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Canada, 9 Laboratory of Medical Image Analysis, Centre de recherche du Centre hospitalier de l’Université
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Abstract

Objective

To develop a quantitative ultrasound (QUS)- and elastography-based model to improve

classification of steatosis grade, inflammation grade, and fibrosis stage in patients with

chronic liver disease in comparison with shear wave elastography alone, using histopathol-

ogy as the reference standard.

Methods

This ancillary study to a prospective institutional review-board approved study included 82

patients with non-alcoholic fatty liver disease, chronic hepatitis B or C virus, or autoimmune

hepatitis. Elastography measurements, homodyned K-distribution parametric maps, and

total attenuation coefficient slope were recorded. Random forests classification and boot-

strapping were used to identify combinations of parameters that provided the highest diag-

nostic accuracy. Receiver operating characteristic (ROC) curves were computed.

Results

For classification of steatosis grade S0 vs. S1-3, S0-1 vs. S2-3, S0-2 vs. S3, area under the

receiver operating characteristic curve (AUC) were respectively 0.60, 0.63, and 0.62 with

elasticity alone, and 0.90, 0.81, and 0.78 with the best tested model combining QUS and
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elastography features. For classification of inflammation grade A0 vs. A1-3, A0-1 vs. A2-3,

A0-2 vs. A3, AUCs were respectively 0.56, 0.62, and 0.64 with elasticity alone, and 0.75,

0.68, and 0.69 with the best model. For classification of liver fibrosis stage F0 vs. F1-4, F0-1

vs. F2-4, F0-2 vs. F3-4, F0-3 vs. F4, AUCs were respectively 0.66, 0.77, 0.72, and 0.74 with

elasticity alone, and 0.72, 0.77, 0.77, and 0.75 with the best model.

Conclusion

Random forest models incorporating QUS and shear wave elastography increased the clas-

sification accuracy of liver steatosis, inflammation, and fibrosis when compared to shear

wave elastography alone.

Introduction

Chronic liver disease (CLD) is one of the top ten leading causes of death in the United States

[1]. Nonalcoholic fatty liver disease (NAFLD) is the most common cause of CLD, affecting up

to one third of the adult Western population [2]. It has a substantial burden due to the inci-

dence and prevalence, and its impact on longevity and quality of life [3]. NAFLD is character-

ized by vacuoles of fat and may lead to nonalcoholic steatohepatitis (NASH), which is

characterized by inflammation. All causes of CLD may evolve to liver fibrosis, a scarring pro-

cess, which may progress to cirrhosis and liver failure. Although liver biopsy is the established

reference standard for classification of steatosis grade, inflammation grade, and fibrosis stage,

it has several limitations including cost, sampling error, and procedure-related morbidity and

mortality [4].

The noninvasiveness, wide availability, innovative technical developments, and cost-effec-

tiveness of ultrasound constitute key advantages for management of patients with CLD. Medi-

cal ultrasound has traditionally been used to diagnose diseases based on B-mode (structures)

and Doppler-mode (flow) images. More recently, elastography techniques, which assess stiff-

ness, tissue strain or viscoelasticity, provide the highest diagnostic performance for staging of

liver fibrosis [5–7]. Over the past 5 decades, quantitative ultrasound (QUS) imaging techniques

have been developed to analyze constructive and destructive interferences between echoes to

characterize tissue microstructure below the typical resolution of ultrasound scanners, based

on spectral analysis of radiofrequency signals or statistical properties of the echo envelope [8].

In earlier clinical studies, QUS controlled attenuation [9–11], which is related to ultrasound

energy loss in tissues, and backscatter coefficient [12] provided promising results for grading

liver steatosis. More recently, several studies have proposed traditional machine learning [13–

16] or deep learning [17–19] techniques combined with shear wave elastography to improve

the staging of liver fibrosis. The homodyned-K distribution has also been proposed to model

the ultrasound echo envelope in the context of liver steatosis and steatohepatitis [12, 20–22],

since its parameters are related to cell density, tissue echogenicity, and tissue microstructure.

Considering the high disease prevalence, there is a need for noninvasive imaging and classi-

fication of CLD. The purpose of this study was to develop a combined QUS and elastography-

based model to improve classification of steatosis grade, inflammation grade, and fibrosis

stage in comparison with elastography alone, using histopathology as the reference standard.

We privileged the random forests machine learning strategy to identify combination of imag-

ing features providing the highest classification accuracy for a given training dataset [21].

PLOS ONE QUS and machine learning for assessment chronic liver disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0262291 January 27, 2022 2 / 21

Funding: This work was supported by grants from

the Canadian Institutes of Health Research (CIHR)-

Institute of Nutrition, Metabolism and Diabetes

(INMD) (CIHR-INMD #273738 and #301520,

https://cihr-irsc.gc.ca/) to AT. This work was also

supported by Junior 1 and Junior 2 Clinical

Research Scholarships from the Fonds de
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Materials and methods

Study design and subjects

This is a retrospective, cross-sectional ancillary study to an imaging trial (ClinicalTrials.gov

Identifier No. NCT02044523). This study was approved by the institutional review board of

the two participating institutions, Centre hospitalier de l’Université de Montréal and McGill

University Health Centre. All patients gave written informed consent.

The prior cross-sectional imaging trial compared diagnostic accuracy of ultrasound-based

and magnetic resonance-based elastography techniques using liver biopsy as the reference

standard [6]. For this ancillary study, QUS and elastography measurements were used to

develop models for classification of steatosis grade, inflammation grade, and fibrosis stage.

Between October 2014 and September 2018, consecutive adult subjects were enrolled if a

liver biopsy was scheduled as part of their clinical standard of care. Ninety-one subjects

recruited at hepatology clinics of the two participating institutions underwent QUS. Subjects

were excluded from this ancillary study if: (a) images were not acquired with the probe

assigned to the study protocol (n = 2); (b) the underlying pathology did not meet eligibility cri-

teria due to ethanol consumption (n = 2), drug-induced hepatitis (n = 1), sarcoidosis (n = 1),

cholestasis (n = 1), or no biopsy was performed (n = 2). Characteristics of 82 subjects included

in this study are described in Table 1. Among the 82 included subjects, the underlying pathol-

ogy was CLD attributable to NAFLD (n = 6), NASH (n = 38), hepatitis B virus (n = 2), hepatitis

C virus (n = 13), autoimmune hepatitis (n = 16), or mixed causes (n = 7). Consecutive eligible

participants were included.

For each of steatosis or inflammation grade and fibrosis stage, classification tasks obtained

from splitting the dataset into two classes based on the grade (4 values) or stage (5 values),

viewed as ordinal variables, were assessed. Thus, we considered 3 steatosis and inflammation

classification tasks, and 4 fibrosis classification tasks.

Ultrasound imaging

Ultrasound images were acquired with a clinical scanner (Acuson S2000 or S3000, Siemens

Healthineers) using a convex probe (4C1). Patients were required to fast at least 4 hours prior

to the examination. They were scanned in dorsal decubitus with their right arm in maximal

abduction. Required standard intercostal B-mode images included: (1) the right liver lobe and

right kidney, (2) right liver lobe at the level of the right portal vein, and (3) hepatic veins. A

3-second cine-loop of radiofrequency (RF) signals of the right liver lobe in a plane without

major vessels was recorded for subsequent QUS post-processing.

Ultrasound shear wave elastography

Point shear wave elastography (pSWE) was performed with the same convex probe according

to guidelines [23]. The median shear wave velocity (expressed in m/s) of 10 valid measure-

ments (obtained in 20 repetitions or less) was used as a surrogate biomarker of liver stiffness.

Reliability of measurements was based on the success rate and an interquartile range to the

median (IQR/M) < 30% as per European Federation of Societies for Ultrasound in Medicine

and Biology (EFSUMB) guidelines and Recommendations on the Clinical Use of Liver Ultra-

sound Elastography [23].

Preliminary post-processing

Echo envelope of RF data was computed based on Hilbert’s transform, after having compen-

sated for time gain compensation settings. The first 30 images of uncompressed and unfiltered
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Table 1. Characteristics in 82 patients.

Characteristic Data

Sex

Male 42 (51%)

Female 40 (49%)

Age (y)

Mean ± SD (range) 56 ± 12 (23–78)

BMI (kg/m2)

Mean ± SD (range) 30.0 ± 5.8 (17–45)

< 25 16 (20%)

� 25 and < 30 23 (28%)

� 30 and < 40 39 (47%)

� 40 4 (5%)

Racial category

White 62 (76%)

Black 4 (5%)

Asian 2 (2%)

American Indian 2 (2%)

Hawaiian or Pacific Islander 1 (1%)

N/A 11 (14%)

Diabetes 27 (33%)

Hypertension 32 (39%)

Laboratory tests: Mean ± SD (range)

AST (U/L) 56 ± 55 (14–319)

ALT (U/L) 75 ± 81 (13–473)

GGT (U/L) 77 ± 93 (10–464)

Platelet count (x 109/L) 201 ± 66 (87–383)

Total bilirubin (μmol/L) 12.5 ± 5.0 (4.5–28.5)

Prothrombin time (%) 99.3 ± 7.8 (83–120)

Alkaline phosphatase (U/L) 76 ± 36 (32–217)

Albumin (g/L) 41.2 ± 6.4 (31–79)

Cholesterol (mmol/L) 4.6 ± 1.0 (2.9–7.0)

Biopsy length (mm)

Mean ± SD (range) 20.1 ± 5.1 (10–30)

Fibrosis stage

F0 (none) 12 (14%)

F1 (perisinusoidal or periportal) 13 (16%)

F2 (periportal and presence of septa) 18 (22%)

F3 (numerous septa without cirrhosis) 13 (16%)

F4 (cirrhosis) 26 (32%)

Inflammation activity grade

A0 (none) 8 (10%)

A1 (negligible) 39 (47%)

A2 (moderate) 27 (33%)

A3 (severe) 8 (10%)

Steatosis grade

S0 (<5% hepatocytes involved) 29 (35%)

S1 (5%-33% hepatocytes involved) 22 (27%)

S2 (33%-66% hepatocytes involved) 15 (18%)

(Continued)
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echo envelopes of RF signals were analyzed. A region of interest (ROI) was manually delin-

eated in the first image of the cineloop and then propagated automatically to subsequent

images. A pre-classification of pixels (pixels’ labeling) within the ROI of all frames was esti-

mated [24], according to the statistical distribution of the echo envelope.

Quantitative ultrasound analysis

A sliding window of 78 x 12 pixels, corresponding to about 3 mm along both axial and lateral

axes, was swept across the ROI by steps of 4 x 1 pixels. For each window, only pixels with same

label as the central pixel were used for homodyned K-distribution (HKD) parameters’ estima-

tion [24], so that the hypothesis of a single distribution was met locally (as opposed to a mix-

ture of a few distributions), thus allowing for application of the XU estimation method of the

HKD parameters [25]. Notice that the HK distribution was proposed as a general model for

echo envelope distribution, with the advantage of a physical interpretation of its parameters

[24]. These QUS maps comprised the normalized mean intensity μn (mean intensity divided

by the maximal intensity within ROI) [26]; the reciprocal 1/α of the scatterer clustering param-

eter α, which is an indicator of density and homogeneity in fluctuations of acoustical imped-

ance [1]; the coherent-to-diffuse signal ratio k [27] and the diffuse-to-total signal power ratio

1/(k +1) [1], both of which are QUS biomarkers of structure within scatterers’ spatial organiza-

tion [24]. Notice that k represents the coherent-to-diffuse signal power ratio, not to be con-

fused with parameter k above. For each parametric map, mean value and inter-quartile range

(IQR) within the ROI were computed, and median values over the 30 frames yielded two QUS

features per map [21]. Thus, 8 HKD features were produced for each acquisition: (mean and

IQR features) x (4 parametric maps). Means and maxima were winsorized to avoid spurious

outliers [28].

The total acoustical attenuation due to layers of fat that could be present in patients with

obesity might be a confounder for HKD parameters. Therefore, the total attenuation coeffi-

cient slope (ACS) was estimated, based on spectral Gaussian fit method [8], and its median

value over 30 frames was output as an QUS feature, in addition to HKD parameters. Combina-

tion of total attenuation with statistical features was shown to improve classification perfor-

mance [29], and this is an alternative to estimating HKD parameters directly on the echo

envelope compensated for total attenuation.

Lastly, the local ACS was estimated as a further QUS biomarker. Estimation was based on a

hybrid state-of-the-art method [30]. For both total and local attenuation estimation methods,

Table 1. (Continued)

Characteristic Data

S3 (>66% hepatocytes involved) 16 (20%)

Iron

0 59 (72%)

1 13 (16%)

2 2 (2%)

3 0 (0%)

4 0 (0%)

N/A 8 (10%)

Numbers in parentheses are percentages, unless otherwise specified.

SD = standard deviation, BMI = body mass index, AST = aspartate aminotransferase, ALT = alanine

aminotransferase, GGT = gamma-glutamyl transpeptidase.

https://doi.org/10.1371/journal.pone.0262291.t001
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a calibrated reference phantom (model 117GU-101, CIRS, Norfolk, VA) was used to compen-

sate for acquisition settings [8]. In total, 11 features were extracted from each acquisition of

radiofrequency data.

B-mode images with overlaid parametric maps of QUS features in 4 representative patients

are shown in Fig 1. Point shear wave elastography images in the same patients are shown in

Fig 2. Custom programs for QUS computations were implemented in C++ language and

Matlab R2018a software (MathWorks).

Histopathology analysis. Liver biopsies were performed by percutaneous approach

with 16-G or 18-G core needles. Specimens were stained with hematoxylin and eosin and

centrally scored by a hepatopathologist. Steatosis was graded according to the proportion of

hepatocytes with macrovesicles of fat according to the NASH Clinical Research Network

(CRN) scoring system, where S0: < 5%, S1: 5–33%, S2: 33–66%, and S3 > 66%. Inflamma-

tion was graded according to the level of lobular inflammation with the NASH CRN system

for patients with NAFLD or NASH, and according to the severity of inflammation with the

METAVIR scoring system for patients with autoimmune or chronic hepatitis, where A0: no

foci, A1: < 2 foci per 200x field, A2: 2–4 foci per 200x field, and A3: > 4 foci per 200x field.

Fibrosis was staged according to the distribution and severity of fibrosis and level of archi-

tectural modeling with the METAVIR scoring system for patients with autoimmune hepati-

tis or hepatitis B or C infection, and according to the NASH CRN for patients with NAFLD

or NASH. Fibrosis stages F1A, F1B, and F1C in the NASH CRN system were pooled into

stage F1.

Machine learning model and features selection

Classification tasks were performed with random forests [31]. This statistical learning

approach is suitable in the case of relatively small data sets, as random forests avoid over-fitting

(i.e., that would be based on too many trees—see Theorem 1.2 and the remark thereafter in

[31]), and have very few hyper-parameters to be tuned; i.e., input features and maximum num-

ber of terminal nodes (MNTNs) in each tree. For classification purposes, we used 1000 trees

and let MNTN vary from 2 to 20 by steps of 2. Selection of features was performed with G-

mean as a recommended evaluation index in the case of imbalanced data set [32]. Random for-

ests used for feature selection comprised 3000 trees. The 10 combinations of 4 features or less

among all 11 features that obtained highest G-mean were selected, together with any other

combination with same G-mean values in case of ties. Notice that random forests do not per-

form pruning on trees [33] and that Gini index is used at each node to determine the best split

[34]. The number of variables randomly selected at each node is the default one; i.e., the square

root of the total number of variables (one or two candidates per node in the context of this

study since we used one to four features for classification).

Features selection was performed by testing all possible combinations of 1 to 4 features

(there are 561 such combinations) as follows. Each combination of features was considered

as the input of its own random forest consisting of 3000 trees. A random forest was trained

for each of these combinations of features on the whole dataset. As a measure of potential

quality of a given combination of features that was quick to compute (unlike an AUC

obtained from several bootstraps), the G-mean was computed based on the sensitivity and

specificity obtained on the whole dataset. The 10 combinations of 4 features or less among

all 11 features that obtained highest G-mean were selected, together with any other combi-

nation with same G-mean values in case of ties. Further assessment of the 10 (or more)

selected combinations of features was then performed based on AUCs estimated with the

0.638+ bootstrap method. See S1 Table for AUCs obtained with 0.638+ bootstrap method
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for each of the 11 features taken individually. For inflammation grade 0 vs. � 1, the AUC of

total attenuation was within the AUC’s 95% CI corresponding to the best tested combina-

tion of features. For inflammation grade A0-1 vs. A2- = 3, the AUC of parameter k was

Fig 1. Examples of histopathology-proven steatosis grades. From left to right with histopathology-proven steatosis grades: 1) 62-year-old

man with hepatitis B virus with steatosis grade 0; 2) 62-year-old man with NASH and hepatitis B virus with steatosis grade S1; 3) 38-year-old

man with NASH with steatosis grade S2; and 4) 69-year-old woman with NASH with steatosis grade S3. Displayed images: (A) Representative

B-mode acquired in the right liver lobe and corresponding QUS parametric maps (zoomed in on ROIs) illustrating (B) reciprocal of scatterer

clustering parameter (log scale), (C) coherent-to-diffuse signal ratio, and (D) diffuse-to-total signal power ratio. Yellow indicates higher values,

whilst dark blue values indicate lower values. In the table are reported the inflammation grade and the fibrosis stage, as well as the

corresponding point shear wave elasticity (pSWE), and local and total attenuation coefficient slopes (ACS).

https://doi.org/10.1371/journal.pone.0262291.g001

PLOS ONE QUS and machine learning for assessment chronic liver disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0262291 January 27, 2022 7 / 21

https://doi.org/10.1371/journal.pone.0262291.g001
https://doi.org/10.1371/journal.pone.0262291


within the corresponding AUC’s 95% CI. For fibrosis stage F0 vs. F1-4, F0-1 vs. F2-4, or F0-

3 vs. 4, the AUCs of parameter pSWE were within the corresponding 95% CIs correspond-

ing to the best combinations of features. For all other classification tasks, none of the best

performing individual features were within the corresponding AUC’s 95% CI of the best

tested combination of features. S2 Table presents ANOVA tests and post-hoc multiple com-

parisons when applicable for each of these features. AUCs obtained with 0.638+ bootstrap

method in the case where all features were taken as input of random forests are presented in

S3 Table. The resulting AUCs all fell off below the AUC’s 95% CI of the corresponding best

tested combinations of features.

ROC curves were obtained using stratified sampling, akin to varying the loss function used

at the learning phase according to the sensitivity aimed at [35]. This may explain the non-

monotonicity appearing in some of the reported ROC curves, as the dataset was imbalanced

for some of the dichotomous classification tasks. We did not apply post-processing algorithms

on the reported ROC curves.

Evaluation of classification performance

Classification performance was evaluated with the 0.632+ bootstrap method [36]. This

method, which is recommended when sample size is too small for allowing training-

Fig 2. Examples of point shear wave elastography (pSWE) measurements. pSWE measurements in 4 different patients: (A) steatosis grade S0, (B) steatosis grade S1, (C)

steatosis grade S2, and (D) steatosis grade S3. Green rectangles indicate regions of interest where measurements are performed.

https://doi.org/10.1371/journal.pone.0262291.g002
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validation-test set split, combines the leave-one-out bootstrap error and the training error with

adaptive weights, thus avoiding over-estimation of the generalization error by the former and

under-estimation by the latter. Receiver operating characteristic (ROC) curves were estimated

by considering stratified resampling of the dataset with proportion of one class varying from 0

to 1 by steps of 1/40. One thousand bootstraps were generated for each stratification propor-

tion, and for each bootstrap, classification errors were evaluated only on data not belonging to

the bootstrap. The area under receiver operating characteristic curves (AUC-ROC) were then

computed with the trapezoidal method for each previously selected combination of features

and each value of MNTN. Combination of features and corresponding MNTN with highest

AUC-ROC was selected as best model among tested ones for a given classification task. The

jackknife method [37] was used to generate a sample of ROC-AUCs, from which a 95% confi-

dence interval (CI) could be estimated based on percentiles. For each classification task, the

point with maximal Youden index on the ROC curve of its best model was computed, and cor-

responding sensitivity and specificity were reported. The flow chart of the full post-processing

pipeline is presented in Fig 3.

Blinding

Sonographers performing ultrasound examinations were blinded to histopathological results.

The hepatopathologist was blinded to ultrasound results.

Statistical analysis

To evaluate relationships between single features and liver steatosis, inflammation, and fibro-

sis, features were further analyzed with univariate ordinal logistic regressions. Steatosis grade,

inflammation grade, and fibrosis stage were considered in turn as response, and any of the fea-

tures appearing within the best combinations for the corresponding classification task was

considered as single predictor. Coefficients of these regressions were reported, together with

P-values, after Holm-Bonferroni correction.

To test for association between histopathological components (steatosis, inflammation, and

fibrosis), viewed as categorical variables, contingency tables for pairs of these variables were

computed, and Pearson’s chi-square tests were performed based on corresponding tables. P-

values were reported, after Holm-Bonferroni correction.

Statistical analyses were performed with software R (version 3.2.5, 2016; R Foundation for

Statistical Computing). For proportional odds logistic regressions (also called ordinal logistic

regressions), we have used the function “polr” of the package “MASS” [38, 39] usable with the

software R. The raw p-values were obtained with the function “pnorm” based on the statistics t
output by the function“polr”. The Holm-Bonferroni correction on p-values was then com-

puted according to the algorithm introduced in [40]. Machine learning and regression analyses

used the package “randomForest” (version 4.6–12, 2015) [41] and “MASS” (version 7.3–45,

2015) [42], respectively.

Results

Study database

Table 1 indicates the sample size of each group determined by histopathology: 29, 22, 15, and

16 patients for steatosis grades S0, S1, S2 and S3, respectively; 8, 39, 27, and 8 patients for

inflammation grades A0, A1, A2 and A3, respectively; and 12, 13, 18, 13, and 26 patients for

fibrosis stages F0, F1, F2, F3, and F4, respectively. Examples of representative histopathology

images are presented in Fig 4. Dataset is provided in S4 Table.
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Machine learning model and features selection

In Table 2, combination of QUS features and/or elasticity providing the highest AUC-ROC is

reported for each classification task. AUCs obtained with elasticity alone were improved by

combining QUS and elastography features, for each classification task, except for fibrosis

stage� 1 vs.� 2. Improvements were most substantial for steatosis grade (25%-50% in AUC)

and for classification of inflammation 0 vs.� 1 (34% in AUC). For the six other dichotomous

Fig 3. Flow chart of the post-processing pipeline. (A) Clinical examination, recruitment with signed informed consent, research data

acquisitions, biopsy and histology. (B) Calculation of the echo envelope of radiofrequency (RF) cineloops, manual delineation of a region-of-

interest (ROI) contours in one frame, and propagation of contours along all frames of the cineloop. (C) Calculation of quantitative ultrasound

(QUS) features. (D) Machine learning with random forests based on 11 features and gold standards: selection of 10 combinations of 4 features

or less with highest G-mean (features selection), calculation of AUC-ROC on these combinations (0.632+ bootstrap), and estimation of the

95% CI for the features combination with highest AUC-ROC.

https://doi.org/10.1371/journal.pone.0262291.g003
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tasks, improvement was less than 10% in AUC, despite the fact that for five of them, QUS fea-

tures were combined with shear-wave elasticity.

Classification tasks performance

Table 2 also provides AUC-ROC and its 95% confidence interval, for each classification task

obtained with shear wave elasticity only, or with best combination of QUS and elastography

features. For classification of steatosis grades S0 vs. S1-3, S0-1 vs. S2-3, S0-2 vs. S3, AUCs were

0.60, 0.63, 0.62, respectively, with elasticity alone, and were 0.90, 0.81, and 0.78, respectively,

with the best tested combination of features. For classification of inflammation grades A0 vs.

A1-3, A0-1 vs. A2-3, A0-2 vs. A3, AUCs were respectively 0.56, 0.62, and 0.64 with elasticity

Fig 4. Examples of histopathology slides. Hematoxylin and eosin-stained images (10x magnification) in 4 different patients corresponding to

those shown in Fig 1 above: (A) steatosis grade S0, (B) steatosis grade S1, (C) steatosis grade S2, and (D) steatosis grade S3. Representative vacuoles

of macrovesicular steatosis are indicated by arrows.

https://doi.org/10.1371/journal.pone.0262291.g004
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alone, and raised up to 0.75, 0.68, and 0.69, respectively, with the best selected combination of

features. For classification of liver fibrosis stages F0 vs. F1-4, F0-1 vs. F2-4, F0-2 vs. F3-4, F0-3

vs. F4, elasticity alone yielded AUCs of 0.66, 0.77, 0.72, and 0.74, respectively, whereas best

tested combinations of features gave AUCs of 0.72, 0.77, 0.77, and 0.75.

From Table 2, one observes that local ACS is the only common parameter in the best com-

binations of parameters for the three dichotomous classifications tasks of steatosis grade.

Moreover, the three dichotomous classification tasks of the inflammation grade have no com-

mon parameters. For the four dichotomous classification tasks of the fibrosis stage, point shear

wave elasticity is the only common parameter. However, except for the task F0 vs. F1-4, for

which the best combination of parameters was pSWE, μn mean and 1/(k + 1) mean, there were

three common parameters: pSWE, μn IQR and 1/(k + 1) IQR.

The importance values, viewed as mean decrease in accuracy, of each of the parameters

within the combinations of parameters appearing in Table 2 are reported in S5 Table, based on

the R package “randomForest”.

ROC curves for combination of elastography and QUS features with highest ROC-AUC for

classification of steatosis, inflammation, and fibrosis are shown in Fig 5.

For sake of comparison, we present in S5 Table in Supplemental Materials the ROC-ACUs

obtained with the support vector machine (SVM) model on the same combinations of parame-

ters that are appearing in Table 2. For this purpose, we used the R package “e1071” (version

1.7–9, 2021) [43]. The kernel for projection of data in higher dimensional space was the radial

basis function (RBF) of degree 3 with parameter “γ” equal to the reciprocal of the number of

parameters (default values in the package). The ROC curves were produced with class weights

of the form (p/N(0), (1-p)/N(1)), where N(0) and N(1) represent the number of elements in

the two groups of a given dichotomous classification task, letting p vary from 0 to 1. As the

cost C related to the soft margin of SVM has an impact on accuracy, powers of 2 (with expo-

nent varying from 0 to 10) were tested with the 0.632+ bootstrap method, and the best

obtained values are reported in S6 Table. In cases where the best AUC was obtained with

C = 210, we tested further powers of 2 until decrease in ACU. Finer tuning may have been

Table 2. Accuracy of shear wave elasticity alone and in combination with quantitative ultrasound (QUS) features for classification of steatosis, inflammation, and

fibrosis.

Pathological features Groups Size AUC-ROC AUC-ROC Parameters

pSWE only Multi-parameter

Steatosis S0 vs. S1-3 29/53 0.60 (0.59–0.61) 0.90 (0.89–0.91) k IQR + 1/(k + 1) IQR + Local ACS

S0-1 vs. S2-3 51/31 0.63 (0.62–0.66) 0.81 (0.80–0.83) k IQR + pSWE + Local ACS

S0-2 vs. S3 66/16 0.62 (0.60–0.64) 0.78 (0.77–0.79) k Mean + μn Mean + Local ACS

Inflammation A0 vs. A1-3 8/74 0.56 (0.54–0.60) 0.75 (0.73–0.76) Total ACS

A0-1 vs. A2-3 47/35 0.62 (0.61–0.64) 0.68 (0.67–0.71) k Mean

A0-2 vs. A3 74/8 0.64 (0.60–0.65) 0.69 (0.66–0.71) pSWE + 1/α IQR

Fibrosis F0 vs. F1-4 12/70 0.66 (0.64–0.69) 0.72 (0.69–0.74) pSWE + k Mean +1/(k + 1) Mean

F0-1 vs. F2-4 25/57 0.77 (0.76–0.78) 0.77 (0.76–0.80) pSWE + μn IQR + k IQR + 1/(k + 1) IQR

F0-2 vs. F3-4 43/39 0.72 (0.72–0.74) 0.77 (0.76–0.79) pSWE + μn IQR +1/(k + 1) IQR

F0-3 vs. F4 56/26 0.74 (0.73–0.75) 0.75 (0.74–0.77) pSWE + μn IQR +1/(k + 1) IQR + Total ACS

ACS = attenuation coefficient slope. AUC-ROC = area under the receiver operating characteristic curve. Numbers in parentheses are 95% confidence intervals. size = N/
M, where N = number of cases (out of 82 patients) such that pathological feature� x (= 0, 1, 2, or 3) and M = 82 –N; pSWE = point shear wave elasticity; μn = mean

intensity normalized by its maximal value; 1/α = reciprocal of the scatterer clustering parameter; k = coherent-to-diffuse signal ratio; 1/(k + 1) = diffuse-to-total signal

power ratio; IQR = inter-quartile range.

https://doi.org/10.1371/journal.pone.0262291.t002
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desirable for some classification tasks, notably for inflammation grade, but we did not pursue

this task. As the number of hyper-parameters to be tuned for SVM is larger than for RF, fur-

ther tuning of the SVM model might require a grid search on a validation set in the case of a

larger sample size.

Ordinal relation between steatosis, inflammation or fibrosis and QUS/pSWE fea-

tures. Ordinal logistic regressions revealed significant ordinal relations (adopting a confi-

dence level of 0.05) between steatosis grade and mean value (within the segmented ROI) of the

Fig 5. Receiver operating characteristic (ROC) curves. ROC curves obtained with elastography (dashed lines) and the combinations of

QUS and elasticity features (solid lines) with highest AUC-ROC for the classification of (A) steatosis grade S0 vs. S1-3, S0-1 vs. S2-3, S0-2

vs. S3, (B) inflammation grade A0 vs. A1-3, A0-1 vs. A2-3, A0-2 vs. A3, and (C) fibrosis stage F0 vs. F1-4, F0-1 vs. F2-4, F0-2 vs. F3-4, F0-

3 vs. F4. Sensitivity and specificity at optimal Youden index are displayed for each ROC curve.

https://doi.org/10.1371/journal.pone.0262291.g005
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normalized mean intensity μn (p = 0.0039), mean value and IQR of the coherent-to-diffuse sig-

nal ratio k (p = 0.0029 and 0.029, respectively), and the local ACS (p< 0.001). There was also a

significant relation between the fibrosis stage and shear wave elasticity (p = 0.0011). See

Table 3 for standard deviations of regression coefficients.

Categorical association between steatosis, inflammation, and fibrosis

There was an association between inflammation grade and fibrosis stage (p = 0.010) but not

between steatosis and inflammation grades (p = 0.57), nor between steatosis grade and fibrosis

stage (p = 0.97).

Discussion

This study revealed that a machine learning approach combining QUS features with elasticity

provides a higher accuracy than elasticity alone for the classification of steatosis, inflammation,

and fibrosis in patients with CLD. Ultrasound-based elastography techniques provide high

accuracy for staging liver fibrosis [44, 45]. However, performance is limited in the case of stea-

tosis and inflammation, which may coexist with fibrosis and confound liver stiffness [21, 46].

It has been reported that liver steatosis decreases liver stiffness in mixed steatohepatitis condi-

tion [6, 46, 47], and that inflammation, through a combination of hepatocellular ballooning,

aggregation of macrophages, and edema, increases liver stiffness [6, 48–51].

Steatosis grades were best classified by a combination of QUS parameters (including coher-

ent-to-diffuse signal ratio, local attenuation coefficient slope, mean intensity normalized by its

maximal value, and shear wave elasticity). Multi-parametric approaches provided good to

excellent classification accuracy: 0.90 for steatosis grades S0 vs. 1–3, 0.81 for grades S0-1 vs. S2-

3, and 0.78 for grades S0-2 vs. S3. Based on coefficients of proportional odds logistic regres-

sions, the local ACS tended to increase with steatosis grade, as expected to occur with an

increase in fat content, in agreement with Goshal et al. [12]. Related to the increase in local

ACS, a trend of decrease in normalized intensity (μn) was observed. On the other hand, the

backscatter coefficient, which is related to the intensity itself (μ), has been reported to be posi-

tively correlated with steatosis grade [52]. Moreover, as noted in Zhou et al. [22], an increase

in fat content (i.e., fat-infiltrated hepatocytes with nuclei pushed to the cell periphery) is

Table 3. Coefficients (with 95% confidence intervals in parentheses) of ordinal logistic regressions with the steatosis grade, or the inflammation grade, or the fibro-

sis stage as responses, and with features appearing in Table 1, as single predictors.

Pathological

features

pSWE μn Mean μn IQR 1/α IQR k Mean k IQR 1/(k + 1)

Mean

1/(k + 1) IQR Total ACS. Local ACS.

Steatosis -0.80

(-1.44, -0.23)

-0.033

(-0.052, -0.016)

— — 2.84

(1.46, 4.47)

1.65

(0.67, 2.83)

— -5.39

(-25.13, 12.90)

— 9.75

(6.31, 13.71)

p = 0.097 p = 0.0039 p = 0.0027 p = 0.029 p = 1.0 p< 0.001

Inflammation 0.82

(0.23, 1.43)

— — -11.12

(-24.54, 1.95)

-0.95

(-2.12, 0.20)

— — — -0.28

(-0.78, 0.20)

—

p = 0.083 p = 0.76 p = 0.75 p = 1.0

Fibrosis 1.50

(0.82, 2.29)

— -0.0009

(-0.0112, 0.0095)

— -1.08

(-2.24, 0.01)

-0.57

(-1.42, 0.25)

7.99

(0.59, 15.93)

9.90

(-6.78, 28.36)

-0.05

(-0.52, 0.40)

—

p = 0.0011 p = 0.86 p = 0.51 p = 1.0 p = 0.39 p = 1.0 p = 1.0

ACS = attenuation coefficient slope. AUC-ROC = area under the receiver operating characteristic curve. Numbers in parentheses are 95% confidence intervals. pSWE =
point shear wave elasticity; μn = mean intensity normalized by its maximal value; 1/α = reciprocal of the scatterer clustering parameter; k = coherent-to-diffuse signal

ratio; 1/(k + 1) = diffuse-to-total signal power ratio; IQR = inter-quartile range. Holm-Bonferroni correction was applied to p-values. A positive coefficient indicates an

increasing ordinal relation between the predictor and the response.

https://doi.org/10.1371/journal.pone.0262291.t003
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expected to yield an increase in the coherent component of the analytic ultrasound signal. The

observed trend was indeed an increase in the average coherent-to-diffuse signal ratio with stea-

tosis grade. There was also a corresponding trend for the IQR of this parameter. Features that

did not perform well as stand-alone features could nonetheless improve classification perfor-

mance when combined with other features, although this makes physical interpretation of

their contribution more difficult to analyze. Our proposed method compares favorably with

recent results reported by Moret et al. for two state-of-the-art techniques: hepatorenal index

ratio with AUCs of 0.90 for S0 vs. S1-3, 0.78 for S0-1 vs. S2-3, and 0.73 for S0-2 vs. S3 and con-

trolled attenuation parameter (CAP) with AUCs of 0.93 for S0 vs. S1-3, 0.76 for S0-1 vs. S2-3,

and 0.70 for S0-2 vs. S3 [53].

Inflammation grades were best classified by QUS and elastography features (including total

attenuation coefficient slope, coherent-to-diffuse signal ratio, point shear wave elasticity, and

reciprocal of the scatterer clustering parameter). Multi-parametric approaches provided AUCs

ranging from 0.68 to 0.75, significantly higher than elastography alone, which provided AUCs

ranging from 0.56 to 0.64. There was no significant ordinal relation between inflammation grade

and any features retained in the 3 binary inflammation classification tasks. However, pSWE was

somewhat related to inflammation grade with a P value of 0.083. This trend of increase in stiff-

ness with inflammation is consistent with reported results in an animal study [47].

Fibrosis staging with pSWE alone provided rather low performance for classification of

fibrosis stages F0 vs. F1-4 and moderate performance ranging from 0.72 to 0.77 for fibrosis

stages F0-1 vs. F2-4, F0-2 vs. F3-4, and F0-3 vs. 4. We believe that the coexistence of con-

founding factors in a heterogeneous disease population may explain the lower AUCs of

pSWE in detecting advanced fibrosis, whereas many prior studies on elastography focused

on populations with only one disease. Nonetheless, the combination with QUS parameters

(coherent-to-diffuse signal ratio, diffuse-to-total signal power ratio, mean intensity normal-

ized by its maximal value, and total attenuation) could further improve the classification

accuracy, leading to AUCs in the range of 0.72 to 0.77 for all dichotomization schemes.

Among features that were retained for the 4 binary fibrosis classification tasks, pSWE pre-

sented an ordinal relation with fibrosis stage. The observed trend of increase in stiffness

with fibrosis stage is consistent with the multivariate analysis reported in Kazemirad et al.

[47]. Recent works by Brattain et al, Durot et al., Kagadis et al., showed that fibrosis classifi-

cation accuracy could be further improved, with AUCs in the range of 0.93 to 0.99, by using

machine learning techniques such as automated image quality assessment and ROI selec-

tion [54], support vector machines [16] and deep learning techniques applied on shear wave

elastography data [19].

These results confirm that using machine learning to select the best combination of QUS

and elastography parameters may significantly improve classification of steatosis, inflam-

mation, and fibrosis in patients with CLD in comparison with elastography alone. Such a

comprehensive approach is critical to reduce or alleviate the need for liver biopsy because

these histological components coexist and may have confounding effects on liver stiffness.

Of note, our study found associations between inflammation grade and fibrosis stage.

Therefore, a multi-parametric approach was required to account for the stiffness-increasing

effect of inflammation and fibrosis.

Notice that for some of the classification tasks, distinct combinations of features yielded the

same AUC, up to two decimals: steatosis grade S0 vs. S1-3, with QUS features combined with

pSWE; steatosis grade S0-2 vs. S3, also with QUS features only; fibrosis stage F0-1 vs.� F2-4,

fibrosis stage F0-2 vs. F3-4 and fibrosis stage F0-3 vs. F4, also with QUS features combined

with pSWE. In particular, in all cases where the best combination of features comprised

pSWE, none of the tested combinations of QUS features only were as good.
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Limitations

The sample size was limited to 82 patients with various causes of CLD. However, this pilot

study constitutes a proof of concept indicating that incorporating QUS and elastography

increases the classification study, a line of work that should be investigated in larger studies

with a single etiology such as NAFLD. We did not assess iron overload, another histological

feature encountered in some causes of CLD. While there is currently no ultrasound-based

technique for assessment of iron overload, this remains a relatively uncommon clinical prob-

lem encountered in select populations with hemochromatosis and transfusional hemosiderosis

that can be detected by blood tests and quantitated by magnetic resonance imaging [55].

Another limitation was the lack of assessment of biliary disease. Similarly, biliary disease can

be suspected on the basis of cholestatic enzymes and assessed by magnetic resonance cholan-

giopancreatography when relevant. Ultrasound images were acquired with two clinical scan-

ner models which could have introduced variability. Finally, our dataset was imbalanced with

few positive cases for steatosis grades S0-2 vs. S3 (66 vs. 16) and inflammation grades A0-2 vs.

A3 (74 vs. 8), and with few negative cases for inflammation grades A0 vs. A1-3 (8 vs. 74) and

fibrosis stages F0 vs. F1-4 (12 vs. 70). However, we have used the G-mean as metric for features

selection, which is recommended in the case of imbalanced datasets. Moreover, in that context,

AUC under the Precision-Recall curve (PRC) has been suggested as alternative metric to

AUC-ROC [56]. We have verified that AUC-PRCs were higher for combinations of features

than with pSWE stand-alone, albeit further assessment in future studies would require larger

sample size. Further assessment would be required on a larger data set in a target population of

patients with NAFLD or NASH, in particular to assess more precisely the impact of each of the

proposed QUS features in the considered dichotomous tasks. Future work could include clini-

cal variables, such as body mass index, to take into account variability in patient’s health condi-

tions, at the classifier’s training step. Furthermore, other machine learning models than

random forests could be assessed on a larger database.

Conclusions

In conclusion, this ancillary study to a prospective imaging trial revealed that a machine learn-

ing model based on random forests could select combinations of QUS features and shear wave

elastography stiffness that improved the classification accuracy of three key histological fea-

tures of CLD (steatosis, inflammation, and fibrosis) over that of elastography alone. Future

research should validate this approach in human cohorts with NAFLD, a highly prevalent

cause of CLD.
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