the frame rate was of 15
images/s. RF data were acquired continuously during the
compression and relaxation stages.

As mentioned earlier, the local strain was estimated by
three different quasistatic elastography methods. Each co-
author applied his own method, with respective choices
of the 1-D or 2-D window size and RF image increment.
The choice of these parameters, described below, was made
blindly (the Young‘s moduli were unknown to each co-
investigator as they were the last measures collected), and
it was performed to optimize the elastograms according to
each author’s perception.

1. Time-Scaling Factor Algorithm: The first quasistatic
elastography algorithm is based on a 1-D cross-correlation
technique. The parameter used to evaluate the strain is the
time-scaling factor between RF signals. The assumption is
that, if a tissue undergoes a strain ε, then the ultrasound
RF signal scattered by the tissue after deformation under-
goes the same time-scaling factor ε. The RF signal after
deformation s(t) can be written as a function of the RF
signal before deformation r(t) as:

s(t) = r(t(1 + ε)). (2)

To estimate the time-scaling factor, the ambiguity func-
tion Rřs(η) with a constant zero delay was calculated as:

Rřs(η) =

T∫
0

ř(t)s(t(1 − η))dt, (3)

where ř(t) is the Hilbert transform of r(t), and T is the
size of the calculation window. Fromageau et al. [25] have
shown that it is possible to estimate the time-scaling factor
from the unique value Rřs(0) with the following relation-
ship:

ε =
1

πf0T
arcsin

(
Rřs(0)

Es

)
, (4)

with f0 being the central frequency of the RF signals, and
Es the energy of the signal s(t) over the sampling window
T . A strain image was obtained by applying the 1-D esti-
mator on moving windows across each of the 254 RF line of
the image. The window length was about 15 wavelengths;
that is to say, 100 pixels and the overlap was 98 pixels.

As the ratio between the ultrasonic frame rate and the
stepper motor compression speed was high, the compres-
sion between two consecutive RF images was small (< 0.2%
strain). Because the variance of most estimators is gener-
ally reduced by considering larger strains [28], the defor-
mations were estimated from RF images with an inter-
leave of 3 (i.e., we used RF images number 1–4, 2–5, . . . ,
(N−3)−N). To deduce the strain between two consecutive
images, the values calculated were divided by 3.
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(a) (b)

Fig. 1. Reconstructed envelope B-mode image (a) and corresponding elastogram (b) computed with the time-scaling factor algorithm. For
each elastogram, the mean strain value was calculated in the ROI that was centered around the focus depth (white rectangle).

Due to the boundary conditions and to the geometry
of PVA samples, it is assumed that the strain was con-
stant over the whole sample. Moreover, because the sam-
ples were homogeneous and isotropic, and because of the
large number of data to be reported, we limited the anal-
ysis to the mean strain value within each PVA sample.
The mean deformation was calculated over a window cen-
tered on the focal zone of the ultrasound instrument [see
Fig. 1(b)]. This window of 180 × 254 pixels was located in
the middle of the PVA sample to avoid boundary artifacts
and regions with a low signal-to-noise ratio (SNR).

2. First Lagrangian Algorithm: The second quasi-static
algorithm is a 2-D Lagrangian speckle model estimator
(LSME). This method was described in details previously
[11], [26]. It requires partitioning the RF images into small
regions of interest (ROI), in which tissue motion is as-
sumed to be affine. The translation part having been com-
pensated for appropriately with a cross-correlation tech-
nique, the linear part given as a 2-D linear transformation
matrix (LT), can be related to the strain tensor through
the following relationship:

εij(t) =
1
2

[∆ij(t) + ∆ji(t)] ,

with: ∆ = LT − [I] =

(
∂Ux

∂x
∂Ux

∂y
∂Uy

∂x
∂Uy

∂y

)
.

(5)

In this equation, Ux and Uy are the lateral and axial
displacement fields, respectively. ∆ is defined as the de-
formation matrix. The maps of ∆22(= ε22), known as the
axial strain, provided the elastograms shown in the current
study. [I] is the 2-D identity matrix. The LSME, for a given
ROI, can mathematically be formulated as the following
nonlinear minimization problem:

MIN
LT ‖I(x, y, t) − ILag(x, y, t + ∆t)‖2, (6)

where (x, y) defines the image coordinate system, and t
indicates time. I(x, y, t) is the pretissue-motion RF im-
age, and ILag(x, y, t+∆t) is the Lagrangian speckle image

(LSI) at time t + ∆t. It is worth mentioning that the LSI
is defined as a posttissue-motion RF image I(x, y, t + ∆t)
that was numerically compensated for tissue motion, as to
achieve the best match with I(x, y, t) [12]. The minimum
of (6) was obtained by using the appropriate LT; and (6)
was solved using the optical flow-based implementation of
the LSME developed in [29]. The deformation parameters
then were estimated using an inversion algorithm. For the
current study, the measurement window required for the
LSME algorithm was set to 200 × 20 pixels, axially and
laterally, respectively (with 90% and 80% axial and lateral
overlaps). The mean strain values reported here were ob-
tained by averaging the tensor component, ε22, over elas-
tograms computed in the focal zone. In opposition to the
time-scaling algorithm described earlier, ε22 was estimated
on successive RF images corresponding to strain values be-
low 0.2%.

3. Second Lagrangian Algorithm: The third quasistatic
elastography algorithm also is based on the LSME. It is a
modified version that considers (5) and (6), and additional
parameters to take into account a possible linear intensity
variation of the speckle, due to the movement of scatterers
regarding the ultrasound field [27], [30]. With this assump-
tion, two coefficients are added in (7). The minimization
problem of (6) now becomes (7) (see next page), where
λ, a multiplicative coefficient, represents the contrast of
the RF image, γ, an offset, represents the brightness and
�m is the vector including the motion and intensity varia-
tion parameters. The error EROI(�m) is minimum when the
gradient is zero. This leads to the solution:

�m =

⎡
⎣ ∑

x,y∈ROI

�a�aT

⎤
⎦−1 ⎡

⎣ ∑
x,y∈ROI

�aα

⎤
⎦ . (8)

The size of the ROI (measurement windows) of this
LSME algorithm was set to 130 × 50 pixels, with an over-
lap of 80% in both axial and lateral directions (104 × 40
pixels). The axial strain, ε22, was estimated from succes-
sive RF images (strain < 0.2%), and a mean value was
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EROI(�m) =
∑

x,y∈ROI

⎡
⎢⎢⎣(It − I + xIx + yIy)︸ ︷︷ ︸

α

− (xIx yIx Ix xIy yIy Iy I 1)︸ ︷︷ ︸
�a

·

⎛
⎜⎝∆11 ∆12 dx ∆21 ∆22 dy λγ︸ ︷︷ ︸

�m

⎞
⎟⎠

T
⎤
⎥⎥⎦

2

=
∑

x,y∈ROI

[
α − �a · �mT

]2 (7)

obtained by averaging over the whole elastogram. A me-
dian filter (5 × 5 pixels) was used to reduce the variance
of the estimator.

D. Transient Elastography

For the transient elastography assessments, the 1-D
shear elasticity probe was used [24]. It was designed with a
single-element, 5-MHz ultrasonic transducer (Model V310,
Panametrics, Waltham, MA) mounted on a mini-shaker
(Type 4810, Brüel&Kjær, Nærum, Denmark). Shear waves
were generated by the front face of the transducer while
it was working in a pulse echo mode. Ultrasound longi-
tudinal waves were generated by firing the 5-MHz probe
with a pulsed echo system (Model 5900PR, Panametrics),
and the low frequency pulse (200 Hz), producing shear
waves, was sent to the mini-shaker with a function genera-
tor (Model 33250A, Agilent, Palo Alto, CA) and amplified
(Type 2706, Brüel&Kjær). In a typical experiment, 600
echographic lines were recorded in an 8-bit format with an
acquisition card (Compuscope 8500, Gage, Lachine, QC,
Canada) on a personal computer at a 100-MHz sampling
frequency. The repetition frequency between successive A-
scans was fixed in the experiments at 10 kHz.

1. Typical Displacement Fields: The ultrasonic signals
acquired were compensated off line for the relative motion
of the transducer [24]. The longitudinal component of the
shear wave displacements along the ultrasonic beam then
was computed with a cross-correlation algorithm [9], [10],
[31] between successive ultrasonic signals. The displace-
ment image was obtained using a 68 pixels window, with
an overlap of 50 pixels. In Fig. 2, displacement fields are
shown for different PVA samples with different numbers
of freeze-thaw cycles (1, 5, and 10 cycles). At time 5 ms,
a low-frequency (200 Hz) pulse was given with the front
face of the transducer to the PVA sample in order to induce
acoustic shear waves. Then, shear waves (quasitransversal
waves S) were propagated slowly (from 1 m/s to 15 m/s)
and took a certain time to arrive at each depth. The shear
wave slope, plotted on Fig. 2, is related to the shear wave
velocity and in the approximation of purely elastic solid,
velocity is directly proportional to elasticity [32].

2. Inverse Problem Approach: From the displacement
fields, a simple inverse problem approach based on the 1-D
Helmholtz equation in a purely elastic medium was taken
to recover the shear velocity (VS) from:

Fig. 2. Displacement field due to the shear wave in three different
PVA samples with 3% of Sigmacell (1, 5, and 10 freeze-thaw cycles).
The displacement field was plotted in gray color scale, along depth z
as a function of time. The low-frequency pulse at 200 Hz was given
at the time of 5 ms.

∂2 FT(uz(z))
∂z2 − k2 FT(uz(z)) = 0, (9)

where FT is the Fourier transform, uz(z) is the longitu-
dinal component of the shear wave displacement field, z
is the depth, and k is the wave vector. Thus, the local
complex wave vector was given by:

k =

√
∂2 FT(uz(z))

∂z2

FT(uz(z))
, (10)

and the local shear wave velocity VS [32] was obtained
with:

VS =
ω

Re[k]
, (11)

where ω = 2πf is the pulsation frequency (f = 200 Hz).
In practice, derivatives were taken from the displacement
image using windows of 20 pixels length and an overlap of
19 pixels.

Now in the general case, acoustic velocities [shear wave
velocity (VS) and speed of sound (c)] are linked to mechan-
ical properties such as Young’s modulus (E), Poisson’s ra-
tio (ν), and density (ρ) [33]. Typically, for an isotropic
material, the relationships of these parameters with the
sound speed (c) and shear wave speed (Vs) are:
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c =

√
E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, (12)

Vs =

√
E

2ρ(1 + ν)
. (13)

Accordingly, the Poisson’s ratio was retrieved as a func-
tion of the two velocities as:

ν =
c2 − 2V 2

S

2(c2 − V 2
S )

. (14)

The Young’s modulus was directly retrieved from (13)
and, if the material is incompressible, the following equa-
tion is acceptable:

E = 3ρV 2
S . (15)

E. Mechanical Tests (Gold Standard Measures)

All mechanical tests were done on samples at room
temperature. The Young’s modulus was measured with a
test instrument (ELF 3200, Enduratec, Minnetonka, MN),
adapted for biological tissues. The load cell was rated at
225 N with an accuracy of 0.5%, and the displacement
range of the transducer was 12.5 mm with an accuracy
of 0.5%. For these experiments, the machine was pro-
grammed to provide a displacement loading.

Tensile testing was performed because it has the advan-
tage of being less sensitive to geometrical boundary imper-
fection encountered in the building procedure (boundaries
do not need to be perfectly flat). Furthermore, isotropic
materials have a similar behavior in compression and ten-
sion, at least for small deformations. In the present study,
the PVA gels were considered isotropic, which is a com-
mon assumption [34], [35]. For the stretching test, as men-
tioned earlier, small core samples were cylindrically cut
from the samples used for the elastography tests, and they
were fixed between tensile grips. The distance between the
grips was 10 mm. Preliminary tests had shown that ma-
terials were very stable, then only one cycle was applied
during the preconditioning stage. Samples then were sub-
jected to two cycles of a periodic triangular charge. A 6-
mm amplitude displacement with a speed of 0.1 mm/s was
applied to the grips. Young’s moduli were calculated, for
small strains, in the range of 0–15% as the slopes of the
stress-strain curves obtained, but only on the load section
where the behavior is linear. In the following, this method
is considered as the gold standard.

III. Results

A. Density and Speed of Sound Measurements

Measurements were performed on PVA samples that
underwent from 1 to 10 freeze-thaw cycles with 3% Sig-
macell added. Three samples for each number of cycles

(a) (b)

Fig. 3. Density of PVA samples. (a) As a function of the number of
freezing-thawing cycles for 3% Sigmacell. (b) As a function of the
percentage of Sigmacell for two freezing-thawing cycles.

(a) (b)

Fig. 4. Speed of sound in PVA samples. (a) As a function of the
number of freezing-thawing cycles for 3% Sigmacell. (b) As a function
of the percentage of Sigmacell for two freezing-thawing cycles.

were built. The mean density as a function of the number
of cycles is reported in Fig. 3(a). A logarithmic increas-
ing relationship was observed with a range of variation of
the mean densities from 1028 to 1054 kg/m3. In the sec-
ond series, which consisted of two samples for each batch,
density measurements were performed on samples that un-
derwent two cycles with 1%, 2%, 3%, and 4% of Sigmacell
added, respectively. The mean density varied linearly be-
tween 1028 and 1040 kg/m3, as shown in Fig. 3(b).

A logarithmic increasing relationship was found in
Fig. 4(a) for the speed of sound when the number of freeze-
thaw cycles increased. The values of the speed were in a
range between 1525 ms−1 and 1560 ms−1, which is similar
to what can be observed in biological tissues. It can be no-
ticed that the concentration of Sigmacell had little impact
on the speed of sound [Fig. 4(b)], which remained quite
constant at about 1530 m/s for concentrations between
1–4% (two freeze-thaw cycles).

B. Shear Wave Velocity and Poisson’s Ratio Assessments

The shear wave velocity is required to compute the Pois-
son’s ratio, and it was assessed with the transient elastog-
raphy method. As shown in Fig. 5, a logarithmic increas-
ing relationship was found for this parameter when the
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(a) (b)

Fig. 5. Shear wave speed in PVA samples. (a) As a function of the
number of freezing-thawing cycles for 3% Sigmacell. (b) As a function
of the percentage of Sigmacell for two freezing-thawing cycles.

(a) (b)

Fig. 6. Poisson’s ratio in PVA samples. (a) As a function of the
number of freezing-thawing cycles for 3% Sigmacell. (b) As a function
of the percentage of Sigmacell for two freezing-thawing cycles.

number of freeze-thaw cycles increased. Moreover, it also
slightly increased with the concentration of Sigmacell for
two freeze-thaw cycles.

With (14), knowing c and Vs, the Poisson’s ratio was es-
timated as a function of the number of freeze-thaw cycles
and of the concentration of Sigmacell. The results are plot-
ted in Fig. 6. As Vs is much smaller than c, as in every soft
biological material [36], our results led to Poisson’s ratios
close to 0.5; all samples had a deviation from 0.5 smaller
than 10−4. Even if a slight decrease was observed when
the number of cycles increased, PVA cryogel can be con-
sidered as an incompressible material. This result justifies
the incompressible assumption made when applying the
relationship E = 3ρV 2

S to calculate the Young’s modulus
described below.

C. Reproducibility of the Method Used to Fabricate
PVA Samples

We also validated the reproducibility of the mechani-
cal properties of PVA. Young’s moduli were measured in
stretching by the Enduratec instrument that is the gold
standard. The results are plotted in Fig. 7 as the bias of
each measure in comparison to the mean value calculated
over the three samples. The solid lines correspond to the

Fig. 7. Young’s moduli estimated with the gold standard method on
different sets of PVA samples as a function of the number of freeze-
thaw cycles (the Sigmacell concentration was 3%). The solid lines
correspond to the precision interval of the gold standard. Each ∗
corresponds to the bias between a specific measure and the mean.
The results are considered reproducible as the three data sets of a
same number of cycles are generally within the confidence interval.

precision interval due to sample geometry differences and
to the stretching method. ∆E/E was estimated at about
10%. The results are considered reproducible as the three
data sets for a given number of cycles generally lay within
the confidence interval.

D. Young’s Modulus Measurement by Different
Elastography Methods

To test the accuracy of the elastography methods, the
mean Young’s modulus was estimated as a function of the
number of freeze-thaw cycles (the Sigmacell concentration
was fixed to 3%). For each method, the values reported in
Fig. 8 correspond to the mean Young’s moduli estimated
on three different PVA samples built separately. These re-
sults are reported with more details in Table I. The stan-
dard deviation takes into account the error of each method
and of the set of data (fabrication of three different sam-
ples).

A first remark is that the Young‘s moduli assessed with
the elastography methods showed a similar trend as the
tensile test when the number of cycles was increased (ex-
cept for 9 and 10 cycles). It is to note that the spreading of
the Young‘s moduli among the different methods was more
important for a number of freeze-thaw cycles above six. It
is interesting to notice that the scaling factor estimation
and the second Lagrangian algorithm provided very similar
results for most tests. The first Lagrangian algorithm had
a tendency toward an overestimation of Young’s moduli for
one to six freeze-thaw cycles. The transient elastography
method overestimated the rigidity of the samples between
one to three cycles, but it provided similar or underesti-
mated Young‘s moduli for higher numbers of freeze-thaw
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TABLE I
Mean Young’s Moduli (±1 Standard Deviation) Estimated with Each Method for Several Numbers of Freeze-Thaw Cycles.

Estimation of mean Young’s moduli (kPa)
Number
of cycles Transient Lagrangian 1 Lagrangian 2 Scaling factor Tensile

1 37 ± 8 39 ± 1 29 ± 1 29 ± 4 25 ± 3
2 140 ± 5 132 ± 4 105 ± 2 103 ± 11 105 ± 12
3 214 ± 22 206 ± 14 173 ± 4 165 ± 27 182 ± 21
4 259 ± 33 300 ± 25 263 ± 6 254 ± 36 286 ± 33
5 308 ± 23 357 ± 41 319 ± 7 308 ± 44 302 ± 35
6 321 ± 69 358 ± 42 343 ± 9 326 ± 42 322 ± 37
7 316 ± 34 411 ± 29 407 ± 13 385 ± 60 398 ± 46
8 307 ± 76 437 ± 35 451 ± 15 436 ± 83 465 ± 53
9 306 ± 29 381 ± 20 412 ± 17 398 ± 99 532 ± 61

10 361 ± 20 458 ± 18 458 ± 18 434 ± 107 615 ± 70

Fig. 8. Mean Young’s moduli estimated by different methods as a
function of the number of freezing-thawing cycles. A 3% concentra-
tion of Sigmacell was used in these measurements.

cycles. In terms of accuracy, the second Lagrangian algo-
rithm had the smallest variances, and the scaling factor
estimation resulted in the largest ones (see Table I).

The influence of the concentration of acoustic scatterers
on Young‘s moduli was investigated on eight PVA samples.
All samples underwent two freeze-thaw cycles, and the Sig-
macell concentration was varied from 1% to 4%. Overall,
as shown in Fig. 9, a mean increase of the Young’s modulus
by 54 kPa was observed as the concentration was increased.
More specifically, the mean Young‘s modulus computed for
the four elastography methods and the stretching test was
91 kPa for 1% of Sigmacell. It was 104 kPa, 141 kPa, and
145 kPa for concentrations of 2%, 3%, and 4%, respec-
tively.

IV. Discussion

It is important to notice that the viscoelasticity of PVA
was neglected in this study, first because the relaxation

Fig. 9. Young’s moduli as a function of the ratio of Sigmacell acoustic
scatterers added in the phantoms. The number of freeze-thaw cycles
was fixed to two for those measurements.

time of PVA is long [2]. Consequently, the different load-
ing frequencies—used for the transient, quasistatic and
mechanical tests—had all characteristic time smaller than
the relaxation time. Second, to reduce the viscoelastic ef-
fects, samples underwent preload cycles until the stress-
strain curve became stable, which happened as soon as
the second preload cycle. As the visco-elasticity is small,
the Young moduli measured with the transient elastogra-
phy and other quasistatic methods were expected to be
the same.

A first remark concerns the estimated Young’s mod-
uli that could be varied in a large range, from 20 kPa
to 600 kPa, approximately (see Fig. 8). This is satisfy-
ing if one’s interest is to model biological soft tissues. For
instance, Young’s moduli were reported to vary in such
a range for human tissues [36] (28 kPa for the normal
glandular tissue of breast [37] to 630 kPa for the harder,
healthy, common carotid artery [38]). A second remark
concerns the reproducibility of the phantom building pro-
cedure, which, according to Fig. 7, looks acceptable with
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TABLE II
Covariance Between the Stretching Tests and

Elastographic Methods.

Method Covariance Offset R2

Transient 1.02 14 0.93
Lagrangian 1 1.07 13.8 0.99
Lagrangian 2 1.02 −3.6 0.99
Scaling factor 0.97 −1.4 0.98

the bias of the three samples with the same number of
freeze-thaw cycles smaller than the gold standard accu-
racy. The only exception is for seven cycles in which two
samples were very different from the mean value; this is
attributed to measurement uncertainty of a single sample
estimated with a very high Young’s modulus (313 kPa,
371 kPa, 511 kPa), which artificially increased the mean
value. The errors came from two sources, the precision of
the test instrument and the possible irregular geometry of
the phantoms.

Concerning the elastography methods, the algorithms
gave consistently similar mean Young‘s moduli to those
measured with the gold standard tensile instrument. How-
ever, between one to six freeze-thaw cycles, either the tran-
sient elastography or the first Lagrangian method, gave the
worst matching with the gold standard method. The sec-
ond Lagrangian and time-scaling factor methods looked
excellent for one freeze-thaw cycle. However, the best esti-
mation was obtained with the second Lagrangian estima-
tor for two and three freeze-thaw cycles. For four cycles,
the first Lagrangian estimator was the best. The transient
elastography and time-scaling factor methods provided the
closest estimations to the gold standard for five and six cy-
cles. For PVA-C samples with a higher number of freeze-
thaw cycles, the consistency of the results declined. To
further compare the different methods, the correlation be-
tween the mean Young’s moduli obtained with the stretch-
ing test and those estimated with the elastography meth-
ods was measured on samples that underwent from one to
six cycles (see Table II). The covariance, the offset, and
the regression coefficient are reported on Table II. It can
be concluded that the different elastography methods were
consistent with a covariance close to one and correlation
coefficients above 0.93.

A few reasons can explain the worse results between 7
to 10 freeze-thaw cycles. We first had difficulties in cutting
symmetric samples due to their rigidity at these numbers
of cycles. In addition, during the fabrication process of
PVA-C, it was noticed that samples with a high number
of freeze-thaw cycles had a tendency to dehydrate. Con-
sequently, a layer of ice appeared between the sample and
the mould. This layer became noticeable for samples cor-
responding to a number of cycles for which the density of
PVA began to stabilize [see Fig. 3(a)]. It is known that
some macropores of solvent, water in that case, remain in
the hydrogel samples after several freeze-thaw cycles [3].
A possible explanation for the logarithmic increasing rela-

tionship of the curve expressing the density of the samples
as a function of the number of cycles can be that, after six
cycles, a large part of the macropores containing the sol-
vent had disappeared, leaving only the polymer network.
The Young’s moduli calculated with transient elastogra-
phy also were less reliable. An explanation is that, when
samples became stiffer and because the derivation window
sizes were maintained constant for the whole experiment,
the shear wave speed was more noisy as the number of
wavelengths decreased.

Except for the number of freeze-thaw cycles, the most
important parameter to control during the building pro-
cess was the freezing-thawing rate. In a previous work [39],
a very different mean Young’s modulus was measured for
a 10% PVA solution and a 24-hour freeze-thaw cycle. The
only differences with respect to the current study was the
use of a colder freezing temperature of −40◦C, shorter
freezing and thawing rates, and a 1% concentration of
acoustic scatterers. In [39], the rates of change of the tem-
perature were not regulated, samples were directly intro-
duced in the freezer and put out of it to room temperature
during thawing. The difference between both studies thus
emphasizes the important role of the freeze-thaw temper-
ature variations in the cross-linking process of PVA. As an
example, the Young’s modulus measured for a five-cycles
phantom was 90±6 kPa in [39], and it was 300±35 kPa for
the current study. As the smallest Young modulus found
in the current study was about 25 kPa, which is above
values corresponding to some biological tissues, increasing
the speed rate could be a good method to create samples
with lower Young’s moduli. Another alternative could be
to use PVA solution at a lower concentration [1].

Different elastography methods were tested and com-
pared to gold standard assessments. The stretching test
has been chosen as the gold standard because it is less
sensitive to geometrical artifacts. Transient elastography
has a big advantage in that it does not depend on the
boundary conditions, provides directly the Young’s mod-
ulus, and allows one to estimate the Poisson’s ratio. How-
ever, a large-size phantom is necessary for measurements.
The bigger the medium, the more precise the estimation,
because more shear wavelengths propagate. Another limit
of this last method is that the harder the samples, the
higher the shear wave speeds and the more difficult it
becomes to differentiate the shear wave from the bulk
wave. Quasistatic elastography has the advantage of pro-
viding a whole image of strain distribution. Furthermore,
Lagrangian methods also estimate 2-D deformations, in-
cluding shears, and the scaling factor algorithm advan-
tage is the shorter computational time. As the quasistatic
methods were used with a compression setup, their esti-
mated strain images are strongly dependent on the geom-
etry. When the surface of samples are not flat, as was the
case for the high number of freeze-thaw cycles, the stress
within samples is not uniform and, consequently, the esti-
mated strain also varies.

Another aspect is the estimation of Poisson’s ratio with
good precision thanks to the measurement of shear speed.
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The estimated Poisson’s ratios were 0.499±0.001 and def-
initely shows that PVA cryogel phantoms are incompress-
ible.

V. Conclusions

Four elastography methods have been evaluated on
tissue-mimicking phantoms. The Young’s modulus esti-
mated via the inverse problem of each method was com-
pared to the elastic modulus measured with a mechani-
cal test instrument. The different elastographic methods
showed good agreement with the mechanical tests, for a
number of freeze-thaw cycles between one and six, thanks
to the flat geometry of the samples. Correlations above
0.93 were observed between the elastography methods and
the mechanical stretching test. For more than six freeze-
thaw cycles, the sample geometry became more difficult to
control, and the results were less reliable.

A rigorous characterization of PVA cryogel also was
done. A precise building procedure was described, and dif-
ferent operators were involved in the study to test repro-
ducibility. Acoustic (speed of sound, shear wave speed)
and mechanical (Young’s modulus, Poisson’s ratio, den-
sity) properties were evaluated. The influence of the num-
ber of cycles and of the quantity of acoustic scatterers was
assessed. Thanks to shear wave measurements, an estima-
tion of the Poisson’s ratios was provided. Mean values of
0.499± 0.001 proved the incompressibility of the material.
Young’s moduli of the samples varied from 20 kPa, a typi-
cal value of soft tissues such as breast or liver, to 600 kPa,
a typical value for harder tissues such as arteries, were ob-
tained in this study, which validate the PVA as a good
tissue-mimicking material.
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the École Nationale Supérieure des Ingénieurs
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