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Québec, Canada; yDepartment of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec,
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Abstract—In ultrasound imaging, various statistical distributions have been proposed to model the first-order
statistics of the amplitude of the echo envelope. We present an overview of these distributions based on their
compound representation, which comprises three aspects: the modulated distribution (Rice or Nakagami); the
modulating distribution (gamma, inverse Gaussian or even generalized inverse Gaussian); and the modulated
parameters (the diffuse signal power with or without the coherent signal component or the coherent signal power).
This unifying point of view makes the comparison of the various models conceptually easier. In particular, we
discuss the implications of the modulated parameters on the mean intensity and the signal-to-noise ratio of the
intensity in the case of a vanishing diffuse signal. We conclude that the homodyned K-distribution is the only model
among the literature for which the parameters have a physical meaning that is consistent with the limiting case,
although the other distributions may fit real data. (E-mail: guy.cloutier@umontreal.ca) � 2010 World Federa-
tion for Ultrasound in Medicine & Biology.
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INTRODUCTION AND LITERATURE

Various models have been introduced in the literature for

the first-order statistics of the echo envelope of ultrasound

images. One aspect of a statistical distribution is its good

fitness with real data in a specific field of application.

However, in problems such as tissue characterization

(Shankar et al. 1993, 2001; Oelze and O’Brien 2007;

Tsui et al. 2008), the estimated parameters themselves

are used as classifying features. In such a framework,

we believe it is desirable to also pay attention to the

physical meaning of the distribution parameters. For

instance, a mixture of a sufficiently large number of

Gaussian distributions suffices to model the histogram

of the echo envelope, but the physical meaning of the

proportions, of the means and of the variances of such

mixtures is unclear because a Gaussian distribution is
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not (directly) meaningful for the first-order statistics of

the echo envelope.

In this review article, we present the various models

for the first-order statistics of the echo envelope found in

the literature, in a unified way based on their compound

representation. The point is to compare them in view of

a physical interpretation of their parameters. We do not

discuss the important aspect of estimation methods for

these distributions or their applications in problems such

as tissue classification, or segmentation of anatomical

parts. For that reason, we chose to include only the refer-

ences that introduced these models for the first time in the

scientific literature, and also specifically in ultrasound

imaging. Thus, we have omitted numerous papers that

studied or used these models, except for the few recent

papers on tissue characterization mentioned before.

When the product of the wave number with the mean

size of the scatterers is much smaller than the wavelength,

and acoustic impedance of the scatterers is close to the

impedance of the embedding medium, a high density of

scatterers results in a packing organization that implies

a correlation between the individual signals produced by

the scatterers (Hayley et al. 1967; Twersky 1975, 1978,
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1987, 1988; Lucas and Twersky 1987; Berger et al. 1991).

Apart from that case, the backscattered echo signal

received at the transducer of an ultrasound device is

viewed as the vector sum of the individual signals

produced by the scatterers distributed in the medium

(Wagner et al. 1983, 1987). In this paper, the framework

leading to the physical interpretation of the parameters of

the statistical distributions assumes that the individual

contributions of the scatterers are independent. A high

density of dependent scatterers might be characterized

with the proposed models, but the physical interpretation

of the parameters should be done with caution in that case.

If there exists a periodicity pattern in the position of the

scatterers (Wagner et al. 1983, 1987), or if there exists strong

specular reflections, then a coherent (or deterministic)

component appears in the received signal, because of

a long-range organization (relative to the wavelength).

The power of the coherent component is called the

coherent signal power. The remaining power (from the

total signal power) is called the diffuse signal power and

corresponds to the diffuse (or random) component, made

of a diffuse collection of scatterers.

In ultrasound imaging, the Rayleigh distribution

corresponds to the distribution of the gray level (also

called amplitude) in an unfiltered B-mode image, viewed

as the envelope of the radiofrequency (RF) image, in the

case of a high density of random scatterers with no

coherent signal component (Wagner et al. 1983). The

Rayleigh distribution was first introduced in 1880 in the

context of sound propagation. The Rice distribution also

corresponds to a high density of random scatterers (the

diffuse signal component), but combined with the pres-

ence of a coherent signal component of power 32

(Insana et al. 1986). Thus, the Rayleigh distribution is

the special case of the Rice distribution, where 3 5 0.

The Rice distribution itself first appeared in the context

of wave propagation (Nakagami 1940; Rice 1945).

The K-distribution corresponds to a variable (effec-

tive) density a of random scatterers, with no coherent

signal component and was introduced in ultrasound

imaging by Shankar et al. (1993). The parameter a can

be viewed as the number of scatterers per resolution cell

(hence, the word ‘‘density’’) multiplied by a coefficient de-

pending on the scanning geometry and parameters, and the

backscatter coefficient statistics (hence, the word ‘‘effec-

tive’’) (Jakeman and Pusey 1976; Shankar et al. 1993).

The parameter a is also called the scatterer clustering
parameter (Dutt and Greenleaf 1994). The distribution it-

self appeared first in Lord (1954) in the context of random

walks, and was further studied by Jakeman and Pusey

(1976) in the context of sea echo. Finally, the homodyned

K-distribution corresponds to the general case of a variable

effective density of random scatterers with or without

a coherent signal component (Dutt and Greenleaf 1994).
The homodyned K-distribution was first introduced and

studied (Jakeman 1980; Jakeman and Tough 1987) in the

context of random walks viewed as a model of weak

scattering. Thus, the K-distribution is a special case of

the homodyned K-distribution, and the Rayleigh and the

Rice distributions are limiting cases of the two former

distributions (namely, the effective density a of random

scatterers is ‘‘infinite’’).

One important result (Jakeman and Tough 1987) is

that the homodyned K-distribution admits a compound

representation. Namely, the distribution can be viewed

as the marginal distribution of a model in which the

Rice distribution has its diffuse signal power 2s2 modu-

lated by a gamma distribution with mean and variance

a (i.e., the effective density of random scatterers).

Namely, the model gives the joint probability of the ampli-

tude A and the modulating variable w (distributed accord-

ing to a gamma distribution), and the marginal distribution

of the variable A is obtained by integrating the joint prob-

ability over the domain of w. In the same manner, the

K-distribution is the marginal distribution of a model in

which the Rayleigh distribution has its diffuse signal

power 2s2 that is modulated by a gamma distribution.

See eqn (11) and eqn (16).

Another modeling possibility introduced in Barakat

(1986) and further developed in Jakeman and Tough

(1987) is equivalent to modulate both the coherent signal

component 3 and the diffuse signal power 2s2 of the Rice

distribution by a gamma distribution. This gives rise to the

generalized K-distribution. See eqn (18). Note that this

distribution has not been used in ultrasound imaging as

of now. However, in Eltoft (2005), the Rician inverse

Gaussian distribution (RiIG) is introduced, and we

observe, using Eltoft (2005), that it corresponds to a model

in which both the coherent signal component 3 and the

diffuse signal power 2s2 of a Rice distribution are modu-

lated by an inverse Gaussian (IG) distribution, instead of

a gamma distribution. See eqn (20).

The homodyned K-distribution, the generalized

K-distribution and the RiIG are distributions with three

parameters: two parameters for the modulated Rice distri-

bution and one parameter for the modulating (gamma or

IG) distribution. A simpler model consists in modeling

the gray level of the speckle pattern in a B-mode image

by a Nakagami distribution (Shankar 2000). The Nakagami

distribution is a two-parameter distribution first introduced

in Nakagami (1943, 1960) in the context of wave

propagation. It can be viewed as an approximation of the

homodyned K-distribution, at least in the special cases of

the Rice distribution and the K-distribution (see Theorems

6 and 7). That what essentially the point of view of

Nakagami et al. (1953) and Nakagami (1960) in the context

of random walks and wave propagation, although the ho-

modyned K-distribution was not yet introduced.



Table 2. Compound representation of probability density
distributions modeling the ultrasound echo envelope

Distribution
Modulated
distribution

Modulating
distribution

Modulated
parameters

Homodyned K-distribution Rice Gamma s2

Generalized K-distribution Rice Gamma 3, s2

RiIG distribution Rice IG 3, s2

NG distribution Nakagami Gamma 32, s2

NGIG distribution Nakagami GIG 32, s2
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Three other distributions were introduced in the

context of ultrasound imaging. The first one is called the

generalized Nakagami distribution (Shankar 2001) and

is obtained from the Nakagami distribution by a change

of variable of the form y 5 A1/s, where s is a shape adjust-

ment parameter and A is the amplitude of the signal. This

distribution was also proposed independently in Raju and

Srinivasan (2002) (in the equivalent form of a generalized

gamma distribution). The second other distribution is

called the Nakagami-gamma (NG) distribution (Shankar

2003). That distribution can be viewed as the marginal

distribution of a model in which the Rice distribution is

approximated by a Nakagami distribution, and in which

its total signal power U (that would correspond to the total

signal power 32 1 2s2 of the Rice distribution) is modu-

lated by a gamma distribution. See eqn (27). Equivalently,

the corresponding Rice distribution would have both its

coherent signal power 32 and its diffuse signal power

2s2 modulated by the gamma distribution. Note that

Shankar (2001) appeared before Shankar (2003), and we

gather that the latter model supersedes the former. The

third distribution is called the Nakagami-generalized

inverse Gaussian (NGIG) distribution (Agrawal and

Karmeshu 2006), and it corresponds to a model in which

the (approximating) Nakagami distribution has its total

signal power U modulated by a generalized inverse

Gaussian (GIG) distribution instead of a gamma distribu-

tion. See eqn (31). The notation of concepts that will

appear frequently in this paper are presented in Table 1.

In Table 2, the various compound representations pre-

sented in this paper are summarized.

So far, the distributions mentioned before concern

the envelope of the RF signal. When a log-compression

or other (nonlinear or linear) operators are applied to the

envelope, the distribution of the gray levels no longer

follows the distributions computed on the RF echo enve-

lope. In the case of log-compression, the resulting distri-

bution has been modeled in Dutt and Greenleaf (1996),

assuming the K-distribution for the envelope. In Prager
Table 1. Notation of important notions with a clear
physical interpretation

Notion Notation

Amplitude A
Intensity I 5 A2

Coherent signal component of the Rice distribution 3
Coherent signal power of the Rice distribution 32

Diffuse signal power of the Rice distribution 2s2

Total signal power of the Rice distribution 32 1 2s2

Scatterer clustering parameter (effective density of
random scatterers) of the homodyned K-distribution

a

Total signal power of the Nakagami distribution U
SNR of the intensity of the Nakagami distribution

ffiffiffiffi
m
p

Structure parameter (ratio of the coherent signal power
with the diffuse signal power)

k

SNR 5 signal-to-noise.
et al. (2003), a decompression algorithm is proposed,

assuming the homodyned K-distribution for the envelope.

As mentioned before, operators other than log-

compression can be applied on the envelope. In Nillesen

et al. (2008), a linear filter was applied to the RF data

before computing the envelope. Five distributions were

tested to fit the data: the Rayleigh distribution, the

K-distribution, the Nakagami distribution, the inverse

Gaussian distribution and the gamma distribution. The

authors showed, based on empirical tests, that, overall,

the gamma distribution best fit the data. In this paper,

we are concerned with the statistical distributions of the

amplitude of the unfiltered envelope of the RF image,

and therefore we will not discuss further distributions on

the filtered B-mode image. Note that one should not

confuse the gamma distribution on the amplitude of the

(filtered) B-mode image, with the gamma distribution on

the intensity (i.e., the square of the amplitude) of the

(unfiltered) B-mode image, which is equivalent to the

Nakagami distribution on the amplitude of the (unfiltered)

B-mode image (Shankar 2000). Incidentally, in the

context of this paper, we view the mean intensity (accord-

ing to its statistical distribution) as the signal power (i.e.,
the signal intensity averaged over space).

The remaining part of this paper is organized as

follows. We first present the Rayleigh, the Rice, the K

and the homodyned K-distributions. Then, we present

the generalized K and the RiIG distributions. Afterward,

we present the Nakagami, the Nakagami-gamma and the

NGIG distributions. Then, we discuss the differences

and common points of those distributions. Finally, we

conclude with some open problems. Because the proofs

of Theorems 1–4 are rather delicate, we present them in

an appendix, as well as sketches of proofs of three other

theorems. We refer the reader to Abramowitz and

Stegun (1972) for the notions of Bessel functions and

confluent hypergeometric series.
THE HOMODYNED K-DISTRIBUTION AND
CLOSELY RELATED DISTRIBUTIONS

We present the homodyned K-distribution and

its related distributions (Rayleigh, Rice and K-distributions)
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in the context of n-dimensional random walks, viewed as

a model of weak scattering by randomly distributed inde-

pendent particles; see, for instance, Twersky (1987) for

a model that considers the packing organization of depen-

dent particles. Recall that in an n-dimensional random

walk, an object moves in the Euclidean space of dimen-

sion n by discrete independent random steps according

to a specific probability distribution. The accumulation

of the random scatterings can be modeled by a random

walk of component phasors (Burckhardt 1978; Wagner

et al. 1983). Under that point of view, the intensity

of the received signal from scatterers corresponds to

the square of the amplitude of the random walk

(the amplitude of a random walk is the distance of the

moving object to the origin of the n-dimensional

Euclidean space). In ultrasound 2-D imaging, the

dimension of the corresponding random walk is n 5 2,

and the amplitude corresponds to the gray level of the

B-mode image (envelope of the RF signal) without

applying log-compression or various filters. Here, the

mean intensity according to the intensity distribution is

viewed as the signal power, i.e., the signal intensity aver-

aged over space.
Rayleigh distribution
The n-dimensional Rayleigh distribution (Jakeman

and Tough 1987) is defined by

PRa

�
A
��s2
�
5

2

Gðn=2Þ

�
1

2s2

�n=2

An21exp

�
2

A2

2s2

�
; (1)

where A represents the amplitude of the signal, s . 0, and

G denotes the Euler gamma function. In Jakeman and

Tough (1987), the distribution is expressed in terms of

the variable a25ns2 (see Theorem 1 for the meaning of

that variable). The case n 5 2 corresponds to Rayleigh

(1880). Equivalently, the intensity I, i.e., the square of

the amplitude A, is distributed according to an exponential

distribution.

Consider an n-dimensional random walk

A5
1ffiffiffiffi
N
p

XN

j51

aj; (2)

where N is the number of steps. Here, the random vectors

aj are independent, and each one is characterized by inde-

pendent phase and amplitude, together with a uniformly

distributed phase.

Theorem 1. (Central Limit) Let N tend to infinity in the
random walk of eqn (2). Then the distribution of the
amplitude of the resulting random walk is a Rayleigh
distribution with parameter
s25a2=n; (3)

where a2 is the mean intensity of the random step aj

(before scaling by the factor 1=
ffiffiffiffi
N
p

).

Note that a25ns2 corresponds to the mean intensity

of one scatterer, where n 5 2 is the dimension of the

random walk. After normalization of the contribution of

N independent scatterers by the factor 1=
ffiffiffiffi
N
p

, one also

obtains a2 as the mean intensity (in fact, before or after

taking the limit as N/N). In other words, the idea behind

the normalization factor of 1=
ffiffiffiffi
N
p

(instead of 1/N) is to

average out the intensity of the scatterers (rather than their

amplitude), to preserve the mean intensity. In the case of

the Rayleigh distribution, the mean intensity (i.e., 2s2)

can be interpreted as the diffuse signal power, because

there is no coherent component in the signal.
The Rice distribution
The n-dimensional Rice distribution (Jakeman and

Tough 1987) is expressed as

PRi

�
A
��3; s2

�
5
� 3

s2

	
3

�
A

3

�n=2

In=221

� 3

s2
A
	

exp

�
2

�
321A2

�
2s2

�
; (4)

where s . 0 and 3 $ 0 are real numbers, n is the dimen-

sion and Ip denotes the modified Bessel function of the

first kind of order p (the intensity I should not be confused

with the Bessel function Ip). See Jakeman and Tough

(1987, eqn (2.16)). The special case where 3 / 0 yields

the Rayleigh distribution. The case n 5 2 corresponds to

Nakagami (1940) and Rice (1945). In Nakagami (1960,

eqn (5)), the Rice distribution is called the ’’n-distribu-

tion’’ (Nakagami 1940).

Consider an n-dimensional random walk, obtained

by adding a constant vector 3! to the random walk A of

eqn (2) (after scaling by the factor 1=
ffiffiffiffi
N
p

)

A5 3!1
1ffiffiffiffi
N
p

XN

j51

aj: (5)

Theorem 2. (Central Limit) Let N tend to infinity in the
random walk of eqn (5). Then, the distribution of the
amplitude of the resulting random walk is a Rice distribu-
tion with parameters

35jj 3!jj; s25a2=n; (6)

where a2, as mentioned above, is the mean intensity of the
random step aj (before scaling by the factor 1=

ffiffiffiffi
N
p

).
For later reference, the mean intensity E[I] of

the Rice distribution and its signal-to-noise ratio (SNR)
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(i.e., E½I�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½I2�2E½I�2

q
) are as follows in the case n 5 2

E½I�5 3212s2;

SNR2 5
ð3212s2Þ2

4s2ð321s2Þ:
(7)

The mean intensity and the SNR characterize completely

the first-order statistics of the echo envelope in the case of

a sufficiently large density of random independent scat-

terers (Insana et al. 1986). For the Rice distribution, the

coherent signal component is 3, the coherent signal power

is 32 and the diffuse signal power is 2s2. The ratio of the

coherent signal power with the diffuse signal power is

called the structure parameter k (Dutt and Greenleaf

1994) and is thus equal to 32/(2s2) for the Rice distribution

(it is equal to 0 for the Rayleigh distribution).

The K-distribution
The K-distribution (Lord 1954; Jakeman and Pusey

1976) is defined by

PKðAjs2;aÞ5
4Aa211n=2

ð2s2Þða1n=2Þ=2
GðaÞGðn=2Þ

Ka2n=2

 ffiffiffiffiffi
2

s2

r
A

!
; ð8Þ

where a . 0, s2 . 0 and Kp denotes the modified Bessel

function of the second kind of order p. In Jakeman and

Tough (1987, eqn (2.11)), the distribution is expressed

in terms of the parameters a and b5

ffiffiffiffi
2

s2

q
. In view of the

compound representation presented later, we find the

proposed parametrization more convenient.

Consider an n-dimensional random walk, with inde-

pendent phase and amplitude, and a uniformly distributed

phase, in which the number of steps is variable. Namely,

assume that the number of steps N follows a negative bino-

mial distribution NegBinðNja; pÞ5ðN1a21Þ!
N!ða21Þ! pað12pÞN of

mean N, so that p51=ð11N=aÞ. Let the random step be

scaled by the factor 1=
ffiffiffiffi
N
p

; then we obtain the random

process

N � NegBinða; 1=ð11N=aÞÞ

AjN � 1ffiffiffi
N

p PN
j51 aj:

(9)

Theorem 3. (a) (Jakeman 1980) Let N tend to infinity
in the random process of eqn (9). Then, the distribution
of the amplitude of the resulting random process is
a K-distribution with parameters

s25a2=ðnaÞ; a; (10)
where a2 is the mean intensity of the random step aj

(before scaling by the factor 1=
ffiffiffiffi
N
p

). (b) (Jakeman
and Tough 1987) The compound representation of the
K-distribution is

eN

0
PRa

�
A
��s2w

�
Gðwja; 1Þ dw; (11)

where PRa denotes the Rayleigh distribution, and
Gðwja; 1Þ is the gamma distribution wa–1 exp(– w)/G(a)
of mean and variance equal to a.

Here, a25ns2a corresponds to the diffuse signal

power of one scatterer. After normalization of the contri-

bution of N independent scatterers by the factor 1=
ffiffiffiffi
N
p

,

one obtains the diffuse signal power ðN=NÞ a2. Because

N is distributed according to a negative binomial distribu-

tion of mean N, the diffuse signal power is a2 (before or

after taking the limit as N / N). Note that the diffuse

signal power is ns2 for the Rayleigh distribution, whereas

this expression is multiplied by a for the K-distribution.

The compound representation is useful to simulate

the K-distribution, and in the evaluation of its value.

The special case where a / N yields the Rayleigh distri-

bution, with parameter a2=n5lima/Ns2a (Jakeman and

Tough 1987, eqn (2.12)).

The mean intensity of the K-distribution and its SNR

in the case n 5 2 are as follows

E½I�5 2s2a;

SNR2 5
1

112=a
:

(12)

The homodyned K-distribution
The homodyned K-distribution (Jakeman 1980;

Jakeman and Tough 1987) is defined by

PHKðAj3; s2;aÞ 5

An=2

3n=221
euJn=221ðu3ÞJn=221ðuAÞ

�
11

u2 s2

2

�2a

du ð13Þ

where s2 . 0, a . 0, 3 $ 0 and Jp denotes the Bessel func-

tion of the first kind of order p. In Jakeman and Tough (1987,

eqn (4.13)), the homodyned K-distribution is expressed in

terms of the parameters a, a25ns2a and a0 5 3.

Consider an n-dimensional random walk as in eqn

(9), to which is added (after scaling by the factor
ffiffiffiffi
N
p

)

a randomly phased vector 3! with constant amplitude 3.

So, we have the random process

N � NegBinða; 1=ð11N=aÞÞ

AjN � 3!1 1ffiffiffi
N

p PN

j51

aj:
(14)
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Theorem 4. (a) (Jakeman 1980) If N tends to infinity, the
distribution of the amplitude of the random process of eqn
(14) is a homodyned K-distribution with parameters

3; s2 5 a2=ðn aÞ; a; (15)

where a2 is the mean intensity of the random step aj

(before scaling by the factor 1=
ffiffiffiffi
N
p

). (b) (Jakeman and
Tough 1987) The compound representation of the homo-
dyned K-distribution is

eN

0
PRi

�
A
��3; s2w

�
Gðwja; 1Þd w; (16)

where PRi denotes the Rice distribution and Gðwja; 1Þ
is the gamma distribution, with mean and variance
equal to a.

The compound representation is consistent with eqn

(11), upon taking 3 / 0. The special case where a / N
is the Rice distribution (with parameters 3 and

a2=n5lima/Ns2a); the case 3 / 0 is the K-distribution

(with parameters s2, a); the case where a / N and 3 / 0

is the Rayleigh distribution (with parameter

a2=n5lima/Ns2a). Figure 1 illustrates four representa-

tive examples of the compound representation of the ho-

modyned K-distribution (including two examples of the

K-distribution, as a special case).

Two functions of the three parameters of the homo-

dyned K-distribution are invariant under scaling of the

intensity (Dutt and Greenleaf 1994): (i) the scatterer clus-

tering parameter a; and (ii) the structure parameter k 5 32/

(ns2a), i.e., the ratio of the coherent signal power 32, with

the diffuse signal power a25ns2a. Again, note that the

diffuse signal power is ns2 for the Rice distribution,

whereas this expression is multiplied by a for the homo-

dyned K-distribution.

Using the general formula for the moments of integer

order of the intensity (Jakeman and Tough 1987, eqn

(4.17)), we obtain (for n 5 2) the mean intensity and

the SNR of Tables 3 and 4, respectively. Note that we

have not included in these two tables the Rayleigh or

the K-distribution, because they are special cases of the

Rice and the homodyned K-distribution, respectively.

OTHER GENERALIZATIONS OF THE
K-DISTRIBUTION

We mention here two generalizations of the

K-distribution other than the homodyned K-distribution.

The generalized K-distribution
The n-dimensional generalized K-distribution

(Barakat 1986; Jakeman and Tough 1987) is defined by
PKGðAj3; s2;aÞ 5
2

s23n=221ð3212s2Þða2n=2Þ=2
GðaÞ

3 AaIn=221

�
3

s2
A

�
Ka2n=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3212s2
p

s2
A

�
;

(17)

where s2 . 0, a . 0, 3 $ 0 and Ip and Kp denote the modi-

fied Bessel functions of the first and second kind of order

p, respectively. In Jakeman and Tough (1987, eqn (3.12)),

the distribution is expressed in terms of the parameters a,

d 5 3a, a25ns2a and b5
ffiffiffiffiffiffiffiffiffiffiffi
3212s2
p

s2 .

From Jakeman and Tough (1987, eqns (4.10 to

4.12)), the compound representation of the generalized

K-distribution is

eN

0
PRi

�
A
��3w; s2w

�
Gðwja; 1Þd w; (18)

where PRi denotes the Rice distribution andGðwja; 1Þ is the

gamma distribution, with mean and variance equal to a.

This representation is consistent with eqn (11), upon taking

3 / 0. Thus, as opposed to the homodyned K-distribution,

both the coherent signal component 3 and the diffuse signal

power 2s2 of the Rice distribution are modulated by

a gamma distribution in its compound representation. In

Jakeman and Tough (1987), an interpretation of the gener-

alized K-distribution in terms of a random walk is presented.

The mean intensity of the generalized K-distribution

and its SNR in the case n 5 2 are indicated in Tables 3 and

4, respectively.

The Rician inverse Gaussian distribution
The RiIG distribution (Eltoft 2005) is expressed as

RiIGðAj3; s2; lÞ5

e
ffiffi
l
p ffiffiffiffi

2l
p

q ð321s2Þ3=4

s2

A�
A21ls2

�3=4

3 I0

�
3

s2
A

�
K3=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð321s2

��
A21ls2

�q
s2

�
;

(19)

where s2 . 0, l . 0, 3 $ 0 and Ip and Kp denote the Bessel

functions of the first and second kind of order p, respec-

tively. In Eltoft (2005, eqn (41)), the distribution is

expressed in terms of the parameters a5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
321s2
p

=s2,

b 5 3/s2, d5
ffiffiffi
l
p

s and g 5 1/s.

From Eltoft (2005, eqns (42) and (43)), the

compound representation of the RiIG distribution is

eN

0
PRi

�
A
��3w; s2w

�
IG
�

wj ffiffiffilp ; l
	

d w; (20)

where PRi denotes the Rice distribution, and IG(wjm, l) is

the two-parameter distribution
ffiffiffiffiffiffiffi

l
2pw3

q
expð2lðw2mÞ2

2m2w
Þ, the

IG distribution, with mean m and shape parameter l. For



Fig. 1. Four examples of the compound representation eN
0 PRiðAj 3!; s2wÞGðwja; 1Þ dw of the homodyned K-distribution.

From left to right: the modulated distribution; the modulating distribution; the resulting compound distribution. First row:
3 5 0, s2 5 1, a 5 0.5. Second row: 3 5 0, s2 5 1, a 5 10. Third row: 3 5 6, s2 5 1, a 5 0.5. Fourth row: 3 5 6, s2 5 1,
a 5 10. The random variable (A or w) is indicated in abscissa, and the value of the probability density function (pdf) is

indicated in ordinate.
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the RiIG distribution, one takes m5
ffiffiffi
l
p

; because the vari-

ance of the IG distribution is in general equal to m3/l, the

mean and the variance of IGðwj
ffiffiffi
l
p

; lÞ are both equal toffiffiffi
l
p

. So,
ffiffiffi
l
p

in IGðwj
ffiffiffi
l
p

; lÞ plays the same role as a in
Gðwja; 1Þ (a gamma distribution with mean and variance

equal to a). The equivalence of eqn (19) and eqn (20)

with Eltoft (2005, eqn (41)), can be easily checked with

the software Mathematica (Wolfram Research, Inc.,



Table 3. Mean intensity (average of the intensity in the
B-mode image) in the general case (middle column) and

in the limiting case of no diffuse signal power (right
column). The former can be interpreted as the total signal

power, whereas the latter can be interpreted as the
coherent signal power

Mean intensity

Distribution Mean intensity
if no diffuse
signal power

Rice distribution 32 1 2s2 32

Homodyned
K-distribution

32 1 2s2a 32

Generalized
K-distribution

32a(1 1 a) 1 2s2a 32a(1 1 a)

RiIG distribution 32
ffiffiffi
l
p
ð11

ffiffiffi
l
p
Þ12s2

ffiffiffi
l
p

32
ffiffiffi
l
p
ð11

ffiffiffi
l
p
Þ

NG distribution Ua 32a

NGIG distribution
U
ffiffiffi
l
p

Kq11ð
ffiffiffi
l
p
Þ

Kqð
ffiffiffi
l
p
Þ

32
ffiffiffi
l
p

Kq11ð
ffiffiffi
l
p
Þ

Kqð
ffiffiffi
l
p
Þ
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Champaign, IL, USA). The point of our notation is the

similarity between the compound representation of eqn

(20) with the corresponding compound representations

of the homodyned and the generalized K-distributions

(c.f. eqns (16) and (18)). So, as is the case for the general-

ized K-distribution, both the coherent signal component 3

and the diffuse signal power 2s2 are modulated by the

variable u, but that variable is distributed according to

an IG distribution rather than the gamma distribution. In

Eltoft (2005), an interpretation of the RiIG distribution

in terms of a Brownian motion is presented.

The mean intensity of the RiIG distribution and its

SNR are indicated in Tables 3 and 4, respectively. In

view of the computation of the mean intensity for the

generalized K-distribution and the RiIG distribution (c.f.

Table 3), one may wish to compare the two distributions

Gða; 1Þ and IGð
ffiffiffi
l
p

; lÞ with
ffiffiffi
l
p

5a. We have the
Table 4. Square of the SNR (ratio of the average intensity with its s
the limiting case of no diffuse si

Distribution SNR2

Rice distribution
ð3212s2Þ2

4s2ð321s2Þ

Homodyned K-distribution
ð3212s2aÞ2

4s2að321s2ð21aÞÞ

Generalized K-distribution
að32ð11aÞ12s

234ð11aÞð312aÞ1432ð11aÞð4

RiIG distribution

ffiffiffi
l
p
ð32ð11

ffiffiffi
l
p
Þ1

34ð15114
ffiffiffi
l
p

14lÞ1432ð615
ffi
l
p

NG distribution
ma

ð11mÞð11aÞ2ma

NGIG distribution
mKq11ð

ffiffiffi
l
p
Þ2

ðm11ÞKq12ð
ffiffiffi
l
p
ÞKqð

ffiffiffi
l
p
Þ2mKq1
following approximation result for sufficiently high

values of a (say, a $ 6).

Theorem 5. Let
ffiffiffi
l
p

5a. Then, for any a $ 6

DKL

�
Gða; 1Þ; IG

� ffiffiffi
l
p

; l
		

#0:03; (21)

where DKL denotes the Kullback-Leibler divergence
(Kullback and Leibler 1951) between two distributions.
In fact, the function defined by eqn (21) is a decreasing
function on the domain (1, N) of a.

That result implies that for sufficiently high value of

a5
ffiffiffi
l
p

, the generalized K-distribution and the RiIG

distribution coincide, for all practical purposes. The result

can be improved slightly upon minimizing

DKLðGða; 1Þ; IGð
ffiffiffi
l
p

; lÞÞ as a function of l for each value

of a. However, for small values of a, the resulting

Kullback-Leibler divergence is still large. Thus, the two

models differ significantly for small values of a (say,

0 , a , 6).

FAMILY OF NAKAGAMI DISTRIBUTIONS

The Nakagami distribution
The Nakagami distribution (Nakagami 1943, 1960)

is defined by

NðAjm;UÞ5 2mm

GðmÞUm A2m21e2mA2=U; (22)

for A $ 0, where G is the Euler gamma function. The real

numbers m . 0 and U . 0 are called the shape parameter

and the scaling parameter, respectively. Equivalently, the

intensity I 5 A2 follows a gamma distribution.

We have the following expressions for the mean

intensity of the Nakagami distribution and its SNR:
tandard deviation) in the general case (middle column) and in
gnal power (right column)

SNR2

if no diffuse signal power

N (if 3 . 0)

N (if 3 . 0)

2Þ2

1aÞs214ð21aÞs4

að32ð11aÞÞ2

234ð11aÞð312aÞ
2s2Þ2ffiffi
1lÞs214ð21

ffiffiffi
l
p
Þs4

ffiffiffi
l
p
ð32ð11

ffiffiffi
l
p
ÞÞ2

34ð15114
ffiffiffi
l
p

14lÞ

a

1ð
ffiffiffi
l
p
Þ2

Kq11ð
ffiffiffi
l
p
Þ2

Kq12ð
ffiffiffi
l
p
ÞKqð

ffiffiffi
l
p
Þ2Kq11ð

ffiffiffi
l
p
Þ2
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E½I� 5 U;
SNR2 5 m:

(23)

The Nakagami distribution and the Rice distribution
(case m . 1)

The following approximation result is crucial in

understanding the Nakagami-gamma and the Nakagami-

generalized inverse Gaussian distributions presented

below.

Theorem 6. Let m 5
ð3212s2Þ2

4s2ð321s2Þ and U 5 32 1 2s2.
Then,

DKL

�
PRi

�
3; s2

�
;Nðm;UÞ

�
# 0:02: (24)

The choice of m and U is consistent with eqn (7) and

eqn (23), as well as Nakagami (1960, eqn (55)). When 3 5

0, the approximation is actually exact (m 5 1 corresponds

to the Rayleigh distribution). This observation can be

found in Nakagami (1960, eqns (50) and (51)).
The Nakagami distribution and the K-distribution (case
m , 1)

We have the following approximation result.

Theorem 7. Let m5
a

ða11Þ and U 5 2s2a. Then,

DKL

�
PK

�
s2;a

�
;Nðm;UÞ

�
# 0:0325: (25)

The Nakagami distribution is not included in Tables

3 and 4, because one would need the analogue of

Theorems 6 and 7 for the homodyned K-distribution.

Thus, we have presented in Tables 3 and 4 only the five

distributions that cover the full generality of the

configurations of the scatterers (namely, the distributions

of Table 2), as well as the limiting case of the Rice distri-

bution.

We now mention two distributions that have been

proposed as alternatives to the family of K-distributions.
Nakagami-gamma distribution
The Nakagami-gamma (NG) distribution (Shankar

2003) is defined by

NGðAjm;U;aÞ5

4m
a1m

2

GðaÞGðmÞUa1m
2

Aa1m21Ka2m

�
2A

ffiffiffiffi
m

U

r �
;

(26)

where m, U and a are positive numbers, and Kp denotes

the modified Bessel function of the second kind of order

p (we have corrected a typo in Shankar 2003, eqn (8)).

Its compound representation (equivalent to the one

given in Shankar 2003) is expressed as
eN

0
NðAjm;UwÞGðwja; 1Þd w; (27)

where N denotes the Nakagami distribution and Gðwja; 1Þ
is the gamma distribution with mean and variance a. Now,

because the total signal power U of the Nakagami

distribution is equal to 32 1 2s2, where 3 and s2 are the

parameters of the corresponding Rice distribution (c.f.

eqn (24)), we conclude that the coherent signal power 32

and the diffuse signal power 2s2 are modulated by the

variable w. This is consistent with the approximation in

eqn (24). Namely, we have

eN

0
PRiðAj3

ffiffiffiffi
w
p

; s2wÞGðwja; 1Þd w

zeN

0
N

 
Aj ð3

2w12s2wÞ2

4s2wð32w1s2wÞ; 3
2w12s2w

!
3Gðwja; 1Þd w

5eN

0
NðAjm;UwÞGðwja; 1Þd w

5NGðAjm;U;aÞ:
(28)

So,
ffiffiffiffi
m
p

and U correspond to the SNR and the total signal

power, respectively, of the underlying modulated Naka-

gami distribution, whereas a plays at first glance the role

of the effective density of random scatterers (see the

Summary and Discussion). The mean intensity of the NG

distribution and its SNR are as indicated in Tables 3 and 4.

Let us mention that there is also the generalized

Nakagami distribution (Shankar 2001) defined by

NGeðAjm;U; sÞ 5
2smm

GðmÞUm A2ms21e2mA2s=U; (29)

where m, U and s are positive real numbers (s is a shape

adjustment parameter). Considering the change of vari-

able y 5 A1/s, one obtains a Nakagami distribution on

the variable y, i.e., Nðyjm;UÞ5 2mm

GðmÞUm y2m21e2my2=U.

Thus, this distribution seems somewhat artificial, since

there is no physical or statistical reason for considering

such a change of variable. Also, note that Shankar

(2001) appeared before Shankar (2003); hence it seems

that the latter supersedes the former. Finally, the mean

intensity cannot be expressed analytically, unless s is an

integer, as far as we can tell.
Nakagami-generalized inverse Gaussian (NGIG)
distribution

The NGIG distribution (Agrawal and Karmeshu

2006) is defined by
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NGIGðAjm;U; q; lÞ 5
2ðm=UÞm

lq=2Kq

� ffiffiffi
l
p �

GðmÞ
A2m21

3
� U

2mA21lU

�m2q
2

Kq2m

0@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1

2mA2

U

r 1A; (30)

where m, U, q and l are positive real numbers, and K is the

modified Bessel function of the second kind. In Agrawal

and Karmeshu (2006), that distribution is expressed

in terms of the parameters ‘‘m’’ 5 m, ‘‘g’’ 5 q,

‘‘q’’5U
ffiffiffi
l
p

, and ‘‘l’’ 5 lU. Our choice of notation clar-

ifies the relation between the NGIG distribution and the

RiIG and NG distributions, as is discussed later.

Its compound representation, equivalent to the one

given in Agrawal and Karmeshu (2006), is expressed as

eN

0
NðAjm;UwÞGIG

�
w
���q; ffiffiffi

l
p

; l
	

d w; (31)

where N denotes the Nakagami distribution and

GIGðwjq;m; lÞ5 1
2mqKqðl=mÞw

q213expð21
2
ðl

w
1 l

m2wÞÞ is the

GIG distribution. The IG distribution is obtained from

the GIG distribution upon setting q 5 – 1/2. The equiva-

lence of eqn (30) and eqn (31) with Agrawal and

Karmeshu (2006, eqns 6 and 5), can be checked with

Mathematica. Again, this is consistent with the approxi-

mation in eqn (24). Namely, we have

eN

0
PRiðAj3

ffiffiffiffi
w
p

; s2wÞGIG
�
w
��q; ffiffiffi

l
p

; l
�
d w

zeN

0
N

�
Aj ð3

2w12s2wÞ2

4s2wð32w1s2wÞ; 3
2w12s2w

�
3GIG

�
w
��q; ffiffiffi

l
p

; l
�
d w

5eN

0
NðAjm;UwÞGIG

�
w
��q; ffiffiffi

l
p

; l
�
d w

5NGIGðAjm;U; q; lÞ:

(32)

So,
ffiffiffiffi
m
p

and U correspond to the SNR and the total signal

power, respectively, of the underlying modulated Nakagami

distribution, whereas
ffiffiffi
l
p

plays at first glance the role of the

effective density of random scatterers (again, see the

Summary and Discussion). As for q, its physical meaning

remains to be explained. The mean intensity of the NGIG

distribution and its SNR are indicated in Tables 3 and 4.

Obviously, at this point, one could introduce the

Rician generalized inverse Gaussian (RiGIG) distribution

PRiGIG(rj3, s2, q, l) defined by

eN

0
PRi

�
A
��3w; s2w

�
GIG

�
wjq; ffiffiffi

l
p

; l
	

d w: (33)

See eqn (20). This distribution has four parameters and has

not been used in ultrasound imaging yet. But, of course,
one would have to explain the physical meaning of the

extra parameter q.
SUMMARY AND DISCUSSION

In summary, there are three aspects in the compound

representation of the distributions discussed before: (i) the

modulated distribution, (ii) the modulating distribution

and (iii) the modulated parameters. Table 2 summarizes

the various compound representations presented in this

paper. Figure 2 gives five examples of those compound

representations.

For the first aspect, one uses the Rice distribution

(homodyned K-distribution, generalized K-distribution,

RiIG distribution) or its approximation based on Theorem

6 (NG distribution, NGIG distribution). Considering the

good quality of the approximation, this aspect is not

crucial and seems to play a role only in view of obtaining

an explicit form of the distribution.

For the second aspect, the modulation distribution is

the gamma distribution (homodyned K-distribution, gener-

alized K-distribution, NG) or the IG distribution (RiIG

distribution), and even the more general GIG distribution

(NGIG distribution). The IG is obtained from the GIG distri-

bution by setting q 5 – 1/2. It remains to have a physical

interpretation of the parameter q of the GIG distribution.

For a wide range of values, the IG distribution is a good

approximation of the gamma distribution, upon taking

l 5 a2 (say a $ 6 as in Theorem 5). The difference between

the two models for small values of a remains to be studied.

The third aspect seems to be the most important one,

in our opinion. The modulated parameters can be the

diffuse signal power 2s2 (homodyned K-distribution),

the coherent signal component 3 and the diffuse signal

power (generalized K-distribution and RiIG distribution)

or the coherent signal power 32 and the diffuse signal

power (NG and NGIG distributions).

As mentioned in Jakeman and Tough (1987), an

unsatisfactory feature of the generalized K-distribution

is that it predicts that the mean intensity of the scattered

field will fluctuate because of variations in the number

of scatterers, even if the mean intensity of each scatterer

tends to 0. On the other hand, the homodyned K-distribu-

tion model predicts that the mean intensity of the scattered

field will tend to the mean intensity of the coherent signal

component, under the same condition.

One can actually see this phenomenon upon consid-

ering the mean intensity of the various distributions pre-

sented here before. The analytical expressions of the

mean intensities are presented in Table 3. In the case of

the first three distributions (homodyned K-distribution,

generalized K-distribution, RiIG distribution), let s2 /
0, corresponding to a vanishing inhomogeneity of the

medium, i.e., the vanishing of the diffuse component. In



Fig. 2. Five examples of compound representations. From left to right: the modulated distribution; the modulating
distribution; the resulting compound distribution. First row: the homodyned K-distribution. Second row: the generalized
K-distribution. Third row: the RiIG distribution. Fourth row: the NG distribution. Fifth row: the NGIG distribution. The
random variable (A or w) is indicated in abscissa, and the value of the probability density function (pdf) is indicated in ordi-

nate. For the third and fifth rows, we use the approximation Gðwja; 1ÞzIGðwj
ffiffiffi
l
p

; lÞ, with l 5 a2 (c.f. Theorem 5). For the

fourth and fifth rows, we use the approximation PRiðAj3
ffiffiffiffi
w
p

; s2wÞzNðAjm;UwÞ, with m5
ð3212s2Þ2

4s2ð321s2Þ and U 5 32 1 2s2

(c.f. Theorem 6).
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the case of the two other distributions (NG distribution,

NGIG distribution), let U / 32, corresponding to the

same limiting situation (because U 5 32 1 2s2 in Theorem

6). Then the limiting moments are indicated in the second

column of Table 3. As one can see, only the homodyned

K-distribution offers the feature of a limiting mean intensity

that does not depend further on the density parameters a, or

q and l.

One can also consider the limiting behavior of the SNR

(Table 4). In the case of the first three distributions (homo-

dyned K-distribution, generalized K-distribution, RiIG

distribution), let s2 / 0 (i.e., vanishing of the diffuse

component). In the case of the two other distributions

(NG and NGIG), let m / N (see the expression of m in

Theorem 6). Then, the limiting moments are indicated in

the bottom rows of Table 4. As one can see, the behavior

of the homodyned K-distribution differs drastically from

the other distributions. Namely, only the homodyned K-

distribution offers the property of a limiting infinite SNR,

which corresponds to a vanishing variance of the signal in

the case of a vanishing inhomogeneity of the medium.

But now, both features of the homodyned K-distribu-

tion seem to be desirable properties, because one would

expect the coherent signal power 32 to be mainly the result

of a difference of impedance between two adjacent tissues,

and not on the number of diffuse scatterers when their

power vanishes. In particular, the statistical parameters of

the four other distributions lose the physical meaning of

their counterparts in the homodyned K-distribution. For

instance, in the case of the homodyned K-distribution,

the coherent signal power and the diffuse signal power

correspond to 32 and 2s2a, respectively. On the other

hand, for the generalized K-distribution, Table 3 suggests

that one should take 32a(1 1 a) and 2s2a, respectively.

Thus, it seems that the interpretation of the parameters 3

and a are more difficult in the case of the generalized

K-distribution. A similar remark holds for the three other

distributions. In particular, the parameter a or
ffiffiffi
l
p

might

not represent the effective density of random scatterers

for other distributions than the homodyned K-distribution,

even if formally they seem to do so, as was mentioned after

eqn (28) and eqn (32). This fact does not come as a surprise;

after all, the models are different and the coherent signal

component or its square are modulated simultaneously

with the diffuse signal power in all cases, except for the ho-

modyned K-distribution. It shows that one should be care-

ful in interpreting physically and clinically the parameters

of the various distributions presented in this paper. For that

matter, we believe that the homodyned K-distribution is the

most suitable distribution among the ones that we have pre-

sented in the context of tissue characterization. On the other

hand, the Nakagami distribution is a good approximation

of the homodyned K-distribution, but with only two

parameters, that is also consistent with the limiting case
of a vanishing diffuse signal power, at least in the

case where m . 1. Moreover, the Rayleigh, Rice and

K-distributions are also consistent with the limiting case

of a vanishing diffuse signal power, because they are

limiting or special cases of the homodyned K-distribution.

CONCLUSION

We have presented a unified overview of the main

distributions used to model the amplitude (gray level) of

the envelope of the RF image, based on their compound

representation. Based on the computation of the mean

intensity and the SNR in the limit case of a vanishing

diffuse signal power, we have argued in favor of the homo-

dyned K-distribution. In the case of the other distributions,

the parameters lose their physical meaning, although the

distributions may very well fit real data. It remains to prove

our argument experimentally, with simulations or real

data. Thus, an open problem in ultrasound imaging is to

clarify the choice of a model based on the modulated

parameters. Determining the most appropriate model is

important, for instance, in the context of tissue character-

ization. In particular, it would be desirable to use a same

model to favor the comparison of results. As it seems,

new statistical distributions are introduced in the literature,

not so much because the homodyned K-distribution does

not have good modeling properties, but simply because it

does not admit an explicit analytical expression. Neverthe-

less, we do not believe that this is a major drawback for

using the homodyned K-distribution. For instance, the

fractional moments of the intensity admit an analytical

expression based on Prager et al. (2002).
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APPENDIX: PROOFS OF THE RESULTS
Proof of Theorem 1
See Jakeman and Tough (1987, eqn (2.13)). From Lord (1954, eqn

(9)), the characteristic function of a is equal to fðuÞ5FðuÞ5Ln=221ðuaÞ,
where u 5 kuk and LaðzÞ5Gða11Þðz2Þ

2aJaðzÞ512 1
2ð2a12Þz

21Oðz4Þ.
Thus, after scaling by the factor 1=

ffiffiffiffi
N
p

, we obtain

ð12u2a2

2n N211OðN22ÞÞN as characteristic function of A. Letting N tend

to infinity gives expð2u2a2

2n Þ, which is the characteristic function of an

n-dimensional Gaussian distribution with mean 0
!

and variance equal

to the diagonal matrix with identical entries of s25a2=n. The distribution
of the amplitude is thus the Rayleigh distribution. Note that from the
inversion formula (Lord 1954, eqn (10)), the distribution P(A) of the
amplitude of the random process can also be expressed as

1
2n=221Gðn=2Þe

N
0 ðuAÞn=2Jn=221ðuAÞexpð2u2a2

2n Þ du:

Proof of Theorem 2
By definition (see Jakeman and Tough 1987, eqn (2.15)), the char-

acteristic function of the random process 3!1 1ffiffiffi
N
p
PN

j51 aj of eqn (5) as

N / N is equal to expðiu, 3!ÞFðuÞ, where F(u) is the characteristic

function of the random process 1ffiffiffi
N
p
PN

j51 aj of eqn (2) as N / N, i.e.,

expð2u2a2

2n Þ from the proof of Theorem 1. So we obtain the characteristic

function of an n-dimensional Gaussian distribution with mean 3! and
variance, the diagonal matrix with identical entries, equals to

s25a2=n. The distribution of the amplitude is thus the Rice distribution.
In (Jakeman and Tough 1987, eqn (2.16)), an alternative

proof is presented based on the evaluation of the integral
An=2

3n=221euJn=221ðuAÞJn=221ðu3Þexpð2u2a2

2na
Þ du. We derive that integral

representation of the Rice distribution as follows. From the inversion
formula (Lord 1954, eqn (3)), the distribution p(A) of the random
process underlying the Rice distribution is equal to

1
ð2pÞneexpð2iu,AÞexpðiu, 3!Þexp

�
2u2a2

2n

�
du

5e un21

ð2pÞn{eexpð2iu,AÞexpðiu, 3!Þ dbu}

3exp
�
2u2a2

2n

�
du;

where u and bu denote the norm and the direction of u, respectively. From
(Lord 1954), we deduce that the amplitude has distribution P(A) equal to

An21epðAÞ dbA
5An21e un21

ð2pÞnexp
�
2u2a2

2n

�
3{eðeexpð2iu,AÞ dbAÞexpðiu, 3!Þ dbu} du:

But from (Lord 1954), the integral eexpð2iu,AÞ dbA is equal to the
expression (2p)n/2(uA)–n/211Jn/2–1(uA). Thus, after simplifications, P(A)
is equal to

An=2e un=2

ð2pÞn=2Jn=221ðuAÞ{eexpðiu, 3!Þ dbu}

3exp
�
2u2a2

2n

�
du:

And by the same argument this is equal to

An=2

3n=221
euJn=221ðuAÞJn=221ðu3Þexp

�
2

u2a2

2n

�
du:

Finally, we have shown in the previous paragraph that this must be the
Rice distribution.

Proof of Theorem 3
From the proof of Theorem 1, the characteristic function of A condi-

tional to N is equal to FðujNÞ5ð12u2a2

2n N
21

1OðN22ÞÞN5Fðuj1ÞN , after
scaling by the factor 1=
ffiffiffiffi
N
p

. Thus, the characteristic function of A is equal to

FðuÞ5
PN

N50 NegBinðNja; 1=ð11N=aÞÞFðujNÞ. And this is equal toPN
N50

ðN1a21Þ!
N!ða21Þ!

ðN=aÞN

ð11N=aÞN1aFðuj1ÞN5ð11N
a
ð12Fðuj1ÞÞÞ2a

. Letting N

tend to infinity yields ð11u2a2

2na
Þ2a

. From the inversion formula (Lord

1954, eqn (10)), the distribution of the amplitude of the random process is

equal to PðAÞ5 1
2n=221Gðn=2Þe

N
0 ðuAÞn=2Jn=221ðuAÞð11u2a2

2na
Þ2a du. From

Jakeman and Tough (1987, eqns (2.10) and (2.11)), this is the K-distribu-
tion. As an alternative proof, we will use Jakeman and Tough (1987, eqn
(4.1) to (4.6)) and prove part (b) of the Theorem at the same time.

So, let us observe that ð11u2a2

2na
Þ2a

is equal to

eN
0 expð2u2a2w

2na
ÞGðwja; 1Þ dw, where Gðwja; 1Þ is as in the statement of

the Theorem (see Jakeman and Tough 1987, eqn (4.2)) and (Erdélyi
1954, vol. I, p. 312, eqn (1)). Changing the order of integration in the
equation of the previous paragraph, we obtain that P(A) is equal to

eN

0
{ 1

2n=221Gðn=2Þ

3eN

0
ðuAÞn=2

Jn=221ðuAÞexp
�
2u2a2w

2na

�
du}

3Gðwja; 1Þ dw:

From the proof of Theorem 1, the inner integral is equal to the Rayleigh

distribution PRaðAja2w
2na
Þ. Thus, the resulting distribution is

eN
0 PRaðAjs2wÞGðwja; 1Þ dw. Finally, from Erdélyi (1954, vol. I,

p. 146, eqn (29)), one obtains the distribution of eqn (8).

Proof of Theorem 4
As in Jakeman and Tough (1987), the characteristic function of

the random process A of eqn (14) as N/N is equal to J(u)F(u),
where J(u) is the characteristic function of the randomly phased

vector 3! of constant amplitude 3, and F(u) is the characteristic func-

tion of the random process of eqn (9) as N/N, i.e., ð11u2a2

2na
Þ2a

from the proof of Theorem 3. From Lord (1954), we have

JðuÞ5 ð2pÞn=2

ðu3Þn=221Jn=221ðu3Þ3Gðn=2Þ
2pn=2 5

2n=221Gðn=2Þ
ðu3Þn=221 Jn=221ðu3Þ.

From the inversion formula (Lord 1954, eqn (10)), we deduce that
the distribution P(A) of the amplitude of the random process underlying
the homodyned K-distribution is equal to

1

2n=221Gðn=2ÞeðuAÞn=2
Jn=221ðuAÞ2

n=221Gðn=2Þ
ðu3Þn=221

Jn=221ðu3Þ
�

11
u2a2

2na

�2a

du

5 An=2

3n=221euJn=221ðu3ÞJn=221ðuAÞ
�
11u2a2

2na

�2a
du:

Finally, this is the definition of the homodyned K-distribution. See
Jakeman and Tough (1987, eqn (4.13)).

Next, as in the proof of Theorem 3, we can rewrite the homodyned
K-distribution as

eN

0
Gðwja; 1Þ{ An=2

3n=221

3euJn=221ðuAÞJn=221ðu3Þexp
�
2u2a2w

2na

�
du} dw:

Now, from the proof of Theorem 2, we know that the inner integral is the
Rice distribution PRi(Aj3, s2w). The compound representation of the ho-
modyned K-distribution follows from there.

Remark on Theorems 2 and 4
Let B be a random process with characteristic function of the

form fð u!Þ5FðuÞ (where u5jj u!jj), such as is the case for the process

underlying the Rayleigh distribution or the K-distribution. Let 3!1 be
a random process consisting of a constant vector of amplitude 3. Then,
the argument in the proof of Theorem 2 shows that the random process

3!11B (where the two terms are viewed as independent random
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processes) has an amplitude with distribution P(A) equal to
An=2

3n=221euJn=221ðu3ÞJn=221ðuAÞFðuÞ du. On the other hand, let 3!2 be

a randomly phased vector of constant amplitude 3. Then, the argument

in the proof of Theorem 4 shows that the random process 3!21B
(where the two terms are viewed as independent random processes)
has also an amplitude with distribution P(A) equal to
An=2

3n=221euJn=221ðu3ÞJn=221ðuAÞFðuÞ du. Therefore, the two different

processes 3!11B and 3!21B yield the same distribution of their ampli-

tude. Thus, in eqn (5) and eqn (14), one may assume that 3! is either
a constant vector of amplitude 3 or a randomly phased vector of constant
amplitude 3, as far as the distribution of the amplitude is concerned.

Sketch of a proof of Theorem 5
Recall that DKLðf ; gÞ5ef ðxÞ logf ðxÞ

gðxÞ dx. Using Mathematica, it is
straightforward to compute

DKLðGða; 1Þ; IGða;a2ÞÞ

51
2

�
a

a21
22a1logð2pÞ

22logGða11Þ1ð112aÞjðaÞÞ
From there, the statement of the Theorem follows conjecturally after
inspection of the graph of that function of a.
Sketch of a proof of Theorem 6
We first observe that for any r . 0, N(Ajm, rU) 5 r–1N(r–1Ajm,

U) and PRiðAj
ffiffiffi
r
p

3; rs2Þ 5 r–1PRi(r
–1Aj3, s2). Therefore,

DKLðPRið
ffiffiffi
r
p

3; rs2Þ;Nðm; rUÞÞ is invariant in r. So, it is enough to

consider the case s2 5 1. The result now follows conjecturally after
inspection of the graph of the Kullback-Leibler divergence as a function
of 3.
Sketch of a proof of Theorem 7
Again, because PK(Ajrs2, a) 5 r–1PK(r–1Ajs2, a), for any r . 0,

it follows that DKLðPKðrs2;aÞ;Nðm; rUÞÞ is invariant in r. So, it is
enough to consider the case s2 5 1. The result now follows conjecturally
after inspection of the graph of the Kullback-Leibler divergence as a func-
tion of a.
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