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Abstract The homodyned K-distribution and the K-distribution, viewed as a
special case, as well as the Rayleigh and the Rice distributions, viewed as limiting
cases, are discussed in the context of quantitative ultrasound (QUS) imaging. The
Nakagami distribution is presented as an approximation of the homodyned
K-distribution. The main assumptions made are: (1) the absence of log-compression
or application of non-linear filtering on the echo envelope of the radiofrequency
signal; (2) the randomness and independence of the diffuse scatterers. We explain
why other available models are less amenable to a physical interpretation of their
parameters. We also present the main methods for the estimation of the statistical
parameters of these distributions. We explain why we advocate the methods based
on the X-statistics for the Rice and the Nakagami distributions, and the K-distri-
bution. The limitations of the proposed models are presented. Several new results
are included in the discussion sections, with proofs in the appendix.
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10.1 Introduction

The statistical distributions presented here appeared in the context of various
applications in the past 130 years or so. The Rayleigh distribution was introduced
in Rayleigh (1880) in the context of sound propagation. The Rice distribution
appeared in Nakagami (1940), and in Rice (1945) as a model of wave propagation.
The K-distribution was first introduced in Lord (1954) in the context of random
walks and then in the context of sea echo (Jakeman and Pusey 1976). The
homodyned K-distribution was introduced and studied in Jakeman (1980) and
Jakeman and Tough (1987) as a model of weak scattering. The Nakagami
distribution was defined in Nakagami (1943) in the field of wave propagation.

In ultrasound imaging, the Rayleigh distribution appeared as a model of the
gray level (also called amplitude) in an unfiltered B-mode image, viewed as the
envelope of the radiofrequency (RF) image, in the case of a high density of random
scatterers with no coherent signal component (Burckhardt 1978; Wagner et al.
1983). The Rice distribution corresponds to a high density of random scatterers
(the diffuse signal component), but combined with the presence of a coherent
signal component (Insana et al. 1986). Non-Rayleigh distributions were considered
in ultrasound imaging as early as the pioneer article of Burckhardt (1978). The
K-distribution corresponds to a variable (effective) density a of random scatterers,
with no coherent signal component and was introduced in ultrasound imaging by
Shankar et al. (1993), and Molthen et al. (1993), Narayanan et al. (1994), Shankar
(1995) and Molthen et al. (1995). The homodyned K-distribution corresponds to
the general case of a variable effective density of random scatterers with or without
a coherent signal component (Dutt and Greenleaf 1994). A simpler model consists
in modeling the gray level of the speckle pattern in a B-mode image by a
Nakagami distribution (Shankar 2000; Dumane and Shankar 2001). In the context
of QUS, the estimated parameters of the statistical distribution of the echo
envelope play the role of quantitative measures that give information about the
underlying tissues of interest.

The Nakagami distribution has been the most frequently adopted model in the
context of tissue characterization, probably due to its simplicity. As the pioneer
work, let us mention Shankar et al. (2001) in the context of breast tumor classi-
fication. The Nakagami model was then systematically used in various medical
ultrasound imaging fields, including: ophthalmology (Tsui et al. 2007); vascular
flow applications (Huang et al. 2007; Huang and Wang 2007; Tsui et al. 2008a,
2009a, 2009b); and breast cancer (Tsui et al. 2008b, 2010a, 2010b, 2010c). The
K-distribution was used in the context of breast cancer classification in the pioneer
work of Shankar et al. (1993). More recently, the homodyned K-distribution was
used for cardiac tissue characterization (Hao et al. 2002) and cancerous lesion
classification (Oelze and O’Brien 2007; Hruska et al. 2009; Mamou et al. 2010,
2011), and a model of mixtures of Rayleigh distributions was adopted for liver
fibrosis quantification (Yamaguchi et al. 2011).
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Whereas at the time of Shankar et al. (1993) and Dutt and Greenleaf (1994), the
estimation of the (homodyned) K-distribution was a problem, since then, several
estimation methods have been published. In particular, the K-distribution can be
estimated using the simple and reliable X-statistics (Blacknell and Tough 2001)
(defined as the log-moment E½I log I�=E½I� � E½log I�, where I denotes the square
of the echo envelope amplitude) and a method by Hruska and Oelze (2009) was
proposed for the estimation of the homodyned K-distribution. Thus, the use of the
Nakagami model does not seem justified anymore in the context of QUS, since it
reduces the information carried by the homodyned K-distribution model.

10.2 Chapter Content

The remaining part of this chapter is organized as follows. Section 10.3 presents in
details the various models mentioned in the introduction, as well as other available
models. A physical underlying model is also presented to help with the interpre-
tation of the various parameters. In Sect. 10.4, the most frequently used estimation
methods for the main distributions are presented. Finally, Sect. 10.5 presents the
limitations of the main models and hints to future work on that matter.

In Sect. 10.4.1, various estimation methods are explained: (1) the Maximum
Likelihood Estimator (MLE) and the Maximum A Posteriori (MAP); (2) moments
based methods; and (3) log-moments based methods. Then, in Sects. 10.4.2–
10.4.6, we kept the same structure in the presentation of the estimation methods for
each of the five distributions presented in Sects. 10.3.1 and 10.3.3 whenever
possible (according to the literature).

In Sects. 10.3 and 10.4, various remarks and additional results are mentioned in
the subsections entitled ‘‘discussion‘‘. As far as we know, most of these results are
new (Theorems 8-12, 18-23, 25-26, Corollary 2, Lemmas 4 and 5), except prob-
ably Lemmas 1-3, although we did not find references. Theorem 28 was used
explicitly in Destrempes et al. (2009, Table 1), but without proof. The proofs of the
new results are postponed to the appendix. The purpose of these new results is to
deepen the understanding of the published methods mentioned in this chapter.

Table 10.1 Main distributions discussed in this chapter and the relations among them

Distribution Notation Relation

Gamma Gðwja; 1Þ
Rice PRiðAje; r2Þ
Rayleigh PRaðAjr2Þ ¼ PRiðAj0;r2Þ
Homodyned K PHKðAje;r2; aÞ ¼

R1
0 PRiðAje;r2wÞGðwja; 1Þ dw

K PKðAjr2; aÞ ¼
R1

0 PRaðAjr2wÞGðwja; 1Þ dw

¼ PHKðAj0;r2; aÞ
Rice PRiðAje; r2Þ ¼ lima!1 PHKðAje;r2=a; aÞ
Rayleigh PRaðAjr2Þ ¼ lima!1 PKðAjr2=a; aÞ
Nakagami N ðAjm;XÞ Approximation of the homodyned K-distribution
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10.3 Statistical Models

We first present in Sect. 10.3.1 various models for the first-order statistics of the
amplitude of the echo envelope. The most general of these models is the homo-
dyned K-distribution that depends on three parameters e� 0, r2 [ 0 and a [ 0.

The Rice distribution with parameter r2 ¼ a2=2 is viewed as the limiting case of

the homodyned K-distribution with parameter r2 of the form a2=ð2aÞ when
a!1. The K-distribution is a special case of the homodyned K-distribution with
e ¼ 0, whereas the Rayleigh distribution is a special case of the Rice distribution
with the same constraint. The parameter a is related to the homogeneity of the
diffuse scattering medium and the density of the scatterers. It is called the scatterer
clustering parameter (Dutt and Greenleaf 1994). In the context of the K-distri-
bution, it is also called the effective number of scatterers (Narayanan et al. 1994).
The parameter e is called the coherent component and is related to the strength of
the specular reflection or the periodic organization of the scatterers. The diffuse
signal power can be viewed as 2r2a for the homodyned K-distribution (and
K-distribution), whereas e2 can be viewed as the coherent signal power. In
Sect. 10.3.2, an underlying physical model is presented. In Sect. 10.3.3, the
Nakagami distribution is described as an approximation of the homodyned
K-distribution. Finally, in Sect. 10.3.4, the relevance of these distributions com-
pared to other available models is discussed (see Destrempes and Cloutier (2010)
for further reading on that topic). The reader may refer to Table 10.1 for a sum-
marize of the main distributions discussed here and the relations among them.

10.3.1 The Homodyned K-Distribution and Related
Distributions

10.3.1.1 The Rayleigh Distribution

The (2-dimensional) Rayleigh distribution (Rayleigh 1880) is defined by

PRaðA j r2Þ ¼ A

r2
exp
�
� A2

2r2

�
; ð10:1Þ

where A represents the amplitude of the signal. In Jakeman and Tough (1987), the
distribution is expressed, in the context of n-dimensional random walks, in terms

of the variable a2 ¼ nr2. The case n ¼ 2 corresponds to Eq. (10.1). Equivalently,
the intensity I, i.e. the square of the amplitude A, is distributed according to an
exponential distribution.
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10.3.1.2 The Rice Distribution

The (2-dimensional) Rice distribution is expressed as

PRiðA j e; r2Þ ¼ A

r2
I0

� e
r2

A
�

exp
�
�ðe

2 þ A2Þ
2r2

�
; ð10:2Þ

where r[ 0 and e� 0 are real numbers and I0 denotes the modified Bessel
function of the first kind of order 0 (the intensity I should not be confused with the
Bessel function I0). See Jakeman and Tough (1987, Eq. 2.16) for a generalization
in dimension n� 2. The special case where e! 0 yields the Rayleigh distribution.
The case n ¼ 2 corresponds to Nakagami (1940) and Rice (1945). In Nakagami
(1960, p. 4, Eq. 5), the Rice distribution is called the ‘‘n-distribution‘‘ (Nakagami,
1940).

10.3.1.3 The K-Distribution

The (2-dimensional) K-distribution (Lord 1954; Jakeman and Pusey 1976) is
defined by

PKðA j r2; aÞ ¼ 4Aa

ð2r2Þðaþ1Þ=2CðaÞ
Ka�1

� ffiffiffiffiffi
2
r2

r

A
�
; ð10:3Þ

where a [ 0, r2 [ 0, C is the Euler gamma function, and Kp denotes the modified
Bessel function of the second kind of order p. In Jakeman and Tough (1987,

Eq. 2.11), the distribution is expressed in terms of the parameters a and b ¼
ffiffiffiffi
2
r2

q
.

In view of the compound representation presented below, we find the proposed
parametrization more convenient.

Theorem 1 (Jakeman and Tough 1987). The compound representation of the
K-distribution is

PKðA j r2; aÞ ¼
Z 1

0
PRaðA j r2wÞGðw j a; 1Þ dw; ð10:4Þ

where PRa denotes the Rayleigh distribution, and Gðw j a; 1Þ is the gamma distri-
bution wa�1 expð�wÞ=CðaÞ of mean and variance equal to a.

The compound representation is useful to simulate the K-distribution, and in the

evaluation of its value. A K-distribution with parameters r2 ¼ a2=ð2aÞ and a

yields the Rayleigh distribution with parameter ‘‘r2’’ ¼ a2=2, as a!1. See
Jakeman and Tough (1987, Eq. 2.12). Thus, the parameter ‘‘r2’’ of the limiting

Rayleigh distribution is a2=2, and should not be confused with the parameter r2 of
the K-distribution. The relation between these two quantities is

‘‘r2’’ ¼ a2=2 ¼ r2a.
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10.3.1.4 The Homodyned K-Distribution

The (2-dimensional) homodyned K-distribution (Jakeman 1980; Jakeman and
Tough 1987) is defined by

PHKðA j e; r2; aÞ ¼ A

Z 1

0
uJ0ðueÞJ0ðuAÞ

�
1þ u2 r2

2

��a
du ð10:5Þ

where r2 [ 0, a[ 0, e� 0, and J0 denotes the Bessel function of the first kind of
order 0. In Jakeman and Tough (1987, Eq. 4.13), the homodyned K-distribution is

expressed in terms of the parameters a, a2 ¼ nr2a, and a0 ¼ e, in the context of
n-dimensional random walks.

Theorem 2 (Jakeman and Tough 1987). The compound representation of the
homodyned K-distribution is

PHKðA j e; r2; aÞ ¼
Z 1

0
PRiðA j e; r2wÞGðw j a; 1Þd w; ð10:6Þ

where PRi denotes the Rice distribution and Gðw j a; 1Þ is the gamma distribution
with mean and variance equal to a.

The case e! 0 yields the K-distribution (with parameters r2, a). In particular,
the compound representation of the homodyned K-distribution is consistent with
Eq. (10.4), upon taking e! 0. A homodyned K-distribution with parameters e,

r2 ¼ a2=ð2aÞ and a yields the Rice distribution with parameters e and ‘‘r2’’

¼ a2=2, as a!1. Thus, if in addition, e! 0, then one obtains the Rayleigh

distribution with parameter ‘‘r2’’ ¼ a2=2, as a!1. Figure 10.1 illustrates four
representative examples of the homodyned K-distribution (including two examples
of the K-distribution, as a special case).

Two functions of the three parameters of the homodyned K-distribution are
invariant under scaling of the intensity (Dutt and Greenleaf 1994): (1) the
parameter a; (2) the structure parameter j ¼ e2=ð2r2aÞ, i.e. the ratio of the

coherent signal power e2 with the diffuse signal power a2 ¼ 2r2a. Other param-
eters of the homodyned K-distribution were considered in the literature: the
coherent to diffuse signal ratio k ¼

ffiffiffiffiffiffi
2j
p

¼ e=ðr
ffiffiffi
a
p
Þ (Dutt and Greenleaf 1994;

Dutt 1995; Hruska and Oelze 2009), and the parameter b equal to 1=a (Dutt and
Greenleaf 1994; Dutt 1995).

Considering r2 ¼ a2=ð2aÞ and letting a tend to infinity, one obtains a Rice

distribution for which the diffuse signal power is also a2 and the structure

parameter j is also equal to e2=a2.
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10.3.2 Interpretation of the Distributions in the Context
of Ultrasound Imaging

In Shankar et al. (1993), Molthen et al. (1993), Narayanan et al. (1994), Shankar
(1995) and Molthen et al. (1995), one considers Ns scatterers lying in an ambient
scattering medium within the resolution cell. Each scatterer corresponds to a
phasor ajei/j with two elements: (1) an amplitude aj depending on the scattering
properties (i.e., the scattering cross section) and the position of the scatterer with
respect to the ultrasound beam, the instrumentation and the attenuation; (2) a phase
/j that depends on the scatterer’s position. One then postulates (Narayanan et al.

1994) a K-distribution with parameters r2 and as for each amplitude and considers
uniformly distributed independent phases for each scatterer. The choice of the
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Fig. 10.1 Typical examples of the homodyned K-distribution. Top row K-distribution (e ¼ 0).
Bottom row e [ 0. The dashed curves represent the approximating Nakagami distributions. The
Kullback-Leibler distance values between the two distributions were: top left 0:035; top right
0:0025; bottom left 0:33 (with a coherent to diffuse signal ratio k ¼ e=ðr

ffiffiffi
a
p
Þ equal to 8:5); bottom

right 0:012 (with k � 1:9)
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K-distribution was motivated in Narayanan et al. (1994) by its good modeling
properties of the first-order statistics of the echo envelope in the case where the
Rayleigh distribution model (corresponding to infinitely many scatterers of iden-
tical cross-sections) breaks down, as explained in the next paragraph. Assuming
weak scattering, the resulting complex signal is expressed as

A ¼
XNs

j¼1

aje
i/j : ð10:7Þ

Then, its amplitude A is viewed as the norm of the complex signal.
Note that Eq. (10.7) can be viewed as a random walk in the Euclidean plane

(corresponding to n ¼ 2), since the complex number ei/j corresponds to the vector
ðcosð/jÞ; sinð/jÞÞ. Thus, the amplitude A ¼ A corresponding to Eq. (10.7) follows
a K-distribution with parameter a ¼ asNs. In that context, a is called the effective
number of scatterers, because the number of scatterers Ns is multiplied by the
parameter as. For instance, if Ns is large, but as is so small that asNs � 10, then
the resulting distribution is a K-distribution rather than a Rayleigh distribution. For
the same reason, even if Ns is small, but as is so large that asNs� 10, then one
obtains a Rayleigh distribution. The parameter as is a parameter describing the
lack of uniformity of the scattering cross sections in the range cell (c.f. Narayanan
et al. 1994, Eq. (6)). A small value of as corresponds to a great variability, whereas
a large value of as corresponds to a small variability. Thus, the parameter as is
viewed as a measure of homogeneity of the scattering medium. The choice of the
K-distribution is also consistent with the observation that the higher order
moments of the intensity of the echo envelope may be larger than the ones pre-
dicted by the Rayleigh distribution model in the case of pathological tissues
(Shankar et al. 1993). For instance, under the Rayleigh model, one would have

E½I2�=E½I�2 ¼ 2, whereas the K-distribution model yields E½I2�=E½I�2 ¼
2ð1þ 1=aÞ, which corresponds to observed values upon taking a sufficiently small.
So, the statistics of the echo envelope depart from the Rayleigh model if the
number of scatterers is small and as is not too large, or if the cross-sections are
heterogeneous and Ns is not too large.

Adding a coherent component e, with constant amplitude e and either a constant
phase or a uniformly distributed phase, then yields a homodyned K-distribution
with parameters e, r2 and a ¼ asNs, for the amplitude A ¼ keþ Ak. Since a
coherent component may arise when the scatterers are organized periodically, the
parameter a does not quite represent the effective number of scatterers in that
context, but it may still be viewed as a scatterer clustering parameter. The coherent
component may also be caused by specular reflection.
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10.3.3 The Nakagami Distribution as an Approximation

The Nakagami distribution (Nakagami 1943, 1960) is defined by

N ðA jm;XÞ ¼ 2mm

CðmÞXm A2m�1e�mA2=X; ð10:8Þ

where C is the Euler gamma function. The real numbers m [ 0 and X [ 0 are
called the shape parameter and the scaling parameter, respectively. Equivalently,
the intensity I ¼ A2 follows a gamma distribution, with shape parameter m and
scale parameter X=m.

The shape parameter m can be interpreted as the square of the intensity signal-

to-noise ratio (SNR), i.e. m ¼ E½I�2
VarðIÞ and X represents the mean intensity E½I� (i.e.,

the total signal power). The intensity SNR should not be confused with the
amplitude SNR. For instance, when m ¼ 1, one retrieves the Rayleigh distribution.
This observation can be found in Nakagami (1960, p. 17, Eqs. 50 and 51). In that
case, the intensity SNR is equal to 1, whereas the amplitude SNR is about 1:91.

The Nakagami distribution can be viewed as an approximation of the homo-
dyned K-distribution. First of all, we have the limiting case where a!1, which
yields the Rice distribution and corresponds to the case m� 1.

Theorem 3 (Destrempes and Cloutier 2010). Let m ¼ ðe2þ2r2Þ2
4r2ðe2þr2Þ and

X ¼ e2 þ 2r2. Then,

DKL

�
PRiðe; r2Þ; N ðm;XÞ

�
� 0:02; ð10:9Þ

where DKL denotes the Kullback-Leibler distance (Kullback and Leibler 1951)
between two distributions.

Recall that the Kullback-Leibler distance (also called Kullback-Leibler diver-
gence because it is non-symmetric) is a measure of the difference between two
probability distribution functions (PDF) f ðxÞ and gðxÞ in the continuous random

variable x and is defined by
R

f ðxÞ log
f ðxÞ
gðxÞ dx. It has the properties: (1)

DKLðf ; gÞ� 0 for any PDFs f and g; and (2) DKLðf ; gÞ ¼ 0 if and only if f 	 g.
However, it is a non-symmetric measure (i.e., DKLðf ; gÞ is not necessarily equal to
DKLðg; f Þ). The choice of m and X in Theorem 3 is consistent with the identities

SNR2 ¼ ðe2þ2r2Þ2
4r2ðe2þr2Þ and E½I� ¼ e2 þ 2r2 valid for the Rice distribution. See also

Nakagami (1960, p. 18, Eq. (55)).
We also have the following approximation result in the case of the K-distri-

bution (e! 0), which corresponds to the case m\1.

Theorem 4 (Destrempes and Cloutier 2010). Let m ¼ a
ðaþ1Þ and X ¼ 2r2a. Then,
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DKL

�
PKðr2; aÞ; N ðm;XÞ

�
� 0:0325: ð10:10Þ

For Theorem 4, the choice of m and X is consistent with the identities
E½I log I�=E½I� � E½log I� ¼ 1=m and E½I log I�=E½I� � E½log I� ¼ 1þ 1=a valid for
the Nakagami distribution and the K-distribution, respectively (see Sects. 10.4.4.5
and 10.4.6.3).

10.3.4 Discussion

In this section, a new result on the Nakagami distribution as an approximation of
the homodyned K-distribution is introduced (in greater generality than Theorems 3
and 4). We then discuss the consistency of the distributions presented in Sect.
10.3.1 in the limit case of a vanishing diffuse signal power, and we explain why
other models available in the literature fail to have this feature (Destrempes and
Cloutier 2010). Finally, as a new result, that property is shown to hold for the
Nakagami distribution.

Considering the general case of a homodyned K-distribution with parameters e,

r2, and a, the Mð1Þ-statistics E½A�=
ffiffiffiffiffiffiffiffi
E½I�

p
is expressed explicitly in Theorem 24 as a

function Mð1ÞHKðc; aÞ, where c ¼ ja. Using the identity Mð1ÞNa ðmÞ ¼
Cð1=2þmÞffiffiffi

m
p

CðmÞ of

Theorem 30, one then solves the equation Mð1ÞNa ðmÞ ¼ Mð1ÞHKðc; aÞ in the variable m,
using a binary search algorithm based on Theorem 31. This yields a function
m ¼ mðc; aÞ. Moreover, considering E½I�, one is led to the identity X ¼ e2 þ
2r2a ¼ l (the average value of the intensity). So, one is interested in the Kullback-
Leibler distance

DKL

�
PHKðe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc
ðcþ aÞ

r
; r2 ¼ l

2ðcþ aÞ ; aÞ; N ðm ¼ mðc; aÞ;X ¼ lÞ
�
;

ð10:11Þ

as a function of c, a, and l. It can be seen that this function is independent of the
scaling factor l (this is actually a general property of the Kullback-Leibler
distance).

We computed Eq. (10.11) for k ¼ e=ðr
ffiffiffi
a
p
Þ ¼ 0:0; 0:1; . . .; 2:0, a ¼ 1; 2; . . .; 20,

taking r2 ¼ 1=a. For each value of k and a, a sample set of size N ¼ 1,000 was
simulated according to the corresponding homodyned K-distribution. The Kullback-
Leibler distance was then estimated as the average over the simulated set of

log
�

PHKðAi j e ¼ k; r2 ¼ 1=a; aÞ= N ðAi jm ¼ mðc; aÞ;X ¼ k2 þ 2Þ
�

. The maxi-

mal value was 0:072 (this result could be slightly improved upon considering the
X-statistics instead of the Mð1Þ-statistics). So, the Nakagami pdf is a satisfying
approximation in that range of the parameters k and a. See Fig. 10.1 for examples of
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approximating Nakagami distributions. In that figure, we included an example of a
value of k much larger than 2; in that case, the KL distance is quite large (0:33).

Theorem 2 states that the homodyned K-distribution corresponds to a model in
which the diffuse signal power 2r2 of a Rice distribution is modulated by a gamma
distribution, but not its coherent signal component e. As mentioned in Destrempes
and Cloutier (2010), there are several more models for the first-order statistics of
the echo envelope. One modeling possibility introduced in Barakat (1986) and
further developed in Jakeman and Tough (1987) is equivalent to modulate both the
coherent signal component e and the diffuse signal power 2r2 of the Rice distri-
bution by a gamma distribution. This gives rise to the generalized K-distribution.
Note that this distribution has not been used in ultrasound imaging as of now.
However, in Eltoft (2005), the Rician inverse Gaussian distribution (RiIG) is
introduced, and it corresponds to a model in which both the coherent signal
component e and the diffuse signal power 2r2 of a Rice distribution are modulated
by an inverse Gaussian (IG) distribution, instead of a gamma distribution. Thus,
this model is related to the generalized K-distribution, as further discussed in
Destrempes and Cloutier (2010).

Three other distributions were introduced in the context of ultrasound imaging.
The first one is called the generalized Nakagami distribution (Shankar 2000), and
is obtained from the Nakagami distribution by a change of variable of the form
y ¼ A1=s, where s is a shape adjustment parameter and A is the amplitude of the
signal. This distribution was also proposed in Raju and Srinivasan (2002) (in the
equivalent form of a generalized gamma distribution). The second other distri-
bution is called the Nakagami-gamma distribution (Shankar 2003). That distri-
bution can be viewed as a model in which the Rice distribution is approximated by
a Nakagami distribution, and in which its total signal power X is modulated by a
gamma distribution. The third distribution is called the Nakagami-generalized
inverse Gaussian (NGIG) distribution (Agrawal and Karmeshu 2006), and it cor-
responds to a model in which the (approximating) Nakagami distribution has its
total signal power X modulated by a generalized inverse Gaussian (GIG) distri-
bution instead of a gamma distribution.

As shown in Destrempes and Cloutier (2010), none of these five other models is
compatible with the limit case of a vanishing diffuse signal power 2r2as. Indeed, in
that case, one should obtain an infinite intensity SNR (if e [ 0). It turns out that
only the homodyned K-distribution and its related distributions satisfy that prop-
erty. In fact, keeping as (the scattering cross sections homogeneity) and Ns (the
number of random scatterers within the resolution cell) constant (see 10.3.2), one
must have r2 ! 0 if the diffuse signal power 2r2asNs vanishes. Then, as computed
in Destrempes and Cloutier (2010), one obtains an infinite intensity SNR if e [ 0,
either for the Rice distribution or the homodyned K-distribution. Moreover, it was
shown in Destrempes and Cloutier (2010) that the total signal power depends only
on the coherent component in that case, which is a desirable property. Since the
other distributions do not have these two properties, it makes the interpretation of

10 Review of Envelope Statistics Models for Quantitative Ultrasound Imaging 229



their parameters more delicate, even if goodness-of-fit tests with data might be
satisfying.

Finally, let us show that the Nakagami distribution also has these two prop-
erties. For that purpose, we consider a homodyned K-distribution with parameters
e, r2, and a, and its approximating Nakagami distribution with parameters m ¼
mðe2=ð2r2Þ; aÞ and X ¼ e2 þ 2r2a as at the beginning of this section. If e [ 0 and
a are fixed and r2 ! 0, then, the parameter c ¼ e2=ð2r2Þ ! 1. From Theorem

26, part b), one has limc!1Mð1ÞHKðc; aÞ ¼ 1 (a being fixed). Thus, from Theorem
31, part b), one concludes that mðc; aÞ ! 1. Therefore, one obtains

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc; aÞ

p
!1. Moreover, if r2 ! 0, then X ¼ e2 þ 2r2a! e2, which is

independent of the diffuse signal parameters r2 and a. Therefore, the Nakagami,
just as the Rice distribution and the homodyned K-distribution, is compatible with
the limit case of a vanishing diffuse signal.

10.4 Parameter Estimation Methods

We discuss various known methods for the estimation of the parameters of the
distributions presented in 10.3 based on an independent and identically distributed
(i.i.d.) sample set ðA1; . . .;ANÞ of positive real numbers (representing the
amplitude).

10.4.1 Overview of a Few Estimation Methods

10.4.1.1 The MLE and the MAP

The MLE is defined as a critical point of the log-likelihood function (Edgeworth
1908, 1909; Fisher 1912, 1922, 1925) (the reader may also consult Pratt (1976))

LðhÞ ¼
XN

i¼1

log PðAi j hÞ; ð10:12Þ

where h represents the vector of parameters of the distribution and fA1; . . .;ANg is
the sample data of size N. Actually, there might be multiple critical points and no
global maximum (on the entire parameter domain). However, if the true value of
the parameters is in the interior of a compact subset of the parameter domain, then
the global maximum of the log-likelihood on that compact set converges to the
true value of the parameters as the size of the sample tends to infinity (Redner
1981). Thus, one can define the MLE as the critical point with largest log-likeli-
hood value (Redner and Walker 1984). A major difficulty lies in the analysis of the
critical points: how many are there and which one coincides with the MLE? In
fact, if the sample size is not sufficiently large, there might be no critical point of
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the log-likelihood function. Thus, one needs to address this issue before applying
any numerical method to find the MLE.

One may also wish to impose a prior pðhÞ on the parameters of the distribution.
In that case, one considers the critical points of the constrained log-likelihood
function

LðhÞ þ log pðhÞ; ð10:13Þ

where log pðhÞ is viewed as a regularizing term. The MAP can then be defined as
the critical point with largest value of the constrained log-likelihood function.

10.4.1.2 Moments Based Methods

Moments’ methods have the advantage, over the MLE, of providing simpler and
faster algorithms. On the other hand, the resulting systems of equations do not
always admit a solution.

The simplest of these methods is based on the first few moments of the
intensity. The number of moments considered is then equal to the number of
parameters in the estimated distribution: one for the Rayleigh distribution, two for
the Rice distribution, the K-distribution or the Nakagami distribution, and three for
the homodyned K-distribution. Thus, one solves the system of equations

E½Im� ¼ Im; m ¼ 1; . . .; r ð10:14Þ

where r is the number of parameters of the distribution. In Eq. (10.14), the left-
hand side E½Im� represents a function of the parameters of the distribution, whereas
the right-hand side Im is the empirical moment computed from the data.

A slightly more complex method is based on the first few moments of the
amplitude. Thus, one solves the system of equations

E½Am� ¼ Am; m ¼ 1; . . .; r: ð10:15Þ

Since the intensity is the square of the amplitude, such methods use lower orders of
the intensity, and thus, are likely to be less sensitive to noise. On the other hand,
the analytical expressions of those moments are typically more complex than
integral order moments of the intensity.

One may also use arbitrary fractional order moments of the intensity. For later
reference, we find convenient to introduce the MðmÞ-statistics, defined as

MðmÞ ¼ Am

ðIÞm=2
; ð10:16Þ

where m [ 0. This statistic is the fractional moment of order m of the amplitude
normalized so that it becomes invariant under multiplication of the signal by a
positive scaling constant.
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Lemma 1 For any non-constant random variable, 0\MðmÞ\1, if 0\m\2,
whereas MðmÞ[ 1, if m[ 2.

Proof If m\2, the function Im=2 is convex. Therefore, by Jensen’s inequality

(Jensen 1906), we have E½Am� ¼ E½Im=2�\ðE½I�Þm=2 since the random variable I is
non-constant. If m [ 2, the function Im=2 is concave and we obtain the reversed
inequality. �

If the number of parameters r is at least 2, the method based on the first few
moments of the intensity is equivalent to solving the system

E½I� ¼ I;
E½Am�
ðE½I�Þm=2

¼ Am

ðIÞm=2
; m ¼ 4; 6 ð10:17Þ

and thus amounts to working with the Mð4Þ and Mð6Þ statistics. Similarly, the
method based on the first few moments of the amplitude is equivalent to solving
the system

E½I� ¼ I;
E½Am�
ðE½I�Þm=2

¼ Am

ðIÞm=2
; m ¼ 1; 3 ð10:18Þ

and thus amounts to working with the Mð1Þ and Mð3Þ statistics.
One may also combine various moments in the form of the SNR of a fractional

order of the amplitude

RðmÞ ¼ Am

ðA2m � ðAmÞ2Þ1=2
; ð10:19Þ

or the skewness

SðmÞ ¼ A3m � 3Am A2m þ 2ðAmÞ3

ðA2m � ðAmÞ2Þ3=2
; ð10:20Þ

or the kurtosis

KðmÞ ¼ A4m � 4Am A3m þ 6A2m ðAmÞ2 � 3ðAmÞ4

ðA2m � ðAmÞ2Þ2
: ð10:21Þ

Note that these three statistics can be expressed in terms of the family of MðmÞ-

statistics. For instance, we have RðmÞ ¼ MðmÞ

ðMð2mÞ�ðMðmÞÞ2Þ1=2.

Considering more equations than the number of parameters of the distribution
yields an overdetermined system of (non-linear) equations that may be solved in
the sense of the least mean square (LMS). Thus, overall, all these methods amount
to considering various combinations of the MðmÞ-statistics.
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10.4.1.3 Log-Moments Based Methods

One may also work with moments of functions of the intensity that involve its
logarithm. Ideally, one would consider powers of the logarithm of the intensity.
But powers greater than 1 appear to be intractable for the distributions considered
in this chapter, because the resulting integrals are not known explicitly as far as we
can tell. Moreover, one may want to obtain functions that are invariant under a
change of the intensity by a scaling factor. Thus, one is led to the so-called
U-statistics (Oliver 1993)

U ¼ log I � log I; ð10:22Þ

and the X-statistics (Blacknell and Tough 2001)

X ¼ I log I=I � log I: ð10:23Þ

Lemma 2 For any non-constant random variable, U\0:

Proof The function log I is convex. Therefore, from Jensen’s inequality, we
obtain E½log I�\ log E½I�, since the random variable I is non-constant. �

Lemma 3 For any non-constant random variable, X [ 0.

Proof The function I log I is concave. Thus, E½I log I�[ E½I� log E½I�. From
Lemma 2, we conclude that E½I log I�[ E½I�E½log I�. �

10.4.2 Parameter Estimation Method for the Rayleigh
Distribution

Since a Rayleigh distribution with parameter r2 on the amplitude A is equivalent to
an exponential distribution with parameter 2r2 on the intensity I ¼ A2, the MLE of
the parameter r2 is equal to I=2. Note that, in this special case, the MLE coincides
with the estimator based on the first moment of the intensity.

10.4.3 Parameter Estimation Methods for the Rice
Distribution

10.4.3.1 The MLE for the Rice Distribution

In Talukdar and Lawing (1991), the Rice distribution is estimated in the sense of
the MLE, as follows.
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Theorem 5 (Talukdar and Lawing 1991). Let A1; . . .;AN be a finite sample set of
positive numbers. Let e� 0 and r2 [ 0 be the parameters of the Rice distribution.

Let l ¼ e2 þ 2r2, and j ¼ e2=ð2r2Þ. Let yi ¼ Ai=
ffiffi
I
p

, where I ¼ 1=N
PN

i¼1 A2
i .

Then, the critical points of the log-likelihood function LRiðe; r2Þ of the Rice dis-
tribution are the points of the form

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj=ðjþ 1Þ

p
; r2 ¼ l=ð2ðjþ 1ÞÞ; ð10:24Þ

where l ¼ I and j� 0 is any root of the function f ðjÞ defined by

1
ð1þ jÞ þ

ð1þ 2jÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p
XN

i¼1

yi
I1ð2yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p
Þ

I0ð2yi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ jÞ

p
Þ
� 2: ð10:25Þ

Here, Ip denotes the modified Bessel function of the first kind of order p (the
subscript avoids the confusion with the intensity I).

Theorem 5 gives useful information on the value of l for the critical points of
the log-likelihood function. It also introduces a one-variable function f ðjÞ. But the
main drawback is the lack of information on the roots of f . Fortunately, a more
recent result gives complete information about the critical points of the log-like-
lihood function of the Rice distribution in the following form.

Theorem 6 (Carrobi and Cati 2008). Let A1; :::;AN be a finite sample set of
positive numbers. Let e� 0 and r2 [ 0 be the parameters of the Rice distribution.

Let I ¼ 1=N
PN

i¼1 A2
i . Assume that the elements Ai are not all identical. Then, the

log-likelihood function LRiðe; r2Þ of the Rice distribution has exactly two critical
points: ð0; I=2Þ and another one, denoted ðê; r̂2Þ, that satisfies ê [ 0 and r̂2 [ 0.
Moreover, the MLE is the second one. In fact, the MLE is actually an absolute
maximum of the log-likelihood function on its domain.

Thus, the MLE ð̂e; r̂2Þ consists of the unique critical point of the log-likelihood
function LRiðe; r2Þ for which both coordinates are positive.

10.4.3.2 Expression of Fractional Order Moments of the Amplitude

The MðmÞ-statistics is explicitly known for the Rice distribution.

Theorem 7 (Rice 1954). Assume that A ¼
ffiffi
I
p

is distributed according to the Rice
distribution, with parameters e� 0 and r2 [ 0. Set j ¼ e2=ð2r2Þ. Then, the MðmÞ-

statistics E½Am�=E½I�m=2 is equal to

MðmÞRi ðjÞ ¼
Cðm=2þ 1Þ
ðjþ 1Þm=2 1 F1ð�m=2; 1;�jÞ; ð10:26Þ
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where pFqða1; :::; ap; b1; :::; bq; zÞ is the generalized hypergeometric series (here
p ¼ q ¼ 1).

10.4.3.3 Method Based on the Moments of the Amplitude

In Talukdar and Lawing (1991), an estimation method of the Rice distribution
based on the first two moments of the amplitude is proposed as an alternative to the
MLE. The method consists of solving the system of equations

E½A� ¼ A; E½A2� ¼ A2: ð10:27Þ

For that purpose, it is proposed to consider the equivalent system E½I� ¼ I and
E½A�

E½I�1=2 ¼ Mð1Þ. The point of using this equivalent system is that the Mð1Þ-statistics

for the Rice distribution depends only on the parameter j. As a special case of
Theorem 7, we have the Mð1Þ-statistics.

Corollary 1 Talukdar and Lawing (1991). Assume that A ¼
ffiffi
I
p

is distributed
according to the Rice distribution, with parameters e� 0 and r2 [ 0. Set

j ¼ e2=ð2r2Þ. Then, the Mð1Þ-statistics E½A�=E½I�1=2 is equal to

Mð1ÞRi ðjÞ ¼
Cð3=2Þ
ffiffiffiffiffiffiffiffiffiffiffi
jþ 1
p e�j=2

�
ð1þ jÞI0ðj=2Þ þ jI1ðj=2Þ

�
; ð10:28Þ

where Ip denotes the modified Bessel function of the first kind of order p:

10.4.3.4 Discussion

In this section, we present a new result on the computation of the MLE of the Rice
distribution. We show that the Talukdar-Lawing estimator of Sect. 10.4.3.3 can be
computed with a binary search algorithm. We introduce two log-moments based
methods for the Rice distribution. Finally, we compare these estimators on sim-
ulated data.

Concerning the MLE computation, a little more work allows to combine
Theorems 5 and 6 into the following result. See Fig. 10.2 for an illustration of the
function f ðjÞ.

Theorem 8 Notation as in Theorem 5. Assume that the data elements Ai are not
all identical. Then, the function f ðjÞ of Eq. 10.25 has exactly two non-negative
roots: 0 and a unique positive root, denoted j
. The MLE is expressed as in
Eq. (10.24), with j ¼ j
 (i.e. the unique positive root of the function f ). Moreover,
f ðjÞ[ 0 on the interval ð0;j
Þ, and f ðjÞ\0 on the interval ðj
;1Þ.
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Theorem 8 implies that an efficient binary search algorithm can be used for the
computation of the MLE of the Rice distribution.

Concerning the estimation method based on the MðmÞ-statistics, in general, there

is no closed form for a solution to the equation. MðmÞRi ðjÞ ¼ M, but one can use the
following result, relevant for any m 6¼ 2. See Fig. 10.3, right column, for an

illustration of the function MðmÞRi ðjÞ.

Theorem 9 Let m[ 0. Then,

(a) limj!0 MðmÞRi ðjÞ ¼ Cðm=2þ 1Þ;
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(b) limj!1MðmÞRi ðjÞ ¼ 1;

(c) if m\2, the function MðmÞRi ðjÞ is an increasing function; if m [ 2, the function

MðmÞRi ðjÞ is a decreasing function.

Thus, let M [ 0 be a real number (playing the role of the MðmÞ-statistics). If
m\2 and Cðm=2þ 1Þ�M\1, then an efficient binary search algorithm yields the

unique solution to the equation MðmÞRi ðjÞ ¼ M. Indeed, from Theorem 9, the

function MðmÞRi ðjÞ is increasing in that case and its range is the interval
½Cðm=2þ 1Þ; 1Þ. On the other hand, if m\2 and M\Cðm=2þ 1Þ, then there is no

solution to the equation MðmÞRi ðjÞ ¼ M. Nevertheless, in that case, the value j ¼ 0

minimizes the distance between MðmÞRi ðjÞ and M. Thus, it makes sense to take
j ¼ 0. Similarly, if m [ 2 and 1\M�Cðm=2þ 1Þ, then there is a unique solution

to the equation MðmÞRi ðjÞ ¼ M, and this solution can be found efficiently with a
binary search algorithm. On the other hand, if m [ 2 and M [ Cðm=2þ 1Þ, one
may take j ¼ 0. Thus, it makes sense to switch to the Rayleigh model (corre-

sponding to j ¼ 0), whenever the equation MðmÞRi ðjÞ ¼ M has no solution. This
argument applies to the special case where m ¼ 1, which corresponds to the
Talukdar-Lawing method of Corollary 1. For later reference, we introduce here
what we call the Rice conditions

m\2 and Cðm=2þ 1Þ�M\1, or m [ 2 and 1\M�Cðm=2þ 1Þ: ð10:29Þ

Thus, as explained above, the equation MðmÞRi ðjÞ ¼ M has a solution if and only if
the Rice conditions are satisfied. Note that the U and X-statistics can be computed
analytically for the Rice distribution.

Theorem 10 Assume that A ¼
ffiffi
I
p

is distributed according to the Rice distribu-
tion, with parameters e� 0 and r2 [ 0. Set j ¼ e2=ð2r2Þ. Then,

(a) the U-statistics E½log I� � log E½I� is equal to

URiðjÞ ¼ Cð0; jÞ þ log
j

jþ 1
; ð10:30Þ

where Cð0; xÞ is the incomplete gamma function
R1

x
e�t

t dt;
(b) the X-statistics E½I log I�=E½I� � E½log I� is equal to

XRiðjÞ ¼
1

jþ 1
ð2� e�jÞ: ð10:31Þ

Theorem 11 below shows that a binary search algorithm can be used to solve
the equation URi ¼ U if and only if U� � cE, where cE is the Euler’s constant. If
ever U\� cE, one may switch to the Rayleigh model (j ¼ 0). Similarly,
Theorem 12 shows that the equation XRi ¼ X has a solution (which is then unique
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and can be found with a binary search algorithm) if and only if X\4. If ever X� 4,
one may switch to the Rayleigh model.

Theorem 11

(a) limj!0 URiðjÞ ¼ �cE, where cE is the Euler’s constant;
(b) limj!1 URiðjÞ ¼ 0;
(c) the function URiðjÞ is an increasing function.

Theorem 12

(a) limj!0 XRiðjÞ ¼ 1;
(b) limj!1 XRiðjÞ ¼ 0;
(c) the function XRiðjÞ is a decreasing function.

See Fig. 10.4, right column, for an illustration of the X-statistics for the Rice
distribution.
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In order to compare these four estimators, we considered the parameter k ¼ffiffiffiffiffiffi
2j
p

¼ e=r with values in the set f0:1; 0:2; . . .; 2:0g. For each value of k, 1; 000
datasets of N ¼ 1; 000 elements each were simulated according to the corre-
sponding Rice distribution. Thus, we could estimate the normalized mean squared

error (MSE) of the estimator k̂ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðk̂ � kÞ2�

q
=k. The resulting normalized MSE

curves are presented in Fig. 10.5. As one can see, the MLE is slightly better than
the estimators based on the Mð1Þ or the X-statistics. The method based on the
U-statistics is slightly worse than the other estimators. The two estimators based
on the Mð1Þ and the X-statistics are practically equivalent.

10.4.4 Parameter Estimation Methods for the K-Distribution

10.4.4.1 The MLE for the K-Distribution

The partial derivatives of the log-likelihood function of the K-distribution with
respect to a and r2 are equal to

o

oa
LKðr2; aÞ ¼ �NwðaÞ þ

XN

i¼1

log
� 1
ffiffiffiffiffiffiffi
2r2
p Ai

�
þ

o
oa Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

� ; ð10:32Þ

o

or2
LKðr2; aÞ ¼ �Na

r2
þ
XN

i¼1

1
r2

� 1
ffiffiffiffiffiffiffi
2r2
p Ai

� Ka
� ffiffiffiffi

2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

� : ð10:33Þ

Solutions to this system of two non-linear equations are found numerically in
Joughin et al. (1993). In Roberts and Furui (2000), an Expectation-Maximization
(EM) algorithm is proposed for finding the MLE. In that context, the variable w of
Eq. (10.4) is viewed as the latent variable. A variant of the EM algorithm is used
in Chung et al. (2005) in place of the standard EM algorithm.

However, none of the methods (Joughin et al. 1993; Roberts and Furui 2000;
Chung et al. 2005) can be used in full generality, because the MLE is not always
well-defined for the K-distribution. See Sect. 10.4.4.6 for a discussion on that
issue.

10.4.4.2 Expression of Fractional Order Moments of the Amplitude

The MðmÞ-statistics is explicitly known for the K-distribution.
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Theorem 13 (Dutt and Greenleaf 1995). Assume that A ¼
ffiffi
I
p

is distributed
according to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the MðmÞ

-statistics E½Am�=E½I�m=2 is equal to

MðmÞK ðaÞ ¼ Cðm=2þ 1ÞCðm=2þ aÞ
am=2CðaÞ : ð10:34Þ

10.4.4.3 A Method Based on the Moments of the Intensity

The simplest moments method consists in solving the system of equations

E½I� ¼ I; E½I2� ¼ I2: ð10:35Þ

Equivalently, that method is based on the mean intensity and the Mð4Þ-statistics
(that statistics is called the V-statistics in Blacknell and Tough (2001)). One

computes for the K-distribution VKðaÞ ¼ E½I2�=E½I�2 ¼ 2
�

1þ 1
a

�
. Thus, there is a

solution to the system (10.35) if and only if V [ 2, in which case the solution is
equal to a ¼ 2=ðV � 2Þ.

10.4.4.4 Two Methods Based on Fractional Order Moments
of the Amplitude

In Dutt and Greenleaf (1995), the authors suggest to use the SNR based on
fractional order moments in the form of the RðmÞ-statistics, where m[ 0. In that
study, it is shown that a value of m ¼ 1=4 yields a reliable estimator. We have the
following result (note that there is a typographical error in Dutt and Greenleaf
(1995, Eq. (6), p. 253)).

Theorem 14 (Dutt and Greenleaf 1995). Assume that A is distributed according
to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the RðmÞ-statistics

E½Am�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½A2m��E½Am�2
p is expressed as

RðmÞK ðaÞ ¼
Cðm=2þ 1ÞCðm=2þ aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðmþ 1ÞCðmþ aÞCðaÞ � C2ðm=2þ 1ÞC2ðm=2þ aÞ

q : ð10:36Þ

In Iskander and Zoubir (1999), the authors suggest the use of fractional order

moments in the form of the Y-statistics E½A2rþ2s�
E½A2r �E½A2s�, where s [ 0, and r 2 N. It is
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shown that a value of s\2 yields lower variance of the resulting estimator, taking
r ¼ 1. The following result holds.

Theorem 15 (Iskander and Zoubir 1999). Assume that A is distributed according
to the K-distribution, with parameters r2 [ 0 and a [ 0. Then, the Y-statistics

E½A2þ2s�
E½A2�E½A2s� is expressed as

YKðaÞ ¼ ð1þ sÞð1þ s

a
Þ: ð10:37Þ

Using Theorem 15, there is a solution to the equation YKðaÞ ¼ Y if and only if

Y [ 1þ s. In that case, a ¼ sð1þsÞ
Y�ð1þsÞ is the unique solution. Note that the V-statistics

corresponds to the special case where s ¼ 1.

10.4.4.5 Two Log-Moments Methods

In the case of the K-distribution, it has been proposed (Oliver 1993) to use the
U-statistics in order to estimate a.

Theorem 16 (Oliver 1993). Assume that
ffiffi
I
p

is distributed according to the
K-distribution, with parameters r2 [ 0 and a[ 0. Then, the U-statistics E½log I� �
log E½I� is expressed as

UKðaÞ ¼ �cE þ wðaÞ � log a; ð10:38Þ

where cE is the Euler’s constant and wðzÞ ¼ d½log CðzÞ�=dz is the digamma
function (Abramowitz and Stegun 1972, (6.3.1)).

There is also a method (Blacknell and Tough 2001) based on the X-statistics.

Theorem 17 (Blacknell and Tough 2001). Assume that
ffiffi
I
p

is distributed
according to the K-distribution, with parameters r2 [ 0 and a[ 0. Then, the
X-statistics E½I log I�=E½I� � E½log I� is expressed as

XKðaÞ ¼ 1þ 1
a
: ð10:39Þ

Lemma 3 guarantees that X is non-negative. Thus, there is a solution to the
equation XKðaÞ ¼ X if and only if X [ 1, in which case the unique solution is
equal to a ¼ 1=ðX � 1Þ. See Fig. 10.4, left column, for an illustration of the
X-statistics for the K-distribution.
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10.4.4.6 Discussion

In this section, we present further results on the MLE and the MAP of the
K-distribution. We then show that the methods introduced in Sects. 10.4.4.3 to
10.4.4.5 can be solved with a binary search algorithm. Finally, we present a
comparison of these estimators on simulated data.

Arguing that the existing methods for computing the MLE are time consuming
and that moments based methods do not always lead to a solution of the resulting
equations, a Bayesian estimation method of the SNR (denoted D and called the
detection index) was proposed in Abraham and Lyons (2010).

To clarify the notion of MLE for the K-distribution, we present the following
two results.

Theorem 18 Let a[ 0 be fixed. Then, there exists a root r2ða; ~AÞ[ 0 of
o

or2 LKðr2; aÞ.

Theorem 19 Let N� 1 be the sample size and r2ða; ~AÞ denote any root of
o

or2 LKðr2; aÞ. Then,

(a) lima!0 a o
oa LKðr2ða; ~AÞ; aÞ�N.

(b) lima!1 a o
oa LKðr2ða; ~AÞ; aÞ ¼ 0.

Thus, if ever the function o
oa LKðr2ða; ~AÞ; aÞ is decreasing for some sample set,

then there is no MLE. This is the case, for instance, if fA1;A2g ¼ f1
2 ;
ffiffi
7
p

2 g (see
Fig. 10.6). So, the point in considering other estimators than the MLE is not so
much that its computation is time consuming, but rather that it is not always well-
defined for the K-distribution.

However, one may set a prior on the parameters r2 and a and see if the
maximum a posteriori (MAP) is well-defined. For the K-distribution, let us con-
sider the prior pðaÞ ¼ 1=a (so, this prior does not depend on r2 for simplicity of
technical considerations). This amounts to setting the Jeffreys non-informative
prior (Jeffreys 1946) on the parameter a. Recall that the Jeffreys prior is defined as

LK( 2( , Ã ), )

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

scatterer clustering parameter α

Fig. 10.6 Behavior of the
function o

oa LKðr2ða; ~AÞ; aÞ for
the K-distribution in the case

where ~A ¼ f1
2 ;
ffiffi
7
p

2 g. The MLE
is not defined in this case
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pðaÞ ¼
�
IFðaÞ

�1=2
, where IFðaÞ denotes the Fisher information (Fisher 1956),

namely IFðaÞ ¼ �E½ o2

o2a
log PðA jr2; aÞ� ¼ E½

�
o
oa log PðA j r2; aÞ

�2�. In Abraham

and Lyons (2010), it is shown that pðaÞ� 1=a for large values of a. Then, the MAP
corresponds to a solution to the system of equations

o

oa
LKðr2; aÞ þ o

oa
log pðaÞ ¼ 0; ð10:40Þ

o

or2
LKðr2; aÞ ¼ 0: ð10:41Þ

Now, with the proposed prior, we obtain o
oa log pðaÞ ¼ �1=a: Then, from Theorem

19, we know that o
or2 LKðr2ða; ~AÞ; aÞ � 1=a�ðN � 1Þ=a[ 0, for a sufficiently

small and N [ 1, and that o
oa LKðr2ða; ~AÞ; aÞ � 1=a\0 for a sufficiently large.

Therefore, the Intermediate Value Theorem implies that there is a[ 0 for which
o
oa LKðr2ða; ~AÞ; aÞ � 1=a ¼ 0: Thus, this MAP estimator is well-defined for the
K-distribution. Furthermore, its computation is amenable to a binary search
algorithm. Note that one may have chosen the prior pðr2; aÞ ¼ 1

r because it is
scale-invariant (i.e., PKðA j r2; aÞ ¼ 1

r PKðAr j 1; aÞ). However, with that choice of
prior, one may have an undefined MAP estimator. Other priors are possible, but we
have not explored that avenue here.

Note that in Abraham and Lyons (2010), it is advocated to take the non-
informative prior 1=a2 instead of the Jeffreys prior 1=a, in order to obtain a
posterior distribution with a well-defined mean, i.e. such that

R1
0 aPða j ~AÞ da\1.

But, there is no need to require a finite posterior mean to define the MAP. The only
requirement is a finite sum for the posterior distribution (i.e.,

R1
0 Pða j ~AÞ da\1.

Now, taking the prior 1=a2 (Abraham and Lyons 2010), the first statement is

equivalent to
R1

0 a
QN

i¼1 PðAi j r2aÞ 1
a2 da\1. On the other hand, taking the

Jeffreys prior 1=a, the second statement is equivalent to
R1

0

QN
i¼1

PðAi j r2aÞ 1
a da\1. Thus, as one can see, the two statements are equivalent

(because, two different priors are considered).
One may wish to simplify the above MAP estimator by considering a hybrid

MAP. Namely, the first moment of the intensity yields the identity r2 ¼ I=ð2aÞ.
Substituting this expression into the difference of Eq. (10.40) with Eq. (10.41)
yields the equation

n
a

o

oa
LKðr2; aÞ � r2 o

or2
LKðr2; aÞ

o��
�
r2¼I=ð2aÞ

� 1 ¼ 0: ð10:42Þ

The following result implies that a solution to Eq. (10.42) can be found with a
binary search algorithm, provided that the sample size N is greater than 1.
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Theorem 20 Let N � 1 be the sample size. Then,

a) lima!0

n
a o

oa LKðr2; aÞ � r2 o
or2 LKðr2; aÞ

o��
�
r2¼I=ð2aÞ

¼ N.

b) lima!1

n
a o

oa LKðr2; aÞ � r2 o
or2 LKðr2; aÞ

o��
�
r2¼I=ð2aÞ

¼ 0.

Concerning the estimation method based on the MðmÞ-statistics, in general, there

is no closed form for a solution to the equation MðmÞK ðaÞ ¼ M, but one can use the
following result, relevant for any m 6¼ 2. See Fig. 10.3, left column, for an illus-

tration of the function MðmÞK ðaÞ.

Theorem 21 We have the following properties

(a) if m\2, then lima!0 MðmÞK ðaÞ ¼ 0; if m[ 2, then lima!0 MðmÞK ðaÞ ¼ 1;

(b) lima!1MðmÞK ðaÞ ¼ Cðm=2þ 1Þ;
(c) if m\2, then MðmÞK ðaÞ is strictly increasing on its domain ð0;1Þ; if m[ 2, then

MðmÞK ðaÞ is strictly decreasing on its domain ð0;1Þ.

So, let M [ 0 be a real number (playing the role of the MðmÞ-statistics). If m\2
and 0\M\Cðm=2þ 1Þ, then an efficient binary search algorithm yields the

unique solution to the equation MðmÞK ðaÞ ¼ M. Indeed, from Theorem 21, the

function MðmÞK ðaÞ is increasing in that case and its range is the interval
ð0;Cðm=2þ 1ÞÞ. On the other hand, if m\2 and Cðm=2þ 1Þ�M\1, then there is

no solution to the equation MðmÞK ðaÞ ¼ M. However, in that case, the distance

between MðmÞK ðaÞ and M is minimal as a!1. Thus, it makes sense to take the
Rayleigh distribution. Similarly, if m [ 2 and M [ Cðm=2þ 1Þ, then there is a

unique solution to the equation MðmÞK ðaÞ ¼ M, and this solution can be found
efficiently with a binary search algorithm. On the other hand, if m[ 2 and
1\M\Cðm=2þ 1Þ, one may take a!1. For later reference, we introduce here
what we call the K-distribution conditions

m\2 and 0\M\Cðm=2þ 1Þ, or m [ 2 and Cðm=2þ 1Þ\M: ð10:43Þ

Thus, the equation MðmÞK ðaÞ ¼ M has a solution if and only if the K-distribution
conditions are satisfied. Note that the Rice conditions (10.29) and the K-distri-
bution conditions (10.43) are mutually exclusive and they are exhaustive (that it is
to say, with the understanding that M plays the role of the MðmÞ-statistics).

Concerning the parameter estimation method (Dutt and Greenleaf 1995), the

following result shows that the equation RðmÞK ðaÞ ¼ R, where R [ 0 plays the role of

the RðmÞ-statistics, has a solution if and only if R\ Cðm=2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðmþ1Þ�C2ðm=2þ1Þ
p , and that there

is at most one solution. Moreover, it shows that an efficient binary search algo-
rithm can be used to find the solution, whenever it exists. Finally, one sees that the
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solution a ¼ 1 is the one that minimizes the distance between RðmÞK ðaÞ and R,

whenever the equation RðmÞK ðaÞ ¼ R has no solution. This amounts to switch to the
Rayleigh model, with parameter a2 ¼ lima!1 r2a ¼ I.

Theorem 22 The following properties hold

(a) lima!0 RðmÞK ðaÞ ¼ 0;

(b) lima!1 RðmÞK ðaÞ ¼
Cðm=2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cðmþ1Þ�C2ðm=2þ1Þ
p ;

(c) RðmÞK ðaÞ is strictly increasing on its domain ð0;1Þ.

Concerning the method of Oliver (1993), the following result shows that an
efficient binary search algorithm can be used in order to find the unique solution to
the equation UKðaÞ ¼ U, whenever U\� cE. If ever U� � cE, Theorem 23
shows that it makes sense to adopt the Rayleigh model.

Theorem 23 We have the following properties

(a) lima!0 UKðaÞ ¼ �1;
(b) lima!1 UKðaÞ ¼ �cE;
(c) UKðaÞ is strictly increasing on its domain ð0;1Þ.

Similarly, one may switch to the Rayleigh distribution, whenever V � 2 (c.f.
Sect. 10.4.4.3), or Y � 1þ s (c.f. Sect. 10.4.4.4), or X� 1 (c.f. Sect. 10.4.4.5).
Theorems 22 and 23 are illustrated in Fig. 10.7.

In order to compare the various estimators, we considered the parameter a with
values in the set f1; 2; . . .; 20g. For each value of a, 1; 000 datasets of N ¼ 1; 000
elements each were simulated according to the corresponding K-distribution. As in
Dutt and Greenleaf (1994), one may consider the estimation of the parameter
b ¼ 1=a instead of a itself. In that case, one does not need to discard values of 1=a,
because whenever the method has no solution, one may switch to the Rayleigh
model (a ¼ 1), which corresponds to 1=a ¼ 0. Thus, we could estimate the
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Fig. 10.7 Typical behavior of the RðmÞ-statistics (left image) and of the U-statistics (right image)
for the K-distribution. Here, m ¼ 1=4
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normalized mean squared error (MSE) of the estimator b̂ as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb̂� bÞ2�

q
=b. The

resulting normalized MSE curves are presented in Fig. 10.8. As one can see, the
estimators based on the Mð1Þ, Y , or X statistics and the hybrid MAP are practically
equivalent and are better than the estimators based on the U or the R statistics.

10.4.5 Parameter Estimation Methods for the Homodyned
K-Distribution

10.4.5.1 Expression of Fractional Order Moments of the Amplitude

Theorem 24 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then,

(a) (Prager et al. 2002) if c� 0, the MðmÞ-statistics E½Am�=E½I�m=2 can be expressed
in the following form

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1

0
wm=2

1F1ð�m=2; 1;� c
w
ÞGðw j a; 1Þ dw; ð10:44Þ

where pFq denotes the hypergeometric series (here, p ¼ q ¼ 1).
(b) (Dutt and Greenleaf 1995) if c ¼ 0, the MðmÞ-statistics is equal to

MðmÞHKð0; aÞ ¼ Cðm=2þ 1ÞCðm=2þ aÞ
am=2CðaÞ : ð10:45Þ
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Fig. 10.8 Left: Comparison between the normalized MSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðb̂� bÞ2�

q
=b, where b ¼ 1=a, of

the estimators based on the Mð1Þ-statistics (black solid line), the Y-statistics (magenta solid line),
the X-statistics (green solid line), the U-statistics (blue solid line), and the R-statistics (dotted
line), for the K-distribution. Right: Comparison between the normalized MSE of the estimators
based on the Mð1Þ-statistics (black solid line), the V-statistics (dashed line), and the hybrid MAP
(red solid line). The sample size is N ¼ 1; 000
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(c) (Hruska and Oelze 2009) if m=2þ a is not an integer and c� 0, the MðmÞ-
statistics can be expressed as

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

nCðm=2þ aÞ
CðaÞ 1F2ð�m=2; 1; 1� m=2� a; cÞ

þ Cðm=2þ 1Þ sinðpm=2Þ
C2ð1þ m=2þ aÞ sinðpðm=2þ aÞÞ

cm=2þa
1F2ða; 1þ m=2þ a; 1þ m=2þ a; cÞ

o
:

ð10:46Þ

(d) (Jakeman and Tough 1987) if m=2 [ 2 is an integer and c� 0, then the MðmÞ-
statistics is equal to

MðmÞHKðc; aÞ ¼
ðm=2Þ!ðm=2Þ!
ðcþ aÞm=2CðaÞ

Xm=2

i¼0

Cðm=2� iþ aÞ
i!i!ðm=2� iÞ! ci: ð10:47Þ

10.4.5.2 A Method Based on the Moments of the Intensity

A moments’ method for the estimation of the homodyned K-distribution was
proposed in Dutt and Greenleaf (1994). Namely, one solves the system of
equations

E½I� ¼ I; E½I2� ¼ I2; E½I3� ¼ I3 ð10:48Þ

in order to estimate ðe; r2; aÞ, where I ¼ A2 is the intensity. In Prager et al. (2003),
the three moments E½I�, E½I2�, and E½I3� are expressed analytically as functions of
s2 ¼ r2a (denoted r2 in that reference), k ¼ e=ðr

ffiffiffi
a
p
Þ, and b ¼ 1=a, as follows

E½I� ¼ s2½k2 þ 2�;
E½I2� ¼ s4½8ð1þ bÞ þ 8k2 þ k4�;
E½I3� ¼ s6½48ð1þ 3bþ 2b2Þ þ 72k2ð1þ bÞ þ 18k4 þ k6�:

ð10:49Þ

In Prager et al. (2003, Appendix C, p. 712), an algebraic method is presented to
solve the system (10.49) for s2, k, and b, rejecting negative or imaginary values.

Observe that Eq. (10.48) is equivalent to the system of equations

l ¼ I; Mð4ÞHKðc; aÞ ¼ I2=I
2
; Mð6ÞHKðc; aÞ ¼ I3=I

3
; ð10:50Þ

where l ¼ e2 þ 2r2a ¼ E½I�. Moreover, the values of e and r2 can be recovered
from c, a and l with the change of variables
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e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

c
ðcþ aÞ

r
; r2 ¼ l

1
2ðcþ aÞ : ð10:51Þ

10.4.5.3 A Method Based on the Moments of the Amplitude

In Dutt (1995, Sect. 9.2.2, p. 116), it was suggested to use the first three moments
of the amplitude to estimate the homodyned K-distribution, namely, to solve the
system of equations

E½A� ¼ A; E½A2� ¼ A2; E½A3� ¼ A3: ð10:52Þ

However, at that time, the authors could not find a closed form expression of the
moments of the amplitude. So, approximate expressions were used instead. As
noted in Dutt (1995, p. 117), the parameter estimation might break down for small
values of a and large values of k, due to the weakness of the approximations.

Note that an explicit expression of an arbitrary moment of the amplitude was
given in Hruska and Oelze (2009, Eq. (8), p. 2473). Thus, the estimation method
based on the first three moments of the amplitude would likely need to be tested
again with the exact expressions of those moments.

Observe that Eq. (10.52) is equivalent to the system of equations

l ¼ I; Mð1ÞHKðc; aÞ ¼ A=I
1=2

; Mð3ÞHKðc; aÞ ¼ A3=I
3=2
: ð10:53Þ

10.4.5.4 Methods Based on the SNR of Fractional Order Moments
of the Amplitude

In Dutt (1995, Sect. 9.2.4, p. 117), it was proposed to use the SNR R of the
amplitude and of the intensity. It is reported in Dutt (1995, Sect. 9.5, p. 142) that
the method based on SNRs gave better results than the three methods presented in
Sects. 10.4.5.2, 10.4.5.3 and 10.4.5.5. But then, the exact expression of
Eq. (10.46) was not used, so that this conclusion is not necessarily valid.

In Martin-Fernandez and Alberola-Lopez (2007), the authors suggested to use
the statistics R for two distinct values of m (or more), using an exact expression of
that statistics. In fact, the authors suggested the values 0:01, 0:03, 0:05, 0:075, 0:1,
0:25, 0:4, 0:5, 0:75, and 1. A solution is then found by inspection of the SNR level
curves. Namely, for each value of the fractional order m, the statistics R is
expressed analytically as a function of k ¼ e=ðr

ffiffiffi
a
p
Þ, and a (denoted l in that

reference). One then considers the point ðk; aÞ that is closest to all the corre-
sponding SNR level curves, in the sense of the least mean squares (LMS). Thus,
this method is an extension of the method based on the SNRs of Dutt (1995,
Sect. 9.2.4).
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10.4.5.5 A Method Based on the SNR and Skewness of the Amplitude

In Dutt (1995, Sect. 9.2.4, p. 117), it was proposed to use the SNR R ¼
E½A�

ðE½A2��E2½A�Þ1=2 and the skewness S ¼ E½ðA�E½A�Þ3�
ðE½A2��E2½A�Þ3=2 of the amplitude for the estima-

tion of the homodyned K-distribution. Again, that method should be tested with
the exact expression of Eq. (10.46).

10.4.5.6 A Method Based on the SNR, Skewness and Kurtosis
of Fractional Order Moments of the Amplitude

In Hruska and Oelze (2009), the authors suggested the use of the SNR R, the

skewness S, and the kurtosis K ¼ E½ðAm�E½Am�Þ4�
ðE½A2m��E2½Am�Þ2, for two values of m, namely 0:72

and 0:88. These statistics were expressed analytically as a function of
k ¼ e=ðr

ffiffiffi
a
p
Þ, and a (denoted l in that reference). One then considers the point

ðk; aÞ that is closest to the six corresponding SNR, skewness, and kurtosis level
curves in the sense of the LMS. In order to do so, the ðk; aÞ-space was sampled at
the points of the form ði� 0:01; 10�3þj�0:01Þ, with 0� i; j� 500. The two methods
(Martin-Fernandez and Alberola-Lopez 2007; Hruska and Oelze 2009) were not
compared in Hruska and Oelze (2009). However, the choice of the fractional
orders 0:72 and 0:88 was validated empirically in Hruska and Oelze (2009) (as
opposed to taking the numerous fractional orders 0:01; . . .; 1 in Martin-Fernandez
and Alberola-Lopez (2007)).

10.4.5.7 Discussion

In this section, we present new results on the MðmÞ-statistics and the MLE for the
homodyned K-distribution.

Concerning Theorem 24, the case where m=2þ a is not integer (with no
restriction on c) is covered by part c), whereas part b) covers the case where
m=2þ a is an integer, but with the restriction c ¼ 0. So, what about the case where
c[ 0 and m=2þ a is an integer. The following result answers that question.
However, in practice, one may use linear interpolation to approximate the MðmÞ-
statistics whenever m=2þ a is close to an integer (as done in Hruska and Oelze
(2009)).

Theorem 25 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then, if
c[ 0, the MðmÞ-statistics is expressed as
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MðmÞHKðc; aÞ ¼
2

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1

n¼0

ð1þ m=2Þn
n!n!

ffiffiffi
c
p m=2þaþnKm=2þa�nð2

ffiffiffi
c
p Þ:

ð10:54Þ

where ð1þ m=2Þn denotes the rising factorial Cð1þ m=2þ nÞ=Cð1þ m=2Þ.

Theorems 9 and 21 on the behavior of the functions MðmÞRi ðjÞ and MðmÞK ðaÞ,
respectively, can be extended to the following theorem.

Theorem 26 Assume that A ¼
ffiffi
I
p

is distributed according to the homodyned
K-distribution, with parameters e� 0, r2 [ 0 and a[ 0. Let c ¼ e2=ð2r2Þ. Then,

(a) limc!0 MðmÞHKðc; aÞ ¼ MðmÞK ðaÞ (the function introduced in Theorem 13).

(b) limc!1MðmÞHKðc; aÞ ¼ 1.

(c) For any a[ 0 and c[ 0, the function MðmÞHKðc; aÞ is increasing in the variable
c, if m\ 2, whereas it is decreasing in the variable c, if m[ 2.

See Fig. 10.9 for an illustration of Theorem 26. Theorem 26 implies that the

equation MðmÞHKðc; aÞ ¼ M, a being known, has at most one solution, and moreover,
it gives sufficient and necessary conditions for a solution to exist, as expressed in
the following Corollary.

Corollary 2 Let M [ 0 be a real number (playing the role of MðmÞ). There exists at

most one non-negative solution c ¼ cðmÞM ðaÞ to the equation MðmÞHKðc; aÞ ¼ M, a
being known.

(a) If the Rice conditions (10.29) are satisfied, then there exists a non-negative
solution for any a[ 0.

(b) If the K-distribution conditions (10.43) are satisfied, then there exists a non-

negative solution if and only if a� a0 ¼ ðMðmÞK Þ
�1ðMÞ.

So, given a [ 0, I and A, one can recover e and r2 as follows. First of all, we

take c ¼ cðmÞM ðaÞ, where M ¼ A=ðIÞ1=2. Then, one uses Eq. (10.51), with l ¼ I and

c ¼ cðmÞM ðaÞ. In this manner, well-defined functions can be obtained

eða; I;AÞ; r2ða; I;AÞ; ð10:55Þ

We now discuss briefly the MLE for the homodyned K-distribution. The fol-
lowing result is useful for the computation of the partial derivatives of that
distribution.

Lemma 4 Let e� 0, r2 [ 0 and a [ 0.

(a) The homodyned K-distribution PHKðA j e;r2; aÞ can be expressed as
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1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�1

�
XðhÞ

�
d h; ð10:56Þ

where XðhÞ ¼
ffiffiffiffi
2
r2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ e2 � 2Ae cos h
p

.
(b) The partial derivative o

oe PHKðA j e; r2; aÞ can be expressed as

1
p

Z p

0

2A

r4CðaÞ ðA cos h� eÞ
�XðhÞ

2

�a�2
Ka�2

�
XðhÞ

�
d h: ð10:57Þ

(c) The partial derivative o
or2 PHKðA j e; r2; aÞ can be expressed as

� a
r2

1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
r2

1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a
Ka
�
XðhÞ

�
d h:

ð10:58Þ

(d) The partial derivative o
oa PHKðA j e; r2; aÞ can be expressed as
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Fig. 10.9 Typical behavior of the MðmÞ-statistics for the homodyned K-distribution, a being fixed,
when m\2 (bottom row) and m[ 2 (top row). In fact, we took here m ¼ 1 (bottom row) and m ¼ 3
(top row), as well as a ¼ 1:1 (left column) and a ¼ 10:1 (right column)
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�XðhÞ
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Ka�1

�
XðhÞ
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�
n
�wðaÞ þ log
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ð10:59Þ

where w denotes the digamma function.

One could then extend Theorems 18 and 19 in the context of the homodyned
K-distribution. In fact, we suspect that the MLE is not always well-defined for the
homodyned K-distribution. Thus, one would have to consider a MAP estimator.
Since such an estimator results in a time-consuming algorithm, we will not
develop further that topic here.

10.4.6 Parameter Estimation Methods for the Nakagami
Distribution

10.4.6.1 The MLE for the Nakagami Distribution

Since a Nakagami distribution on the amplitude A is equivalent to a gamma
distribution on the intensity I ¼ A2, the estimation of the Nakagami distribution
parameters amounts to the well-known estimation problem of the gamma distri-
bution. In particular, the MLE is the unique solution to the equation

X ¼ I; wðmÞ � log m ¼ log I � log I; ð10:60Þ

where w denotes the digamma function.

10.4.6.2 A Method Based on the First Two Moments of the Intensity

The most frequently used method for the parameter estimation of the Nakagami
distribution is based on the first two moments of the intensity in the following form

X ¼ I; m ¼ I
2

I2 � I
2 :

ð10:61Þ

Note that the term I
2

I2 � I
2 is the square of the SNR of the intensity. This method is

equivalent to the V-statistics’ method (i.e., based on the Mð4Þ-statistics I2=I
2
).
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10.4.6.3 Discussion

We first mention a relation between the MLE and the U-statistics for the Naka-
gami distribution. Then, new results on moments and log-moments based methods
are presented. Finally, a comparison of these estimators on simulated data is
reported.

Concerning the MLE of the Nakagami distribution, note that the term log I �
log I is the U-statistics. Thus, it is negative unless all terms Ii are identical. Also,
the term wðmÞ � log m is the analytical expression of the U-statistics for the
Nakagami distribution, as stated in the following result.

Theorem 27 Let A be distributed according to the Nakagami distribution with
parameters m and X. Then, the U-statistics E½log I� � log E½I� is expressed as
UNaðmÞ ¼ wðmÞ � log m.

Thus, the MLE turns out to correspond to the U-statistics’ method. But unlike
the K-distribution, the equation wðmÞ � log m ¼ U admits a solution for any
U\0. Indeed, the following result shows that a binary search can be used to
compute the unique solution to that equation.

Theorem 28 (Destrempes et al. 2009). The following properties hold

a) limm!0 wðmÞ � log m ¼ �1;
b) limm!1 wðmÞ � log m ¼ 0;
c) the function wðmÞ � log m is strictly increasing on its domain ð0;1Þ.

Proof

a) We have the identity described in Abramowitz and Stegun (1972, p. 259,
(6.3.21)) wðmÞ ¼ logðmÞ � 1

2m� 2
R1

0
t

ðt2þm2Þðe2pt�1Þ, for m [ 0. This yields

� logðmÞ þ wðmÞ� � 1
2m, and hence limm!0� logðmÞ þ wðmÞ ¼ �1.

b) The same identity as above yields the computation
limm!1 � logðmÞ þ wðmÞ ¼ �2 limm!1

R1
0

t
ðt2þm2Þðe2pt�1Þ dt ¼ 0:

c) We have o
om UNaðmÞ ¼ � 1

mþ wð1ÞðmÞ. But from Abramowitz and Stegun (1972,

p. 260, (6.4.1)), we have wð1ÞðmÞ ¼
R1

0
te�mt

1�e�t dt. Now, te�at

1�e�t [ e�mt, since

e�t [ 1� t, for t [ 0. Therefore, wð1ÞðmÞ[
R1

0 e�mt dt ¼ 1
m, and we are done.

�

One can also show that the X-statistics is equal to 1=m for the Nakagami
distribution.

Theorem 29 Let A be distributed according to the Nakagami distribution with
parameters m and X. Then, the X-statistic E½I log I�=E½I� � log E½I� is expressed as
XNaðmÞ ¼ 1

m.
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Thus, the shape parameter of the Nakagami distribution can be estimated
directly with the equation m ¼ 1=X, where X ¼ I log I=I � log I.

Finally, one can compute explicitly the Mð1Þ-statistics for the Nakagami
distribution.

Theorem 30 Let A be distributed according to the Nakagami distribution with

parameters m and X. Then, the Mð1Þ-statistic E½A�=
ffiffiffiffiffiffiffiffi
E½I�

p
is expressed as

Mð1ÞNa ðmÞ ¼
Cð1=2þmÞffiffiffi

m
p

CðmÞ .

The equation Mð1ÞNa ðmÞ ¼ M can be estimated with a binary search algorithm, for
any 0\M\1.

Theorem 31 The following properties hold

a) limm!0
Cð1=2þmÞffiffiffi

m
p

CðmÞ ¼ 0;

b) limm!1
Cð1=2þmÞffiffiffi

m
p

CðmÞ ¼ 1;

c) the function Cð1=2þmÞffiffiffi
m
p

CðmÞ is strictly increasing on its domain ð0;1Þ.

Theorems 27, 29, 30 and 31 can be checked directly using the software
Mathematica (Wolfram Research, Inc., Champaign, IL, USA, version 7.0).

In order to compare these four estimators, we considered the parameter m with
values in the set f0:1; 0:2; . . .; 2:0g. For each value of m, 1; 000 datasets of N ¼
1; 000 elements each were simulated according to the corresponding Nakagami
distribution. We could estimate the normalized MSE of the estimator m̂ asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðm̂� mÞ2�
q

=m. The resulting normalized MSE curves are presented in

Fig. 10.10. As one can see, the estimators based on the MLE (i.e., the U-statistics,
in this case) or the X-statistics are practically equivalent. They are better than the
estimator based on the Mð1Þ-statistics, especially on the interval m 2 ½0:0; 0:5�.
These three estimators are systematically better than the estimator based on the
V-statistics.
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Fig. 10.10 Comparison
between the normalized MSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðm̂� mÞ2�
q

=m of the

estimators based on the MLE
(red solid line), the
X-statistics (black solid line),
the Mð1Þ-statistics (blue solid
line), and the V-statistics
(dashed line), for the
Nakagami distribution. The
sample size is N ¼ 1; 000
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10.5 Conclusion

We conclude with the following issues.

1. It was argued that the homodyned K-distribution is a sound model for the first-
order statistics of the echo envelope of the RF ultrasound signal, in the context
where the backscattered echo signal received at the transducer of an ultrasound
device is assumed to be the vector sum of the individual signals produced by
the scatterers distributed in the medium (Wagner et al. 1983, 1987). The
K-distribution is a special case where there is no coherent component (due to
the absence of specular reflection). The Rice and the Rayleigh distributions are
limit cases of the homodyned K-distribution or the K-distribution, respectively,
corresponding to an infinite homogeneity of the diffuse scattering medium. The
Nakagami is an approximation of the homodyned K-distribution. All these five
distributions share two desirable properties: (1) the total signal power depends
only on the coherent component in the case of a vanishing diffuse signal; and
(2) the intensity SNR is infinite in that case. The other models presented in
Jakeman and Tough (1987), Shankar (2000, 2003), Barakat (1986), Eltoft
(2005), Raju and Srinivasan (2002), Agrawal and Karmeshu (2006) do not have
these two properties. Thus, we recommend the homodyned K-distribution (or
its related distributions, in special cases) as a model for the ultrasound echo
envelope in that context, as was done in Dutt and Greenleaf (1994), Hruska and
Oelze (2009) and Destrempes and Cloutier (2010).

2. It was shown that the methods based on the X-statistics and the mean intensity
are practically as good as the MLE for the Rice and the Nakagami distributions,
or the proposed hybrid MAP for the K-distribution. For the homodyned
K-distribution, one may use a method based on the SNR, skewness and kurtosis
of fractional orders of the amplitude (Hruska and Oelze 2009).

3. A homodyned K-distribution with parameters ðk; aÞ in the range ½0; 2� � ½1; 20�
can be approximated by a Nakagami distribution with KL distance less than
0:072 (but for much larger values of k, the KL distance might be much larger).
However, although one may express the two parameters X and m of the
Nakagami distribution in terms of the three parameters e, r2 and a of the

homodyned K-distribution in the form X ¼ e2 þ 2r2a and m ¼ ðe2þ2r2aÞ2
4r2aðe2þr2ð2þaÞÞ,

as follows from Destrempes and Cloutier (2010, Eq. (23) and Tables 3 and 4),
the converse statement is not true. Thus, the Nakagami distribution gives less
information on the statistical properties of the echo envelope than the homo-
dyned K-distribution. In particular, one may not retrieve the coherent or diffuse
signal power from the parameters of the Nakagami distribution. For this reason,
we recommend the use of the homodyned K-distribution, rather than the
Nakagami distribution, in the context of tissue characterization. On the other
hand, the Nakagami distribution may be used in the context of image seg-
mentation, since in that application, the main property is a good fit of the
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distribution with the data. This was the point of view adopted in Destrempes
et al. (2009, 2011) and Bouhlel and Sevestre-Ghalila (2009).

4. When the product of the wave number with the mean size of the scatterers is
much smaller than the wavelength, and acoustic impedance of the scatterers is
close to the impedance of the embedding medium, a high density of scatterers
results in a packing organization that implies constructive and destructive wave
interferences and a correlation between the individual signals produced by the
scatterers (Hayley et al. 1967; Twersky 1975, 1978, 1987, 1988; Lucas and
Twersky 1987; Berger et al. 1991). In such a case, the assumption made here on
the randomness of the scatterer positions (or phase) might not be valid. The
resulting first-order statistics might still be characterized with the proposed
models, but the physical interpretation of the parameters should be done with
caution in that case and should be further studied. See Wagner et al. (1987),
Weng et al. (1990, 1992) and Narayanan et al. (1997) for further reading on that
issue.

5. The distributions mentioned here concern the envelope of the RF signal. When
a log-compression or other (nonlinear or linear) operators are applied to the
envelope, the distribution of the gray levels no longer follows the distributions
computed on the RF echo envelope. In the case of log-compression, the
resulting distribution has been modeled in Dutt and Greenleaf (1996), assuming
the K-distribution for the envelope. In Prager et al. (2003), a decompression
algorithm is proposed, assuming the homodyned K-distribution for the enve-
lope. As mentioned before, operators other than log-compression can be applied
on the envelope. In Nillesen et al. (2008), a linear filter was applied to the RF
data before computing the envelope. Five distributions were tested to fit the
data: the Rayleigh distribution, the K-distribution, the Nakagami distribution,
the inverse Gaussian distribution and the gamma distribution. The authors
showed, based on empirical tests, that, overall, the gamma distribution best fits
the data. See also Tao et al. (2002, 2006) and Shankar et al. (2003) for further
reading on the gamma distribution model in ultrasound imaging. See also
Keyes and Tucker (1999) for a comparison of the K-distribution with a few
other models as well as Tsui et al. (2005, 2009c), Tsui and Wang (2004), Tsui
and Chang (2007) for the effect of log-compression or transducer characteristics
on the parameters of the Nakagami distribution. Here, we were concerned with
the statistical distributions of the amplitude of the unfiltered envelope of the RF
image, and therefore we did not study such distributions.

6. The parameters of the homodyned K-distribution reveal the scattering proper-
ties of the underlying tissue, but they are also instrumentation and depth
dependent. In particular, the transducer center frequency, the point spread
function (PSF) and the attenuation of the signal within the tissue play a role. A
challenge consists in removing these dependencies. See Hruska (2009) for
further reading on that matter.

7. The estimation problem is important, since the use of poor estimators might
wash down the performance of a method, otherwise fine. However, the mere
study of the bias and variance of an estimator is not sufficient, since it assumes
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data distributed according to the distribution. Moreover, in the context of
ultrasound imaging, various factors intervene, such as the presence of noise, the
efficiency of the algorithm (in view of clinical applications, where the speed of
execution of an algorithm is relevant). Thus, ideally, the study of an estimation
method should include simulations of ultrasound data, as well as in vitro and
in vivo experimental tests.

10.5.1 Perspective

In the future, it would be interesting to see a study of log-moments methods for the
homodyned K-distribution. We believe that it would be instructive to establish
relations between echo envelope statistics and spectral quantitative measures. See
Oelze and O’Brien (2007) for an example of quantitative ultrasound assessment in
the context of breast cancer that used the parameters of the homodyned K-dis-
tribution combined with an analysis of the normalized backscattered power
spectrum. In the articles by Shankar et al. (1993), Molthen et al. (1993), Narayanan
et al. (1994), Shankar (1995) and Molthen et al. (1995), an underlying physical
model for the K-distribution was introduced. In the more recent article by Saha and
Kolios (2011), the Nakagami distribution was estimated on simulated tissues based
on a scattering model. A challenge consists in deepening the understanding of an
underlying physical model for the homodyned K-distribution. Finally, it would be
desirable to take into account the effect of instrumentation and attenuation on the
echo envelope statistics. Thus, there remains several challenging problems in that
area of QUS imaging, that we believe will turn out to be useful in a clinical
context.
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Appendix: Proofs of the New Results

Proof of Theorem 8 From Theorem 6, there is exactly one critical point of Lðe; r2Þ
for which e [ 0, and it is the MLE (here, for L denotes LRi). Therefore (using
Theorem 5), the function f ðjÞ has exactly one positive root j
 and it corresponds
to the MLE. Moreover, one can check that j ¼ 0 is also a root of the function f .
Namely, we have limj!0 f ðjÞ ¼ �1þ 1

N

PN
i¼1 y2

i , and by construction,
1
N

PN
i¼1 y2

i ¼ 1.

We have limj!1 f ðjÞ ¼ 2ð�1þ 1
N

PN
i¼1 yiÞ ¼ 2ð�1þ

ffiffi
I
p
=
ffiffi
I
p
Þ. A direct

application of Cauchy-Schwartz’ inequality ensures that
ffiffi
I
p
=
ffiffi
I
p

\1, so that
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limj!1 f ðjÞ\0. In view of the Intermediate Value Theorem for continuous
functions, it follows that f ðjÞ\0, if j[ j
.

Next, we want to show that f ðjÞ[ 0 for j 2 ð0; j
Þ. Since j
 is the only

positive root of f , and since f ðjÞ\0 on ðj
;1Þ, it is enough to show that of
oj \0 at

j
; for then, f ðjÞ[ 0 if j\j
 is sufficiently near j
, and hence, f ðjÞ[ 0 on
ð0; j
Þ using the Intermediate Value Theorem.

First of all, we claim that of
oj ¼ 1

N
o2L
oj2 at a critical point of

Lðe; r2Þ ¼
PN

i¼1 log PRiðAi j e; r2Þ, whenever e [ 0 (i.e. j[ 0). Indeed, with the

change of variable e ¼
ffiffiffiffiffiffiffiffiffi

lj
ðjþ1Þ

q
and r2 ¼ l

2ðjþ1Þ, we obtain directly from Eq. (10.2)

1
N

Lðl; jÞ ¼ 1
N

XN

i¼1

log Ai � log lþ log 2þ logðjþ 1Þ

� ðjþ 1Þ
l

1
N

XN

i¼1

A2
i � jþ 1

N

XN

i¼1

log I0ð
2Ai
ffiffiffi
l
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Þ:
ð10:62Þ

Next, the derivative of 1
N Lðl; jÞ with respect to j is equal to

1
ðjþ 1Þ �

1
l

1
N

XN
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: ð10:63Þ

But, from Talukdar and Lawing (1991), we have l ¼ I ¼ 1
N

PN
i¼1 A2

i at a critical
point ðe; a2Þ of LRi. Therefore, we obtain that 1

N
oL
oj ¼ f ðjÞ at such a critical point

(because Ai=
ffiffiffi
l
p

is then equal to yi ¼ Ai=
ffiffi
I
p

). Taking the partial derivative of

Eq. (10.63) with respect to j, we also see that of
oj ¼ 1

N
o2L
oj2 at a critical point ðe; r2Þ of L.

Now, recall that if u ¼ uðx; yÞ and v ¼ vðx; yÞ is a change of variable, then
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ð10:64Þ

At this point, we find convenient to use the change of variable e2 ¼ lj=ð1þ jÞ and

r2 ¼ l=ð2ð1þ jÞÞ. We develop o2

oj2 L ¼
�

G11 � G12 þ 1
4 G22

�
l2

ðjþ1Þ4 at a critical

point of L, where G11 ¼ o2L
oe2oe2, G12 ¼ o2L

oe2or2, and G22 ¼ o2L
or2or2 (we make use of the fact
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that oL
oe2 ¼ 0 ¼ oL

or2 at the critical point). Now, from Carrobi and Cati (2008, Appendix
A, p. 686-687), we have H11H22 � H2

12 [ 0 and H11\0 at the critical point of

interest, where H11 ¼ o2L
oeoe, H12 ¼ o2L

oeor2, and H22 ¼ o2L
or2or2 (r2 is viewed as a variable).

From there, if one uses the change of variable e ¼
ffiffiffiffi
e2
p

(and r2 ¼ r2), one concludes

that G11G22 � G2
12 ¼

�
H11H22 � H2

12

�
1

4e2 [ 0 and G11 ¼ H11
1

4e2 \0, at that critical

point. Thus, we obtain the upper bound G22\G2
12=G11 (because G11\0Þ, and

therefore o2L
oj2 \

�
G11� G12 þ 1

4 G2
12=G11

�
l2

ðjþ1Þ4. But this is equal to

1
G11

l2

ðjþ1Þ4
�

G11 � 1
2 G12

�2
, and it is non-positive since G11\0. Therefore, of

oj ¼
1
N

o2L
oj2 \0 at the point j ¼ j
 (with l ¼ I). This completes the proof of Theorem 8.�

Proof of Theorem 9 (a) Setting j ¼ 0 in Theorem 7, we obtain directly

MðmÞRi ð0Þ ¼ Cðm=2þ 1Þ.
(b) From Luke (1962, pp.7–8), we have the following asymptotic behavior

1F1ða1; b1; zÞ / Cðb1Þ
Cða1Þ

zvez
�

1þOð1=zÞ
�
; ð10:65Þ

where v ¼ a1 � b1, valid for j arg zj\p and jzj ! 1. Therefore, we have

1F1ðm=2þ 1; 1; jÞ / 1
Cðm=2þ 1Þ j

m=2ej
�

1þOð1=jÞ
�
: ð10:66Þ

We conclude that limj!1MðmÞRi ðjÞ ¼ limj!1
Cðm=2þ1Þe�j

ðjþ1Þm=2 � 1
Cðm=2þ1Þ j

m=2ej ¼ 1.

(c) From the definition MðmÞRi ðjÞ ¼ Cðm=2þ 1Þ 1F1ð1þm=2;1;jÞ
ejðjþ1Þm=2 , we obtain after

algebraic simplifications

d

d j
MðmÞRi ¼ Cðm=2þ 1Þ

d
d j 1 F1ð1þ m=2; 1; jÞ � 1 F1ð1þ m=2; 1; jÞ

�
1þ m

2 ðjþ 1Þ�1
�

ejðjþ 1Þm=2
:

ð10:67Þ

Now, from Gradshteyn and Ryshik (1994, 9.213, p.1086) and Gradshteyn and
Ryshik (1994, 9.212(3), p.1086), we have d

d j 1 F1ð1þ m=2; 1; jÞ ¼ ð1þ
m=2Þ 1F1ð2þ m=2; 2; jÞ ¼ m

2 1 F1ð1þ m=2; 2; jÞ þ 1 F1ð1þ m=2; 1; jÞ. So, omitting

the positive factor Cðm=2þ 1Þe�jðjþ 1Þ�m=2, we obtain

m
2 1 F1ð1þ m=2; 2; jÞ � m

2 1 F1ð1þ m=2; 1; jÞðjþ 1Þ�1: ð10:68Þ

Multiplying by ðjþ 1Þ and dividing by m=2 (both are positive numbers), we obtain

1F1ð1þ m=2; 2; jÞðjþ 1Þ � 1 F1ð1þ m=2; 1; jÞ: ð10:69Þ
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Using (Gradshteyn and Ryshik 1994, 9.212(2), p.1086), we have j 1F1

ð1þ m=2; 2; jÞ � 1 F1ð1þ m=2; 1; jÞ ¼ � 1F1ðm=2; 1; jÞ. Therefore, we finally
obtain (up to a positive constant)

1F1ð1þ m=2; 2; jÞ � 1 F1ðm=2; 1; jÞ: ð10:70Þ

Now, by definition, the hypergeometric function 1F1ða; b; zÞ is equal to
P1

n¼0
ðaÞn
ðbÞn

zn

n!, where ðaÞn ¼ aðaþ 1Þ:::ðaþ n� 1Þ is the rising factorial. If m=2\1,

then ð1þm=2Þn
ð2Þn

[ ðm=2Þn
ð1Þn

and hence 1F1ð1þ m=2; 2; cÞ � 1 F1ðm=2; 1; cÞ[ 0, On the

other hand, if m=2 [ 1, then ð1þm=2Þn
ð2Þn

\ ðm=2Þn
ð1Þn

and hence 1F1ð1þ m=2;

2; jÞ � 1 F1ðm=2; 1; jÞ\0. This completes the proof of the theorem. �

Proof of Theorem 10 (a) First of all, using the change of variable I ¼ A2, one
computes

Z 1

0
log A2PRiðA j e; r2Þ dA ¼

Z 1

0
log I

1
2r2

I0

� e
r2

ffiffi
I
p �

e�e2=ð2r2Þe�I=ð2r2Þ dI;

ð10:71Þ

which is a Laplace transform equal to Cð0; e2

2r2Þ þ log e2, where Cð0; xÞ is the
incomplete gamma function

R1
x

e�t

t dt. Then, after subtraction by the term

logðe2 þ 2r2Þ, one obtains Cð0; e2

2r2Þ þ logð e2

e2þ2r2Þ, which is equal to Cð0; jÞ þ
logð j

jþ1Þ (where j ¼ e2=ð2r2Þ).
(b) Again, using the change of variable I ¼ A2, we compute

Z 1

0
A2 log A2PRiðA j e; r2Þ dA

¼
Z 1

0
I log I

1
2r2

I0

� e
r2

ffiffi
I
p �

e�e2=ð2r2Þe�I=ð2r2Þ dI:
ð10:72Þ

This Laplace transform is equal to 4r2 � 2e�
e2

2r2r2þ ðe2 þ 2r2Þ
�
Cð0; e2

2r2Þ þ log e2
�
.

Dividing by e2 þ 2r2 and subtracting E½log I� ¼ Cð0; e2

2r2Þ þ log e2 (from the proof

of part a)), one obtains ð4r2 � 2e�
e2

2r2r2Þ 
 ðe2 þ 2r2Þ, which is equal to
1

jþ1 ð2� e�jÞ, after algebraic simplifications. �

Proof of Theorem 11 (a) From Abramowitz and Stegun (1972, (6.5.15), p. 262),
we have Cð0; jÞ ¼ E1ðjÞ (the exponential integral). Moreover, from Abramowitz

and Stegun (1972, (5.1.11), p. 229), E1ðjÞ ¼ �cE � log jþ
P1

n¼1
ð�1Þnjn

nn! . We

conclude that URiðjÞ ¼ �cE � logð1þ jÞ þ
P1

n¼1
ð�1Þnjn

nn! . Henceforth,
limj!0 URiðjÞ ¼ �cE.

(b) Since Cð0; jÞ ¼
R1

j
e�t

t dt, it follows that limj!1 Cð0; jÞ ¼ 0. Moreover,
limj!1 log j

jþ1 ¼ 0.
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(c) We compute d
d j URiðjÞ ¼ � e�j

j þ 1
j� 1

jþ1. This is positive because
ej [ 1þ j, for j[ 0. �

Proof of Theorem 12 Parts (a) and (b) follow from basic Calculus.

(c) We compute d
d j XRiðjÞ ¼ e�jðjþ1Þ�ð2�e�jÞ

ðjþ1Þ2 . Ignoring the positive factor

1=ðjþ 1Þ2, we obtain e�jð2þ jÞ � 2. This is negative since ej [ 1þ j=2, for
j[ 0. �

Lemma 5 Let a[ 0 be fixed. Denote any root of o
or2 Lðr2; aÞ by r2ða; ~AÞ, where

~A ¼ fA1;A2; :::;ANg.

(a) If 0\a� 1=2, then r2ða; ~AÞ� aþa2þ
ffiffiffiffiffiffiffiffiffiffiffi
2a3þa4
p

a2

�
A
�2

.

(b) If 1=2\a� 3, then r2ða; ~AÞ� 1
2a2

�
A
�2

.

(c) If a[ 3, then r2ða; ~AÞ� 2a�3þ
ffiffiffiffiffiffiffiffi
4a�7
p

4ða�2Þ2
�
A
�2

.

(d) If 0\a� 1=2, then r2ða; ~AÞ� 1
2a2

�
A
�2

.

(e) If 1=2\a� 3=2, then r2ða; ~AÞ� 1
2ða=2þ1=4Þ2

�
A
�2

.

(f) If 3=2\a� 3, then r2ða; ~AÞ� 1
2

�
A
�2

.

(g) If a [ 3, then r2ða; ~AÞ� 1
2ða�2ÞA

2.

(h) The function o
or2 Lðr2; aÞ is positive at the lower bounds mentioned in parts

(a) to (c), whereas it is negative at the upper bounds of parts (d) to (g).

Proof We compute

r2
o

or2 PKðA jr2; aÞ
PKðA j r2; aÞ ¼ �aþ

� 1
ffiffiffiffiffiffiffi
2r2
p A

� Ka
� ffiffiffiffi

2
r2

q
A
�

Ka�1
� ffiffiffiffi

2
r2

q
A
� : ð10:73Þ

Part a). If 0\a� 1=2, then Ka�1ðxÞ ¼ K1�aðxÞ\K1ðxÞ and KaðxÞ[ K0ðxÞ for any
x [ 0. Also, the inequality K0ðxÞ=K1ðxÞ[ 1� 1

ðxþ1Þ holds for any x [ 0. There-

fore, from Eq. (10.73), we obtain r2
o

or2PHKðA j r2;aÞ
PHKðA j r2;aÞ [ � aþ 1

2 f ð
ffiffiffiffi
2
r2

q
AÞ, where

f ðxÞ ¼ xð1� 1
ðxþ1ÞÞ. Thus, we obtain that

r2 o

or2
Lðr2; aÞ[ � Naþ 1

2

XN

i¼1

f ð
ffiffiffiffiffi
2
r2

r

AiÞ: ð10:74Þ

Here, L denotes LK. Now, the function f ðxÞ is convex. Therefore, from Jensen’s
inequality (Jensen 1906), we conclude that

r2 o

or2
Lðr2; aÞ[ � Naþ N

2
f ð

ffiffiffiffiffi
2
r2

r

AÞ: ð10:75Þ
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But the right-hand side of Eq. (10.75) is positive if r2\ aþa2þ
ffiffiffiffiffiffiffiffiffiffiffi
2a3þa4
p

a2

�
A
�2

. This
proves part a).

Part b). If a [ 1=2, then KaðxÞ[ Ka�1ðxÞ for any x [ 0. Therefore, from Eq.

(10.73), we obtain r2
o

or2PKðA jr2;aÞ
PKðA j r2;aÞ [ � aþ 1ffiffiffiffiffi

2r2
p A. Thus, we conclude that

r2 o

or2
Lðr2; aÞ[ � Naþ 1

ffiffiffiffiffiffiffi
2r2
p

XN

i¼1

Ai: ð10:76Þ

But the right-hand side of Eq. (10.76) is positive if r2\ 1
2a2

�
A
�2

. This proves part
b).

Part c). If a[ 3, then x
2

KaðxÞ
Ka�1ðxÞ [ x

2� ð
2ða�1Þ

x þ 1
2ða�2Þ

x þ1
Þ. Thus, r2

o

or2PKðA j r2;aÞ
PKðA j r2;aÞ has

lower bound �1þ f ð Affiffiffiffiffi
2r2
p Þ, where f ðxÞ ¼ ðða�2Þ

x2 þ 1
xÞ
�1. Thus, we conclude that

r2 o

or2
Lðr2; aÞ[ � N þ

XN

i¼1

1
2r2ða�2Þ

A2
i
þ

ffiffiffiffiffi
2r2
p

Ai

: ð10:77Þ

From Jensen’s inequality, we then obtain

r2 o

or2
Lðr2; aÞ[ � N þ N

1
2r2ða�2Þ

A
2 þ

ffiffiffiffiffi
2r2
p

A

; ð10:78Þ

because the function f ðxÞ above is convex. But the right-hand side of Eq. (10.78) is

positive if r2\ 2a�3þ
ffiffiffiffiffiffiffiffi
4a�7
p

4ða�2Þ2
�
A
�2

. This proves part c).

Part d). If 0\a� 1=2, then KaðxÞ\Ka�1ðxÞ for any x [ 0. Therefore, from

Eq. (10.73), we obtain r2
o

or2PKðA j r2;aÞ
PKðA j r2;aÞ \� aþ 1ffiffiffiffiffi

2r2
p A. This yields the inequality

r2 o

or2
Lðr2; aÞ\� Naþ 1

ffiffiffiffiffiffiffi
2r2
p

XN

i¼1

Ai: ð10:79Þ

But the right-hand side of Eq. (10.79) is negative if r2 [ 1
2a2

�
A
�2

. This proves part
d).

Part e). If 1=2\a� 3=2, then KaðxÞ
Ka�1ðxÞ\1þ ða�1=2Þ

x for any x [ 0. Therefore, we

have r2
o

or2PKðA j r2;aÞ
PKðA jr2;aÞ \� a

2� 1
4þ 1ffiffiffiffiffi

2r2
p A. It follows that

r2 o

or2
Lðr2; aÞ\� Nða=2þ 1=4Þ þ 1

ffiffiffiffiffiffiffi
2r2
p

XN

i¼1

Ai: ð10:80Þ

But the right-hand side of Eq. (10.80) is negative if r2 [ 1
2ða=2þ1=4Þ2

�
A
�2

. This
proves part e).
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Part f). If 3=2\a� 3, then KaðxÞ
Ka�1ðxÞ\1þ 2ða�1Þ

x for any x [ 0. Thus, we obtain

r2
o

or2PKðA j r2;aÞ
PKðA j r2;aÞ \� aþ ða� 1Þ þ 1ffiffiffiffiffi

2r2
p A. From there, we conclude that

r2 o

or2
Lðr2; aÞ\� N þ 1

ffiffiffiffiffiffiffi
2r2
p

XN

i¼1

Ai: ð10:81Þ

But the right-hand side of Eq. (10.81) is negative if r2 [ 1
2

�
A
�2

. Hence, part f) of
the Theorem.

Part g). If 3\a, then x
2

KaðxÞ
Ka�1ðxÞ\ða� 1Þ þ x2

4ða�2Þ for any x [ 0. Therefore, we

obtain

r2 o

or2
Lðr2; aÞ\� N þ 1

2r2ða� 2Þ
XN

i¼1

A2
i : ð10:82Þ

But the right-hand side of Eq. (10.82) is negative if r2 [ 1
2ða�2ÞA

2. Hence, part g)
of the Theorem.

Finally, part h) follows from the proof of parts a) to g). �

Proof of Theorem 18 From Lemma 5, for any a [ 0, there exist two values
0\r2

1\r2
2 for which o

or2 Lðr2
1; aÞ[ 0 and o

or2 Lðr2
2; aÞ\0, where L denotes LK.

Thus, by the Intermediate Value Theorem, there exists r2 ¼ r2ða; ~AÞ such that
o

or2 Lðr2; aÞ ¼ 0. �

Proof of Theorem 19 Part a). Let 0\a\1=2. In Eq. (10.32), the term �wðaÞ þ

log
�

x
2

�
�

o
oaK1�aðxÞ
K1�aðxÞ is an increasing function of x [ 0. Also, from Lemma 5 part d),

we have r2ða; ~AÞ� 1
2a2

�
A
�2

. Therefore, we obtain
ffiffiffiffi
2
r2

q
Ai� 2a Ai

A
. It follows that

LBðaÞ ¼ �wðaÞ þ log
�
a Ai

A

�
�

o
oaK1�a

�
2a

Ai
A

�

K1�a

�
2a

Ai
A

� is a lower bound for that term. Now,

from Abramowitz and Stegun (1972, Eq. (9.6.45), p. 377), we have
o
oaK1�aðxÞ
K1�aðxÞ �

o
oaK1ðxÞ
K1ðxÞ ¼

K0ðxÞ
x K1ðxÞ as a! 0. Moreover, from Abramowitz and Stegun (1972, Eqs.

(9.6.8) and (9.6.9), p. 375), we have K0ðxÞ
x K1ðxÞ � � log x for small values of x [ 0. But

x ¼ 2a Ai

A
has small values for a! 0. Thus, we obtain

lima!0 aLBðaÞ ¼ lima!0 a
n
�wðaÞ þ log

�
a Ai

A

�
þ log

�
2a Ai

A

�o
¼ 1. This proves

part a).
Part b). First of all, we observe that there exist constants 0\C1\C2, such that

1
C2
� lim infa!1

r2ða;~AÞ
1=a � lim supa!1

r2ða;~AÞ
1=a � 1

C1
. The first inequality follows

from Lemma 5 part c), whereas the third inequality follows from Lemma 5 part g).
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Let L denote LK. Since by definition o
or2 Lðr2; aÞjr2ða;~AÞ ¼ 0, we might as well

consider the expression a o
oa Lðr2; aÞ � r2 o

or2 Lðr2; aÞ. From Eqs. (10.32) and
(10.33), each term of that expression is equal to

� awðaÞ þ a log
� 1
ffiffiffiffiffiffiffi
2r2
p Ai

�
þ a

o
oa Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

�

þ a�
� 1
ffiffiffiffiffiffiffi
2r2
p Ai

� Ka
� ffiffiffiffi

2
r2

q
Ai

�

Ka�1

� ffiffiffiffi
2
r2

q
Ai

� :

ð10:83Þ

From Abraham and Lyons (2002, Eq. (46)), we have
o
oaKa�1ðxÞ
Ka�1ðxÞ �wða� 1Þ �

logðx=2Þ þ x2

4a2 for large values of a. Also, from Abraham and Lyons (2002,

Eq. (45)), we have KaðxÞ� CðaÞ
2ðx=2Þa

�
1� ðx=2Þ2

ða�1Þða�2Þ

�a�2
for large values of a.

Therefore, taking r2 ¼ 1=ðCaÞ, we obtain the asymptotic expression

�awðaÞ þ awða� 1Þ þ CA2
i

2
þ a� ða� 1Þ

�
1� CaA2

i
2ða�1Þða�2Þ

�a�2

�
1� CaA2

i
2ða�2Þða�3Þ

�a�3 : ð10:84Þ

Finally, Eq. (10.84) tends to 0 as a tends to infinity. This proves part b). �

Proof of Theorem 20 Part a). Let 0\a\1. We consider again Eq. (10.83). Using

the asymptotic forms (for small values of x and of a)
o
oaK1�aðxÞ
K1�aðxÞ �

K0ðxÞ
x K1ðxÞ,

K0ðxÞ
x K1ðxÞ � �

log x and ðx2Þ
K0ðxÞ
K1ðxÞ � �

x2

2 log x, and setting x ¼
ffiffiffiffi
2
r2

q
Ai with r2 ¼ 1=ðCaÞ and

C ¼ 2=I, we obtain the asymptotic expression

�awðaÞ þ a log
�1
2

ffiffiffi
a
p ffiffiffiffi

C
p

Ai

�
þ a log

� ffiffiffi
a
p ffiffiffiffi

C
p

Ai

�
þ aþ a2CA2

i log
� ffiffiffi

a
p ffiffiffiffi

C
p

Ai

�
:

ð10:85Þ

Part a) then follows by taking the limit of Eq. (10.85) as a! 0.
Part b). Taking r2 ¼ 1=ðCaÞ, where C ¼ 2=I, into Eq. (10.84), we obtain the

limit 0 as !1. This proves part b). �

Proof of Theorem 21 a) At a ¼ 0, we have Cðaþ m=2Þ ¼ Cðm=2Þ. Also, CðaÞ
has a simple pole with residue 1 at a ¼ 0. Therefore, Cðaþ1=2Þ

am=2CðaÞ �Cðm=2Þa1�m=2 at

a � 0, which shows part a).

b) Using Sterling’s formula, we have Cðaþm=2Þ
am=2CðaÞ �

e�a�m=2ðaþm=2Þaþm=2�1=2

am=2e�aaa�1=2 , which is

equal to e�m=2
�

1þ m=2
a

�a�
1þ m=2

a

�m=2�1=2
. Therefore, lima!1

Cðaþm=2Þ
am=2CðaÞ ¼ 1, and we

are done.
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c) Using the logarithmic derivative, we have d
d a MðmÞK ðaÞ ¼ MðmÞK ðaÞ�

wðaþ m=2Þ � wðaÞ � m
2a

�
. Now, we have MðmÞK ðaÞ[ 0. Also, 1

a ¼
wðaþ 1Þ � wðaÞ, and hence wðaþ m=2Þ � wðaÞ � m

2a ¼ wðaþ m=2Þ�
�

m
2 wðaþ 1Þ þ ð1� m

2ÞwðaÞ
�

. Since the function w is convex, we conclude that

wðaþ m=2Þ �
�

m
2 wðaþ 1Þ þ ð1� m

2ÞwðaÞ
�

[ 0, if m=2\1, whereas it is negative if

m=2 [ 1. �

Proof of Theorem 22 a) We consider the function f ðaÞ ¼ Cðmþ1ÞCðmþaÞCðaÞ
C2ðm=2þ1ÞC2ðm=2þaÞ,

noting that RðmÞK ¼
�
f ðaÞ � 1

��1=2
. Now, as a! 0, we have CðaÞ ! 1, whereas

Cðmþ1ÞCðmþaÞ
C2ðm=2þ1ÞC2ðm=2þaÞ !

Cðmþ1ÞCðmÞ
C2ðm=2þ1ÞC2ðm=2Þ [ 0. This proves part a).

b) Next, using directly Sterling’s formula for Cðmþ aÞ, CðaÞ and Cðm=2þ aÞ,
one finds that lima!1 f ðaÞ ¼ Cðmþ1Þ

C2ðm=2þ1Þ, which proves part b).

c) Finally, taking the logarithmic derivative of f ðaÞ yields
d f
d a ¼ f ðaÞ

�
wðmþ aÞ þ wðaÞ � 2wðm=2þ aÞ

�
. This is negative, since f ðaÞ[ 0 and

wðm=2þ aÞ[ 1
2 ðwðmþ aÞ þ wðaÞÞ (because w is a convex function). It follows

that f ðaÞ[ lima!1 f ðaÞ ¼ Cðmþ1Þ
C2ðm=2þ1Þ. We claim that gðmÞ ¼ Cðmþ1Þ

C2ðm=2þ1Þ [ 1, for any

m[ 0. In fact, the function gðmÞ is increasing (its derivative is equal to
gðmÞðwðmþ 1Þ � wðm=2þ 1ÞÞ) and gð0Þ ¼ 1. Therefore, f ðaÞ[ 1, and it follows

that
�
f ðaÞ � 1

��1=2
is an increasing function. This completes the proof of part c).

�

Proof of Theorem 23 This is an immediate consequence of Theorem 28. �

Proof of Theorem 24 Starting with Eq. (10.44), we compute

MðmÞHKðc; aÞ ¼
Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1

0
wm=2

1F1ð�m=2; 1;� c
w
ÞGðw j a; 1Þ dw

¼ Cðm=2þ 1Þ
ðcþ aÞm=2

Z 1

0
wm=2e�c=w

1F1ð1þ m=2; 1;
c
w
ÞGðw j a; 1Þ dw

¼ 1

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1

n¼0

ð1þ m=2Þn
n!n!

cn
Z 1

0
wm=2þa�n�1e�c=we�w dw:

ð10:86Þ

Using (Erdélyi 1954, I, p. 146, (29)), this is equal to

1

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1

n¼0

ð1þ m=2Þn
n!n!

cn2ð ffiffifficp Þm=2þa�nKm=2þa�nð2
ffiffiffi
c
p Þ

¼ 2

ðcþ aÞm=2

Cðm=2þ 1Þ
CðaÞ

X1

n¼0

ð1þ m=2Þn
n!n!

ð ffiffifficp Þm=2þaþnKm=2þa�nð2
ffiffiffi
c
p Þ:

ð10:87Þ

This completes the proof of Theorem 25. �
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Proof of Theorem 26 a) This follows from Theorem 24, part b), and Theorem 13.

b) From Theorem 24, part a), we know that MðmÞHKðc; aÞ is equal to
Cðm=2þ1Þ
ðcþaÞm=2

R1
0 wm=2

1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw. From Luke (1962, pp. 7–8), we

have Cðm=2þ 1Þ 1F1ð�m=2; 1;�zÞ ¼ Cðm=2þ 1Þe�z
1F1ð1þ m=2; 1; zÞ ¼ zm=2ð1þ

Oð1=zÞÞ, for large values of z. Let g[ 0 be a real number (arbitrarily small). Take
z0 sufficiently large so that ð1� gÞzm=2�Cðm=2þ 1Þ 1F1ð�m=2; 1;�zÞ�
ð1þ gÞzm=2, for any z� z0. Then, if c=w� z0, i.e. w� c=z0, we have ð1�
gÞcm=2�Cðm=2þ 1Þwm=2

1 F1ð�m=2; 1;�c=wÞ� ð1þ gÞcm=2. Therefore, the inte-

gral Cðm=2þ1Þ
ðcþaÞm=2

R c=z0

0 wm=2
1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw has lower bound ð1�

gÞ cm=2

ðcþaÞm=2 Prðw� c=z0Þ and upper bound ð1þ gÞ cm=2

ðcþaÞm=2 Prðw� c=z0Þ. On the other

hand, the function 1F1ð�m=2; 1;�zÞ equals 1 at z ¼ 0, and hence there is a real
number C [ 0 such that 0\ 1F1ð�m=2; 1;�c=wÞ�C for any w [ c=z0. Thus, the

integral Cðm=2þ1Þ
ðcþaÞm=2

R1
c=z0

wm=2
1F1ð�m=2; 1;�c=wÞGðw j a; 1Þ dw has lower bound 0 and

upper bound Cðm=2þ1Þ
ðcþaÞm=2 C Cðm=2þaÞ

CðaÞ . But now, limc!1
cm=2

ðcþaÞm=2 ¼ 1, limc!1 Pr

ðw� c=z0Þ ¼ 1, and limc!1
1

ðcþaÞm=2 ¼ 0. Therefore, we obtain

lim infc!1MðmÞHKðc; aÞ� 1� g and lim supc!1MðmÞHKðc; aÞ� 1þ g. Since g is arbi-

trarily small, we conclude that limc!1MðmÞHKðc; aÞ ¼ 1.

c) We consider the function f ðc;wÞ ¼ 1F1ð1þm=2;1;c=wÞ
ec=wðcþaÞm=2 . From Theorem 24, part a),

we have MðmÞHKðc; aÞ ¼ Cðm=2þ 1Þ
R1

0 wm=2f ðc;wÞGðw j a; 1Þ dw. Thus, we obtain
o
o c MðmÞHKðc; aÞ ¼ Cðm=2þ 1Þ

R1
0 wm=2 o

o c f ðc;wÞGðw j a; 1Þ dw.

We compute the value of o
o c f ðc;wÞ as

d
d z 1 F1ð1þ m=2; 1; c=wÞw�1 � 1 F1ð1þ m=2; 1; c=wÞ

�
w�1 þ m

2 ðcþ aÞ�1
�

ec=wðcþ aÞm=2
:

ð10:88Þ

Using (Gradshteyn and Ryshik 1994, 9.213, p. 1086) and (Gradshteyn and Ryshik
1994, 9.212(3), p. 1086), we have d

d z 1F1ð1þ m=2; 1; c=wÞ ¼ ð1þ m=2Þ 1F1ð2þ
m=2; 2; c=wÞ ¼ m

2 1F1ð1þ m=2; 2; c=wÞ þ 1 F1ð1þ m=2; 1; c=wÞ. So, we obtain after
algebraic simplifications

m=2

ec=wðcþ aÞm=2þ1

n
1F1ð1þ m=2; 2; c=wÞðc

w
þ a

w
Þ � 1F1ð1þ m=2; 1; c=wÞ

o
:

ð10:89Þ
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Using (Gradshteyn and Ryshik 1994, 9.212(2), p. 1086), we have
c
w 1F1ð1þ m=2; 2; c=wÞ � 1F1ð1þ m=2; 1; c=wÞ ¼ � 1F1ðm=2; 1; c=wÞ. Therefore,
we finally obtain

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1F1ðm=2; 1; c=wÞ
o
: ð10:90Þ

Now, let m=2\1. Then, we obtain the strict lower bound for o
o c f ðc;wÞ

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1F1ð1þ m=2; 2; c=wÞ
o
: ð10:91Þ

Consider the function gðc;wÞ ¼ Cðm=2þ 1Þwm=2 am=2

ec=wðcþaÞm=2þ1w 1F1ð1þ m=2; 2; c=wÞ.
We have shown that

o

o c
MðmÞHKðc; aÞ[

Z 1

0
gðc;wÞGðw j a; 1Þ dw�

Z 1

0

w

a
gðc;wÞGðw j a; 1Þ dw:

ð10:92Þ

But, w
a Gðw j a; 1Þ ¼ Gðw j aþ 1; 1Þ. So, we obtain

o

o c
MðmÞHKðc; aÞ[

Z 1

0
gðc;wÞGðw j a; 1Þ dw�

Z 1

0
gðc;wÞGðw j aþ 1; 1Þ dw:

ð10:93Þ

Thus, we want to show that
R1

0 gðc;wÞGðw j a; 1Þ dw�
R1

0 gðc;wÞ
Gðw j aþ 1; 1Þ dw� 0. Ignoring the positive factor Cðm=2þ 1Þ am=2

ðcþaÞm=2þ1, we are

thus lead to the function hðc;wÞ ¼ wm=2�1
1F1ð1þm=2;2;c=wÞ

ec=w , and we show that
R1

0 hðc;wÞGðw j a; 1Þ dw�
R1

0 hðc;wÞGðw j aþ 1; 1Þ dw� 0 as follows. In Lemma
6, we show that hðc;wÞ is decreasing in the variable w, if m=2\1. Then, in Lemma
7, we show that for any decreasing positive function HðwÞ, we haveR1

0 HðwÞGðw j a; 1Þ dw�
R1

0 HðwÞGðw j aþ 1; 1Þ dw� 0.

Next, let m=2 [ 1. Then, we obtain the strict upper bound for o
o c f ðc;wÞ

am=2

ec=wðcþ aÞm=2þ1w

n
1F1ð1þ m=2; 2; c=wÞ � w

a 1 F1ð1þ m=2; 2; c=wÞ
o
: ð10:94Þ

The same argument as above (but with reversed inequalities) leads to

o

o c
MðmÞHKðc; aÞ\

Z 1

0
gðc;wÞGðw j a; 1Þ dw�

Z 1

0
gðc;wÞGðw j aþ 1; 1Þ dw;

ð10:95Þ
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where the function gðc;wÞ is defined as above. So, in this case, we want to show
that

R1
0 hðc;wÞGðw j a; 1Þ dw�

R1
0 hðc;wÞGðw j aþ 1; 1Þ dw� 0, where hðc;wÞ is

defined as above. But, this is implied by Lemmas 6 and 7 (case m=2 [ 1). This
completes the proof of the theorem. �

Lemma 6a) If m=2\1, the function hðc;wÞ ¼ wm=2�1
1F1ð1þm=2;2;c=wÞ

ec=w is decreasing in
the variable w.

b) If m=2 [ 1, the function hðc;wÞ is increasing in the variable w.

Proof Using the change of variable x ¼ c=w, we consider the function

FðxÞ ¼ 1F1ð1þm=2;2;xÞ
exxm=2�1 . So, we want to show that FðxÞ is increasing if m=2\1 and FðxÞ is

decreasing if m=2 [ 1 (the function x ¼ c=w is decreasing in the variable w).
We compute

d

d x
FðxÞ ¼

d
d z 1F1ð1þ m=2; 2; xÞ � 1F1ð1þ m=2; 2; xÞ

�
1þ ðm2� 1Þx�1

�

exxm=2�1
: ð10:96Þ

Using (Gradshteyn and Ryshik 1994, 9.213, p. 1086) and (Gradshteyn and

Ryshik 1994, 9.212(3), p. 1086), we have d
d z 1F1ð1þ m=2; 2; xÞ ¼ ð1þm=2Þ

2 1F1ð2þ
m=2; 3; xÞ ¼ ðm=2�1Þ

2 1F1ð1þ m=2; 3; xÞ þ 2
2 1F1ð1þ m=2; 2; xÞ.

So, we obtain after algebraic simplifications

ðm=2� 1Þ
exxm=2

nx

2 1F1ð1þ m=2; 3; xÞ � 1F1ð1þ m=2; 2; xÞ
o
: ð10:97Þ

Using (Gradshteyn and Ryshik 1994, 9.212(2), p. 1086), we finally obtain

�ðm=2� 1Þ
exxm=2 1F1ð1þ m=2; 1; xÞ: ð10:98Þ

The result is now clear. �

Lemma 7 a) Let HðwÞ be a decreasing positive function. Then, one hasR1
0 HðwÞGðw j a; 1Þ dw�

R1
0 HðwÞGðw j aþ 1; 1Þ dw� 0.

b) Let HðwÞ be an increasing positive function. Then, one hasR1
0 HðwÞGðw j a; 1Þ dw�

R1
0 HðwÞGðw j aþ 1; 1Þ dw� 0.

Proof a) Since HðwÞ is a positive decreasing function, we can approximate it by

functions of the form
PN

n¼1 an Bðbn;wÞ, where an� 0, bn [ 0, and Bðb;wÞ is equal
to 1, if w 2 ½0; b�, and Bðb;wÞ ¼ 0, if w [ b. Now,

R1
0 Bðb;wÞGðw j a; 1Þ

dw ¼
R b

0 Gðw j a; 1Þ dw ¼ 1� Cða;bÞ
CðaÞ , where Cða; bÞ is the incomplete Euler gamma

function. But the function 1� Cða;bÞ
CðaÞ is decreasing. Therefore,

R1
0 Bðb;wÞGðw j a; 1Þ dw [

R1
0 Bðb;wÞGðw j aþ 1; 1Þ dw, and we are done.
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b) Since HðwÞ is a positive increasing function,, we can approximate HðwÞ by

functions of the form
PN

n¼1 an ð1� Bðbn;wÞÞ, where an� 0, bn [ 0. Now,
R1

0 ð1� Bðb;wÞÞGðw j a; 1Þ dw ¼ Cða;bÞ
CðaÞ , and we are done. �

Proof of Corollary 2. Let m=2\1. Since 0\M\1, we conclude from Theorem 26,
using the Intermediate Value Theorem, that for any a[ 0 such that MKðaÞ�M,

there is a unique value of c� 0 for which MðmÞHKðc; aÞ ¼ M. Thus, if

M�Cðm=2þ 1Þ, a has no restrictions, because MðmÞK ðaÞ\Cðm=2þ 1Þ for any a [ 0
(Theorem 21). On the other hand, if MKðaÞ\M, let a0 be the unique solution to the

equation MðmÞK ða0Þ ¼ M (Theorem 21). Then, using once more Theorem 21, we

obtain that MðmÞK ðaÞ\M if and only if a� a0. Henceforth, if MðmÞK ðaÞ\M, the

domain of the function cðmÞM ðaÞ is the interval ð0; a0�

The case m=2 [ 1 is handled similarly, but with reversed inequalities. �

Proof of Lemma 4. Part a). From the definition in Eq. (10.6), the distribution
PHKðA j e; r2; aÞ is equal to

R1
0 PRiðA j e; r2wÞGðw j a; 1Þd w. Using the identity

I0ðzÞ ¼ 1
p

R p
0 ez cos hd h from Abramowitz and Stegun (1972, Eq. (9.6.16), p. 376)

and the definition of the Rice distribution (10.2) , we can express PRiðA j e;r2wÞ in

the form 1
p

R p
0

A
r2w exp

�
e

r2w A cos h
�

exp
�
� ðe

2þA2Þ
2r2w

�
d h. It follows that

PHKðA j e; r2; aÞ can be written as

1
p

Z p

0

nZ 1

0

A

r2w
exp
� e
r2w

A cos h
�

exp
�
�ðe

2 þ A2Þ
2r2w

�
Gðw j a; 1Þd w

o
d h;

ð10:99Þ

which yields Eq. (10.56) after evaluation of the inner integral.
Part b). Using Eq. (10.56), the partial derivative of the homodyned K-distri-

bution with respect to e is equal to

1
p

Z p

0

2A

r2CðaÞ
o

oe

n�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�o
d h

¼ 1
p

Z p

0

2A

r2CðaÞ
nða� 1Þ

2

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

þ
�XðhÞ

2

�a�1 d

d z
Ka�1

�
XðhÞ

�o o

oe
XðhÞd h

¼ � 1
p

Z p

0

2A

r2CðaÞ
�XðhÞ

2

�a�1
Ka�2

�
XðhÞ

�
2
ðe� A cos hÞ

r2XðhÞ d h:

ð10:100Þ

Here, we have used the identity z d
d z Ka�1ðzÞ þ ða� 1ÞKa�1ðzÞ ¼ �z Ka�2ðzÞ

(Abramowitz and Stegun 1972, Eq. (9.6.26), 2nd identity, p. 376) and algebraic
simplifications.
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Part c). Using Eq. (10.56), the partial derivative of the homodyned K-distri-
bution with respect to r2 is equal to

1
p

Z p

0

2A

CðaÞ
o

or2

n 1
r2

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�o
d h

¼ � 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
p

Z p

0

2A

r2CðaÞ

nða� 1Þ
2

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

þ
�XðhÞ

2

�a�1 d

d z
Ka�1

�
XðhÞ

�o o

or2
XðhÞd h

¼ � 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

� 1
r2

1
p

Z p

0

2A

r2CðaÞ

n
ða� 1Þ

�XðhÞ
2

�a�2
Ka�1

�
XðhÞ

�

�
�XðhÞ

2

�a�1
Ka

�
XðhÞ

�o�XðhÞ
2

�
d h

¼ � a
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a�1
Ka�1

�
XðhÞ

�
d h

þ 1
r2

1
p

Z p

0

2A

r2CðaÞ

�XðhÞ
2

�a
Ka
�
XðhÞ

�
d h:

ð10:101Þ

Here, we have used the identity z
2

d
d z Ka�1ðzÞ ¼ � z

2 KaðzÞ þ ða�1Þ
2 Ka�1ðzÞ (Abra-

mowitz and Stegun 1972, Eq. (9.6.26), 4th identity, p. 376) and algebraic
simplifications.

Part d). Eq. (10.59) follows from part a) upon taking the logarithmic derivative
of the integrand in Eq. (10.56). �
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