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Abstract—Ultrafast ultrasound is an emerging modality 
that offers new perspectives and opportunities in medical im-
aging. Plane wave imaging (PWI) allows one to attain very 
high frame rates by transmission of planar ultrasound wave-
fronts. As a plane wave reaches a given scatterer, the latter 
becomes a secondary source emitting upward spherical waves 
and creating a diffraction hyperbola in the received RF signals. 
To produce an image of the scatterers, all the hyperbolas must 
be migrated back to their apexes. To perform beamforming of 
plane wave echo RFs and return high-quality images at high 
frame rates, we propose a new migration method carried out 
in the frequency-wavenumber (f-k) domain.

The f-k migration for PWI has been adapted from the Stolt 
migration for seismic imaging. This migration technique is 
based on the exploding reflector model (ERM), which consists 
in assuming that all the scatterers explode in concert and be-
come acoustic sources. The classical ERM model, however, is 
not appropriate for PWI. We showed that the ERM can be 
made suitable for PWI by a spatial transformation of the hy-
perbolic traces present in the RF data. In vitro experiments 
were performed to outline the advantages of PWI with Stolt’s 
f-k migration over the conventional delay-and-sum (DAS) ap-
proach. The Stolt’s f-k migration was also compared with the 
Fourier-based method developed by J.-Y. Lu.

Our findings show that multi-angle compounded f-k migrat-
ed images are of quality similar to those obtained with a state-
of-the-art dynamic focusing mode. This remained true even 
with a very small number of steering angles, thus ensuring a 
highly competitive frame rate. In addition, the new FFT-based 
f-k migration provides comparable or better contrast-to-noise 
ratio and lateral resolution than the Lu’s and DAS migration 
schemes. Matlab codes for the Stolt’s f-k migration for PWI 
are provided.

I. Introduction

Conventional medical ultrasound imaging consists 
in scanning a medium using a series of successive fo-

cused or multi-focused beams sweeping along the region of 

interest. The resulting scanlines are then stacked together 
to reconstruct a single image. The time required to build 
one frame is thus proportional to the number of gath-
ered lines and the maximal imaging depth. Technologi-
cal advances within the last decade (parallel computing, 
high-performance data transfer, high-speed processors, 
etc.) now allow production of ultrasound scanners able to 
generate a full image from a single transmit, thus offering 
the opportunity for ultrafast imaging. One method to get 
ultrafast images is by means of plane wave insonifications 
[1]: a planar wavefront is generated by exciting the trans-
ducer elements equally, and the RF echoes are acquired 
simultaneously by each element to reconstruct an image in 
post-processing. Whereas focusing approaches concentrate 
the acoustic energy at one or several locations, plane wave 
generation tends to minimize the differences in amplitude 
and phase over the cross-section delimited by the wave-
front. Contrarily to conventional ultrasound imaging, the 
frame rate reached by plane wave ultrasonography is only 
limited by the time required for a wave to make a two-way 
trip. Theoretically, frame rates up to 15 000 Hz can thus 
be attained for a 5-cm imaging depth [2]. Recent studies 
indicate the growing emergence of ultrasound plane wave 
imaging (PWI). This technique has proven itself as a reli-
able method in several original and promising applications 
such as transient elastography, ultrafast Doppler imaging, 
ultrafast vector flow mapping, electromechanical wave im-
aging, and functional brain imaging [3]–[7].

As the downward plane wave reaches a single point 
scatterer, the latter becomes a secondary source emit-
ting upward waves (Fig. 1). Assuming a constant speed of 
sound within the medium, this source gives rise to a hy-
perbolic travel-time curve whose eccentricity is governed 
by the scatterer depth (Fig. 1): the deeper the scatterer, 
the flatter the hyperbola. More generally, each point scat-
terer within the insonified medium generates a diffraction 
hyperbola. The hyperbola thus represents the inhomoge-
neous point spread function for PWI. To produce an im-
age of the scatterers, these diffraction hyperbolas must be 
coalesced back into their apexes. In this manuscript, by 
analogy with seismic imaging, this beamforming process 
is called migration.

Migration improves focusing by essentially achieving 
amplitude and phase rectifications to correct for the ef-
fects of the spreading of ray paths as waves propagate [8]. 
In its simplest form, migration by summation of trace am-
plitudes along hyperbolic trajectories (known as diffrac-
tion summation) has been a basic tool for geophysicists 
since the 1950s [9]. This method has been extensively used 
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in ultrasound imaging under the name delay-and-sum 
(DAS). Adapting this approach to the context of PWI, 
Montaldo et al. thoroughly described a migration tech-
nique based on the two-way travel times for an acoustic 
wave to reach a scatterer and get back to the transducer 
elements [1]. The DAS simply consists in integrating the 
ultrasound RF signals over all the hyperbolas present in 
the RF signals. The pixels of the resulting migrated RF 
image are thus assigned the integral values. To potentially 
improve the image quality and increase the computational 
efficiency of PWI migration, we propose a new migration 
method carried out in the frequency-wavenumber (f-k) 
domain, thus bringing the benefit of much faster compu-
tational speed, resulting from the use of the fast Fourier 
transform (FFT) algorithm, while keeping high contrast-
to-noise ratio (CNR) and lateral resolution. The f-k migra-
tion for PWI is inspired by the original Fourier migration 
introduced by Stolt for seismic imaging [10], [11]. Sec-
tion II demonstrates how the standard Stolt’s method is 
adapted for plane wave insonifications.

FFT-based beamforming for ultrasonic imaging has 
been the topic of numerous studies since the early 1980s 
[12]–[19]. Most of them are based on the angular spec-
trum method, which consists in decomposing the reflected 
wavefield into plane waves, each propagating at a differ-
ent angle. Although originally derived for monochromatic 
waves, the angular spectrum method has been extended 
to wideband systems [13], [14]. Much more computation-
ally efficient FFT-based approaches have been recently 
inspired from the synthetic aperture radar/sonar (SAR/
SAS) community [20]–[22]. These techniques, sometimes 
referred to as wavenumber algorithms, solve the focus-
ing problem using one-dimensional interpolations in the 
Fourier domain [12], [17]–[19]. Although extensively ap-
plied for imaging in SAR/SAS, the wavenumber algorithm 
was originally developed by Stolt for exploration seismol-
ogy [10]. None of the aforementioned studies, however, 
fall within the scope of PWI. Instead, each single element 

of the transducers must be fired independently, while one 
or several elements are used in reception, thus somewhat 
mimicking the ideal zero-offset seismic configuration [10], 
[12]. To reach very high frame rates, an FFT-based recon-
struction of ultrasound images obtained by plane wave 
insonifications has been successfully addressed by J.-Y. 
Lu and his team [23]–[25]. This spectral technique has 
recently been tested by an independent group [26]. In 
Lu’s method, the RF image is essentially remapped in the 
Fourier domain by interpolating the temporal frequencies. 
This approach is based on the assumption that the scat-
terers all behave as monopole sources [27].

In this manuscript, we derive a new Fourier f-k mi-
gration technique for plane wave ultrasound imaging by 
modifying the so-called exploding reflector model. In vitro 
results are presented to outline the benefits of the Stolt’s 
f-k migration, in terms of image quality, over dynamic 
focusing and DAS. The new f-k migration process is also 
compared with Lu’s method. The differences between the 
three approaches (DAS, f-k migration, and Lu’s method) 
are discussed in Section IV. A concise and readable Mat-
lab code (The MathWorks Inc., Natick, MA) for the f-k 
migration is given in the Appendix for the readers familiar 
with Matlab to grasp the underlying algorithm. In ad-
dition, a complete optimized Matlab code with in vitro 
examples is provided in the online supplementary content 
( ) and in [28].

II. Theoretical Background: Adapting  
the Fourier Domain Stolt’s Migration  

for Plane Wave Imaging

A. The Exploding Reflector Model for Plane  
Wave Imaging

The classical seismic Stolt’s f-k migration is based on 
the exploding reflector model (ERM), which assumes that 

Fig. 1. Migration process for plane wave imaging. As the scatterers are reached by a plane wave, they become secondary sources that emit upward 
spherical waves and generate diffraction hyperbolas in the RF backscattered signals. Migration allows one to recover the scatterers’ positions and to 
reconstruct a B-mode image. 

http://dx.doi.org/10.1109/TUFFC.2013.2771/mm1
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all the reflectors in the medium explode simultaneously 
and become upward-emitting acoustic sources (Fig. 2) 
[29]. This postulate reduces the back-and-forth wave prop-
agation to an upward wave scenario. The f-k migration 
then attempts to time-reverse the wave propagation and 
determine the ERM wavefield at t = 0 (i.e., at the time of 
explosion) based on the sole knowledge of the wavefield on 
the surface z = 0 (Fig. 2). In order for the acoustic wave-
field to be properly migrated, the ERM must reflect the 
actual two-way propagation accurately; in other words, 
one must seek the exploding sources whose ERM-based 
hyperbolas fit the actual RF hyperbolas. The f-k migra-
tion precisely consists in applying the Stolt method to find 
these virtual sources, followed by a spatial transformation 
to recover the actual scatterers’ positions. This process 
is straightforward in the particular zero-offset configura-
tion because one simply must halve the wavefield propaga-
tion speed (see the following subsection). In the context 
of PWI, however, the classical ERM is not suitable as 
it stands, but the exploding model turns out to be well 
adaptable to plane wave insonification, as explained in 
the next subsections. Let us first mention that there is no 
delay in reception in the following.

1) The Simplest Case: The One Emitter-Receiver Ele-
ment Scenario: This situation is equivalent to the so-called 
zero-offset section encountered in post-stack migration for 
seismic imaging [30]. Such a zero-offset section is acquired 
by moving a single coincident emitter/receiver along the 
recording surface. For ultrasound imaging, by analogy, 
each element of the transducer both transmits the im-
pulse signals and receives the RF echoes, one at a time. 
As a recent example, this seismic imaging concept was 
applied for nondestructive industrial evaluation of multi-
layered media [19]. In this specific configuration, a scat-
terer positioned at (xs, zs) leads to a two-way travel-time 
(from emitter to scatterer back to receiver) which depends 
upon the transducer position x and is characterized by the 
hyperbola given by

	 τ s s s( ) ( ) .x c x x z= − +
2 2 2 	 (1)

We use here the notation (xs, zs) relative to a linear array: 
xs stands for the scatterer position parallel to the array 
and zs represents its depth position relative to the array. 
The origin (0, 0) is located at the center of the first left-
most element. The wave propagation speed (c) is assumed 
constant in the insonified tissues. The factor 2 in (1) re-
flects the round-trip of the wavefield through the medium. 
It is now easy to see that an exploding source at (ˆ , ˆ )x zs s  
within a medium whose propagation speed is ĉ (this is a 
one-way situation, from scatterer to receiver) yields the 
following ERM travel-time:

	 ˆ ( ) ˆ (ˆ ) ˆ .τ s s sx c x x z= − +
1 2 2 	 (2)

Making equal the travel-times τs (1) and τ̂ s (2) by choos-
ing (ˆ , ˆ )x zs s  = (xs, zs) and halving the propagation speed 
(i.e., ̂c = c/2) makes the ERM and the one emitter-receiv-
er scenario alike.

2) The ERM With a Horizontal Plane Wave: To gener-
ate a horizontal plane wave, all the transducer elements 
must emit synchronously. We thus leave the simple afore-
mentioned scenario. Assuming that a horizontal plane 
wave is sent within the medium, the travel-time produced 
by a scatterer positioned at (xs, zs) is now given by (see [1] 
for details):

	 ˆ ( ) ( ) .τ s s s sx c z x x z= + − +( )1 2 2 	 (3)

To make the ERM compatible with the horizontal plane 
wave acquisition, one must fit the hyperbolas given by (2) 
and (3). No simple relation, however, can provide a perfect 
fitting. Because most of the signal energy is concentrated 
around the apex of the hyperbola, a compromise is to 
make equal their apical zeroth- to second-order deriva-

Fig. 2. The exploding reflector model (ERM). In the ERM, the scatterers are assumed to explode in concert, which simplifies the time-reversal prob-
lem. To obtain the scatterers’ positions, one must determine the wavefield at the time of explosion. In this study, the ERM, originally introduced for 
the seismic zero-offset configuration, is adapted to plane wave imaging. 
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tives. This is done by equalizing τs and τ̂ s as well as their 
first and second derivatives (with respect to x) at x = xs 
( ˆ ),= x s  respectively, which yields

	 ˆ , ˆ .c c z z= =and s s
2
2 2 	 (4)

In the particular case of a horizontal plane wave, the 
expressions in (4) make the ERM compatible with PWI. 
In comparison with the one emitter-receiver element sce-
nario, the wavefield propagation speed must not be simply 
halved; in addition, the depth must be rescaled. These 
relations make the travel times given by (2) and (3) al-
most equal in the vicinity of the apex, and their difference 
decreases in O((x − xs)4). The phase error—Δφs =  
2πf0|τs(x) −  ˆ ( )τ s |,x  where f0 is the central frequency—re-
lated to this approximation in the travel times is illus-
trated in Fig. 3. One can observe that the phase errors are 
larger for large obliquities (i.e., for large deviation angles 
formed by the scatterer with respect to the transducer 
element). This, however, is expected to have little effects 
on the migrated images because the reflected acoustic en-
ergy is maximal for small obliquity values.

3) The General Case: The ERM With a Tilted Plane 
Wave: In practice, because the image quality achieved 
with a single plane wave is suboptimal [1], several slightly 
tilted consecutive plane wavefronts are transmitted and 
the backscattered RF signals are coherently compounded. 
It has been reported that less than 10 angles can pro-
vide PWI-derived images with quality similar to standard 
multi-focus methods, thus ensuring a highly competitive 
frame rate [1]. To be able to perform multi-angle com-
pounding with our method, it must be ensured that the 
ERM can be adapted to a slant plane wave as well. For a 

plane wave tilted with an angle θ from the horizontal [see 
Fig. 4(a)], the travel time becomes (see [1] for details):

	 τ θ θs s s s s( (( ) sin ) cos ) .( )x c x z x x z= + + − +( )1 2 2 	 (5)

As performed in the previous paragraph, one now wants 
to fit this hyperbola with the ERM-based hyperbola given 
by (2). Again, a perfect fitting cannot be obtained and the 
strategy is to seek simple transformations that establish 
the equality of the zeroth- to second-order derivatives. To 
do so, the RF echoes are first trimmed to eliminate the 
leading zero signals caused by the emission delays (see 
Fig. 4). The travel time (5) thus becomes:

	 τ θ θs s s s s(( ) sin( )( ) cos ) .( )x c x x z x x z= − + + − +( )1 2 2 			

		  (6)

Now, let (α, β, γ ) be constant parameters defined by
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Using the definitions in (7), the ERM travel time given by 
(2) becomes:

	 ˆ ( ) .( )τ α γ βs s s sx c x z x z= + − +
1 2 2 2 	 (8)

Equalizing τs (6) and τ̂ s (8), as well as their first and sec-
ond derivatives at x = xs, provides the following expres-
sions:
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Note that we get (α, β, γ ) = ( , , )2 2 0/2  when θ = 0, as 
obtained with the horizontal wavefront (4). The ERM in 
conjunction with the transformations defined by (7) and 
(9) can thus be used to model tilted PWI. The difference 
between the travel times given by (6) and (8) decreases in 
O((x − xs)3).

We have just seen that the ERM can be generalized 
to model PWI adequately. This is a major point because 
the ERM is the key element of the f-k migration described 
next. The whole process is diagrammed in Fig. 4.

B. Stolt’s f-k Migration

The goal of the migration process is to reconstruct ul-
trasound images from the raw RF signals generated in 
PWI mode. Montaldo et al. recently introduced and suc-
cessfully tested a DAS method defined in the time-space 

Fig. 3. Phase errors induced to exploding reflector model (ERM) modi-
fication. The travel-times of the classical ERM have been modified to 
make the ERM model adapted to plane wave imaging. The phase errors 
induced by these approximations depend upon the scatterer depth (zs) 
and on its position relative to the transducer element (x − xs). A 5 MHz 
central frequency was used. 
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domain [1]. Lu et al. proposed a Fourier-based approach 
[25]. We now propose a new migration method that also 
operates entirely in the Fourier frequency-wavenumber do-
main (f-k migration).

In the field of seismic imaging, Stolt proposed in 1978 a 
migration method, commonly called the f-k (or sometimes 
ω-k) migration, allowing the construction of migrated im-
ages in the frequency domain [10]. The Stolt f-k migra-
tion is currently, by a wide margin, the fastest migration 
technique but it is limited to a constant propagation wave 
velocity [11]. Although it can be a major drawback in 
seismology, in which propagation speeds may vary by a 
factor of 5 (typically from 1000 to 5000 m/s [31]), this 
constraint is generally less critical in most situations for 
medical ultrasound, in which the speed of sound remains 
around 1500 m/s in soft tissues (typically from 1480 to 
1670 m/s [32]). The f-k migration was developed from the 
linear wave equation using Fourier transforms. We invite 
readers to refer to [8] for a well-written and complete de-
scription of the Stolt f-k migration. Only the main steps 
are described here.

Let Ψ(x, z, t) be a scalar wavefield of the ERM satisfy-
ing the linear two-dimensional wave equation. One wants 
to determine the ERM wavefield at the time of explosion, 
i.e., Ψ(x, z, t = 0), knowing the wavefield on the surface 
Ψ(x, z = 0, t). Let ϕ(kx, z, f ) denote the Fourier transform 
of Ψ(x, z, t) over (x, t), so that

	 Ψ( , , ) ( , , ) ,( )x z t k z f e k fx
i k x ft

x
x= −

−∞

+∞

∫∫ φ π2 d d 	 (10)

where kx stands for the spatial wavenumber related to x 
and f is the temporal frequency. For a constant ERM 
propagation speed ( ),ĉ  the application of the Fourier trans-
form to the wave equation yields the following Helmholtz 
equation [8]:

	
∂
∂
+ =

2

2
2 24 0

φ
π φ

z
kẑ ,	 (11)

where the wavenumber k̂z is given by

	 ˆ
ˆ

.k
f
c

kz x
2

2

2
2= − 	 (12)

The unique boundary condition for (11) is ϕ(kx, 0, f ), 
which is the Fourier transform of Ψ(x, z = 0, t). To close 
the ERM migration problem described by (11) and (12), 
it is now assumed that Ψ(x, z, t) contains only waves mov-
ing upward (see [8, Eq. 5.48]). The ERM wavefield is thus 
allowed to propagate on the −z direction only, as would 
occur with primary reflections. The wave equation can 
thus be solved and one obtains the migrated wavefield [8]:

	 Ψ( , , ) ( , , ) .( ˆ )x z k f e k fx
i k x k z

x
x z0 0 2= −

−∞

+∞

∫∫ φ π d d 	 (13)

To fully benefit from the Fourier transforms, Stolt pro-
posed to change the variable k̂z by introducing [see (12)]

	 f k c k k kz z x z(ˆ ) ˆsign(ˆ ) ˆ .= +2 2 	 (14)

Fig. 4. Adapting the f-k migration to tilted plane wave imaging. (a) A slant plane wave is emitted. In this example, the leftmost scatterer is the first 
to perceive the planar wavefield. (b) The resulting diffraction hyperbolas in the RF echoes are not aligned. (c) Trimming the RF signals realigns the 
hyperbolas horizontally (from gray to black). (d) A scatterer originally located at (xs, zs) will be moved to (ˆ , ˆ )x zs s   after the f-k migration. 
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This expression describes the spectral remapping of the 
Stolt’s f-k migration for PWI, which differs from the re-
mapping proposed by Lu [25] (more details are given in 
Section IV-A). Using the change of variables (14), the 
Stolt’s migration solution is finally

	Ψ( , , )
ˆˆ

ˆ
( , , (ˆ )) ˆ( )ˆx z

ck

k k
k f k e k kz

x z
x z

i k x k z
x

x z0 0
2 2

2=
+

− d dφ π
zz .

−∞

+∞

∫∫ 		

		  (15)

As shown by (15), the migrated solution is basically the 
inverse Fourier transform of

	
ˆˆ

ˆ
( , , (ˆ )).

ck

k k
k f kz

x z
x z2 2
0

+
φ 	 (16)

C. The Stolt’s f-k Migration Algorithm for Plane-Wave 
Ultrasound Imaging

We have just seen how to adapt the exploding reflector 
model (ERM) for plane-wave ultrasound imaging (PWI) 
in Section II-A. We also showed that the migrated solu-
tion of the ERM is given by (15). We now have the frame-
work for the f-k migration of PWI-derived RF signals. 
The three-step process to get f-k migrated images can be 
summarized as follows:

	 1) 	The leading zeros of the RF signals resulting from 
the emission delays are first removed (6). This is 
step (b) to (c) in Fig. 4. This signal trimming aligns 
the hyperbolas of same apical curvature horizontally 
[Fig. 4(c)]. Note that this operation slightly distorts 
the hyperbolas [Fig. 4(c)], distorting them more for 
larger steering angles.

	 2) 	The Stolt’s migration algorithm described by (14) 
and (15) is applied [steps (c) to (d) in Fig. 4] using 
the ERM velocity ̂c as defined in (7) and (9). A scat-
terer originally located at (xs, zs) will be moved to 
(ˆ , ˆ )x zs s  after the migration [Fig. 4(d)]

	 3) 	Coordinate transformations (ˆ , ˆ )x zs s  → (xs, zs) are per-
formed to get back into the actual position [Fig. 
4(d)] by using the expressions given by (7) and (9).

It is worth noting that these basic steps can be imple-
mented in the Fourier domain to gain significant compu-
tational speed. A pseudo-code for tilted PWI f-k migration 
is proposed in Fig. 5 and a simplified Matlab code (for 
horizontal plane waves only) is given in the Appendix. A 
complete and optimized Matlab pcode (protected function 
file) is also provided in the supplementary materials ( ) 
and in [28]. This latter program was used to generate the 
f-k migrated images contained in this manuscript.

As illustrated by (12) and (15), the Stolt’s migration 
includes a nonuniform Fourier transform because the k̂zs 
are not equally sampled. To gain computational speed by 

using the fast Fourier transform (FFT), the data must be 
laid on a regular grid by interpolation or other gridding 
methods, as performed in geosciences or magnetic reso-
nance imaging [33]–[36]. In our context, the simplest algo-
rithm consisted of linear interpolation after extensive ze-
ro-padding in the first FFT: Ψ(x, z = 0, t) → ϕ(kx, 0, f ). 
Although a nonuniform FFT [26], [35] could have been 
included in the f-k migration algorithm, we instead used a 
linear interpolation scheme for the sake of simplicity. As 
an alternative, the sinc (sine cardinal) interpolation could 
also be used to reduce the amount of zero-padding and 
make the algorithm a bit faster [34]. The sinc interpolator 
option is available in the Matlab pcode given in the Sup-
plementary materials ( ).

III. In Vitro Experiments: Stolt’s f-k Migration 
Against DAS and Lu’s Method

As detailed in this section, ultrasound PWI was ana-
lyzed in an in vitro phantom to illustrate the performance 
of the new f-k algorithm for migrating PWI-derived RF 
data. In vitro plane wave measurements were performed 
with the Verasonics research scanner (V-1-128, Verason-
ics Inc., Redmond, WA). The raw RF signals were trans-

Fig. 5. Diagram of the Stolt’s f-k migration algorithm for plane wave 
imaging. The proposed algorithm for migration of the RF signals works 
entirely in the Fourier domain. The coordinates x and z are defined as in 
Fig. 4. The parameters kx and f stand for the spatial wavenumber and 
the temporal frequency, respectively. The wavefront angle θ is defined 
relative to the transducer (see Fig. 4).

http://dx.doi.org/10.1109/TUFFC.2013.2771/mm1
http://dx.doi.org/10.1109/TUFFC.2013.2771/mm1
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formed using the DAS [1], the f-k migration and the Lu’s 
method [25]. The reconstructed B-mode images were com-
pared with those obtained using state-of-the-art dynamic 
multi-focusing approaches. The f-k migration and the Lu’s 
method were compared under strictly similar conditions. 
Only the spectral remapping formulas (see Section IV-A 
for more details) were different in the algorithms. Other 
conditions that may affect image quality (interpolation 
schemes, FFT, zero-padding, etc.) were kept unchanged.

A. Construction of the Migrated Images

In vitro RF data were acquired with the V-1 Verason-
ics scanner using a 5-MHz linear-array transducer (ATL 
L7-4, 128 elements, pitch = 0.3 mm) and the 403GS LE 
Gammex phantom (Gammex Inc., Middleton, WI). The 
Gammex phantom was insonified with successive tilted 
plane waves. No transmit apodization was used. RF raw 
data backscattered by anechoic mimicking cysts and 0.1-
mm nylon fibers up to 10 cm deep were acquired at a 
sampling frequency of 20 MHz. The RF signals were zero-
phase high-pass filtered to remove any dc offset. The RFs 
were then migrated using the DAS, f-k, and Lu’s methods. 
An f-number of 1.75 (i.e., the maximal aperture was given 
by z/f = z/1.75) was used when beamforming with the 
DAS to make the contrast better in the very near field [1]. 
The migrated RF signals were time-gain compensated and 
B-mode images were obtained through a Hilbert trans-
form. The B-mode images were gamma-compressed using 
γ = 0.3 (except for the study of lateral resolution, see 
Section III-D) and converted to 8-bit grayscale. To assess 
the quality of the images generated by ultrasound plane 
waves, PWI was compared with the dynamic focusing 
mode offered by the Verasonics scanner. In the latter ap-
proach, 128 dynamically focused scanlines were obtained 
using seven transmit foci vertically distributed over the 
region-of-interest, and an f-number of 1.75 (as in [1]).

B. Effect of the Steering Angle on the CNR

Multi-angle RF coherent compounding is required with 
plane wave imaging (PWI) to enhance the quality of the 
ultrasound images [1]. We first verified the quality of 
PWI-derived B-mode images returned by a single plane 
wave insonification with a given wavefront angle (defined 
with respect to the transducer). The manner in which the 
wavefront angle [denoted θ in (5); see also Fig. 4(a)] af-
fects the CNR of migrated images has been investigated 
in vitro on a single 6-mm-diameter, 3-cm-deep anechoic 
target. The target CNR in decibels was defined as [37]

	 CNR
/

t b

t b

=
−

+
20

2
10 2 2

log ,
( )
µ µ

σ σ
	 (17)

where μt and μb (σ t
2 and σb

2) are the means (variances) of 
gray levels in the target and the surrounding background, 
respectively.

The in vitro results show that the CNR decreased 
when the wavefront angle increased (Fig. 6). The CNR 
remained almost unchanged for wavefront angles vary-
ing from 0° to 10° (Fig. 6). Beyond 10°, however, a rapid 
decrease in CNR was observed with the three migration 
techniques, which indicates that high wavefront angles 
(with respect to the probe) should be avoided to obtain 
high-quality images. In this configuration, no major differ-
ence between the three migration methods was noticed be-
low 10°. According to our findings, the absolute wavefront 
angle for PWI should preferably remain lower than 10°. 
This observation, however, cannot be generalized because 
the maximal acceptable steering angle very likely depends 
upon several factors, such as the central frequency and the 
pitch. As a side note, the contrast, as defined by [37, Eq. 
(1)], had a behavior very similar to the contrast-to-noise 
ratio; see Fig. 6-bis in the online supplementary materials 
for detailed results ( ).

C. Effect of the Number of Compounding Angles  
on the CNR

The combination of several migrated RF signals ac-
quired with different wavefront angles may significantly 
improve the quality of the resulting image, more impor-
tantly for large depths. Getting one image by coherent 
compounding was carried out as follows: 1) several RF 
signals were acquired with slightly different plane wave 
angles; 2) they were migrated independently, then aver-
aged; and 3) an envelope detection was performed in the 
resulting compounded migrated RF data. To analyze how 
the number of compounding angles improves the image 
quality, a series of in vitro tests were performed with an-
echoic mimicking cysts. The angular range was chosen as 
[−θmax; +θmax] with an increment of 1°, and θmax was var-
ied from 0° to 10°. For instance, when θmax was 3°, seven 
angles (i.e., −3°, −2°, −1°, 0°, 1°, 2°, 3°) were used to cre-
ate a compounded image. The data acquired by PWI were 
compared with those obtained by the dynamic focusing 
mode offered by the Verasonics scanner. The CNR of the 
targets (3- and 8-cm-deep anechoic cysts), delimited by 
dashed circles in Fig. 7, was calculated using (17).

As expected, the CNR of the anechoic cysts improved 
when increasing the number of angles (Fig. 7). This im-
provement, however, became nonsignificant above a total 
number of 9 or 11 angles. The in vitro results show that 
the three migration methods perform roughly equally, al-
though the CNR reached by Lu’s method was somewhat 
lower. Our findings also indicate that compounding PWI 
with f-k migration using a very few angles (typically 7 
to 11) equals the dynamic focusing approach in terms 
of CNR (10.7 and 9.6 dB at 3- and 8-cm-depth, respec-
tively), which ensures a highly competitive frame rate for 
PWI (only 7 to 11 compounded firing sequences are re-
quired) in comparison with the focused imaging (128 × 
number-of-foci firing sequences). Similar conclusions were 
reached with the contrast defined by [37, Eq. (1)]; see Fig. 
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7-bis in the online supplementary materials for detailed 
results ( ).

D. Analysis of the Lateral Resolution

The effect of the number of compounding angles (from 
1 to 21 angles, with an increment of 1°, as in the previous 
subsection) on the lateral resolution given by PWI was 
first analyzed at 3 and 8 cm depth. Coherent compound-
ing was performed as described in the previous subsec-
tion. The lateral resolution slightly improved with the 

DAS and Lu’s approaches when increasing the number of 
compounding angles, both at 3 and 8 cm depth (see Fig. 
8). The resolution provided by the two Fourier methods 
(f-k and Lu’s) was better at 8 cm. At 3 cm, the resolution 
reached with the f-k migration was better with a small 
number of angles (0.55 mm versus 0.71 mm) and became 
identical with 21 angles (≈0.60 mm).

The lateral resolution provided by PWI was then com-
pared with that given by the dynamic focusing method 
with the Verasonics scanner and the 128-element linear-
array transducer. The effect of the depth on the resolution 
was assessed in vitro using the 0.1-mm nylon fibers (up to 
10 cm deep) of the Gammex phantom. Dynamic focusing 
was obtained using 7 foci and an f-number of 1.75. The 
lateral resolution was estimated by measuring the full-
width at half-maximum (FWHM) of the real envelopes 
of the migrated RF signals (no gamma-compression was 
used here).

Seven angles (−3° to 3°, increment of 1°) were used for 
the compounded PWI images. The PWI-derived lateral 
resolution was around 0.6 mm (≈2 pitches) until about 
4 cm deep, then degraded linearly up to 1.25 mm (≈4 
pitches) at 10 cm (see Fig. 9). The lateral resolution was 
slightly better with the f-k migration in comparison with 
the DAS and Lu’s method. On average, the lateral resolu-
tion achieved by the dynamic focusing mode was better 
than the f-k migrated PWI (difference = 0.17 ± 0.08 mm 
= 0.59 ± 0.27 pitch). It is worth noticing, however, that 
the number of firing sequences was 128 times higher with 
the dynamic focusing mode. The resolution obtained by 
PWI in our study (between 0.5 and 1.2 mm) was some-
what similar to that reported by Montaldo et al. in [1] 
(around 1.1 mm at 4.5 MHz with a 0.33 mm pitch). Coun-
terintuitively, however, they did not observe any degrada-
tion of the lateral resolution at larger depths. As depth 
increases, though, the hyperbolas generated by PWI flat-

Fig. 6. Effect of the steering angle on the contrast-to-noise ratio. In vitro 
results. Contrast-to-noise ratio (CNR) for a 6-mm-diameter, 3-cm-deep 
anechoic target (using a Gammex phantom and the Verasonics scanner). 
The CNR remained unchanged up to 10°, then decreased rapidly with 
angles >10°, regardless of the migration method [delay-and-sum (DAS), 
Lu’s method, or f-k migration]. See also Fig. 6-bis in the supplementary 
materials. 

Fig. 7. Effect of the number of compounding angles on the contrast-to-noise ratio. In vitro results. Contrast-to-noise ratio (CNR) for 6-mm-diameter, 
3- and 8-cm-deep anechoic targets (using a Gammex phantom and the Verasonics scanner). The targets of interest are delimited by dashed circles. 
Multi-angle compounding plane wave imaging provided CNR similar to those given by the dynamic focusing approach (dyn. focus. in the figure, 
dashed horizontal lines). The locations of the foci are represented by the left markers in the rightmost image. The rightmost figure was obtained 
using f-k migration and seven compounding angles. See also Fig. 7-bis in the supplementary materials. 
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ten (and become a horizontal line at infinite depth), thus 
producing some ambiguity in the location of their apexes 
and consequently reducing the lateral resolution.

E. Computational Complexity: Stolt’s f-k Migration 
Versus DAS

To determine the computational complexity of the f-k 
migration, let nt denote the number of elements in the 
transducer (in general, 64, 128, or 192) and ns denote the 
number of time samples (typically ≥1000 to 3000). The f-k 
migration requires two 2-D FFTs and the computation of 
(nt, ns) interpolated values. In comparison, the DAS pro-
posed by Montaldo et al. must retrieve nt(ntns) interpolat-
ed data and perform (ntns) summations over nt values [1]. 
The computational complexity of the migrating process 
thus decreases from O(ntntns) down to O(ntnslog(ntns)) 
when performed in the Fourier domain. Note that Lu’s 
method has the same computational complexity as the f-k 
migration because only the interpolation scheme is differ-
ent (see Section IV-A). The number of floating operations 
is significantly reduced when the migration of the RF data 
are carried out in the Fourier domain.

Overall, in our study, the f-k migration ran around 25 
times faster than the DAS on a CPU (Intel Core i5, Intel 
Corp., Santa Clara, CA) operating at 2.80 GHz, regard-
less of the number of time samples. However, it is obvious 
that the actual resources utilized by the algorithms de-
pend upon numerous aspects, including the programming 
language, CPU or GPU speed, available memory, speed of 
data transfer, serial or parallel transfer, etc. Recent works 
show that GPU platforms can execute beamforming for 
plane wave imaging at frame rates well beyond the video 
display range [38]. In this study, because it was not our 
goal to get real-time visualization, the RF signals were 
migrated offline using Matlab.

IV. Discussion

Ultrafast ultrasound PWI, in comparison with the con-
ventional focusing approaches, allows one to obtain a full 
image with a single transmit by migration of the resulting 
RF signals. We have shown that PWI-derived ultrasound 
images can offer an image quality similar to that provided 
by a state-of-the-art dynamic focusing approach, but with 
a frame rate up to 100 times faster. In the present paper, 
a well-established seismic migration method—the Stolt’s 
f-k migration—has been modified for PWI. Because we 
are not in the specific zero-offset condition of seismic im-
aging, we needed to adapt the exploding reflector model 
(ERM). We demonstrated that the ERM can be made 
suitable to PWI by fine-tuning the diffraction hyperbolas 
present in the RF data. The resulting new f-k migration 
yielded high-quality images in terms of CNR and lateral 
resolution.

The main advantage of the f-k migration over con-
ventional DAS is that it works completely in the Fourier 
space. This makes the algorithm much faster, and any 
filtering process in the frequency domain can be included 
without significant increase in computation time. Poten-
tial improvements could be further provided to the f-k 
migration algorithm. As already mentioned, a nonuniform 
FFT (NUFFT) can be used to get rid of the interpola-
tion process that appears in the Stolt’s migration (Fig. 5). 
As another alternative, because the band-pass RF signals 
are highly sparse, the f-k migration could be made even 
faster with the use of sparse Fourier transforms [39], [40]. 
Although the theory has been derived in two dimensions, 
the f-k migration for PWI can be generalized in three di-
mensions. It may be expected that three-dimensional PWI 
with a 32 × 32 or 64 × 64 matrix array would be feasible 
in the near future. In that case, one would simply have to 
deal with hyperboloids instead of hyperbolas.

Fig. 8. Effect of the number of compounding angles on the lateral resolution. Lateral resolution at 3 and 8 cm depth reached by multi-angle com-
pounding plane wave imaging (using a Gammex phantom and the Verasonics scanner). The lateral resolution improved with increasing number of 
compounding angles. See also Fig. 9. 
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A. Differences Among the Three Migration Methods

In this study, we have shown that the new FFT-based 
f-k migration provided comparable or better contrast-to-
noise ratio and lateral resolution than the Lu’s and DAS 
migration schemes. One must be aware that migration is 
an ill-posed inverse problem. The wave equation indeed 
requires two boundary/initial conditions to be solved. 
Available information (acoustic pressure at z = 0, only) is 
insufficient to recover the insonified medium. Additional 
assumptions are thus required to close the problem. The 
different migration algorithms precisely differ by the kind 
of approximations made.

1) DAS: The DAS is actually equivalent to the so-called 
diffraction summation, the simplest migration method 
used by the geophysicists since the 1960s [9]. This is a geo-
metric strategy which consists of summing the backscat-
tered signals along the hyperbolic traces of the diffraction 
responses. The DAS thus provides a basic solution of the 
migration problem. Although this procedure makes good 
sense and provides good outputs in plane wave imaging, it 
is theoretically incorrect [29]. A more exact process would 
be, for instance, given by the Kirchhoff’s integral theorem, 
which adds amplitude and phase corrections to the data 
before summation [29], [41], [42].

2) Spectral Mapping of the Fourier-Based Methods: Both 
Lu and f-k migrations are Fourier-based methods. The 
only difference lies in their spectral remapping. Assuming 
horizontal plane waves only (i.e., no steering angle), one 
has the ERM speed ĉ = c/ 2 [see (4)]. Now choosing kz = 

2f/c, i.e., k̂z = 2f c/ , the spectral remapping for the f-k 
migration is yielded by (14):

	 f f f
c
k f cf k x→ = +- sign /( ) .

2
22 2 2 	 (18)

Again, assuming no steering angle, Lu’s remapping is 
written as (see [25, Eq. 43]):

	 f f f
c k
f
x→ = +Lu

2 2

4 .	 (19)

A concise description of the theoretical background 
leading to this spectral remapping is available in [27]. Us-
ing a Taylor series about (kx, f ) = (0, f0), where f0 is the 
central frequency, it can be shown that the two remapped 
frequencies are equivalent up to the third order; see the 
online supplementary materials for more details ( ). Lu’s 
method and f-k migration thus mainly differ for r
large spatial wavenumbers kx. Fig. 10 illustrates 
method and f-k migration behave in the Fourier
see also Fig. 10-bis in the online supplementary m
Accordingly, one can observe that their spectra
when |kx| ≫ 0. On the contrary, the differences
the DAS and Lu’s spectra are less significant a
homogeneous (see rightmost panels in Fig. 10).

3) Further Details Regarding Lu’s Method and S
Migration: Lu’s process assumes the scatterers t
as pure monopole sources: as the plane wave r
scatterer, it becomes a source that emits circul
spreading out uniformly in all directions. In suc
tions, the Green’s function for the 2-D wave eq
reduced to a Hankel function. When working in 
rier domain, this leads to an analytical expressio
the received wavefront to the monopole source i
reality, the scatterers behave more realistically 
tors than monopole sources. The simplest mode
the wavefield to the reflectivity is precisely the e
reflector model (ERM) as used in the f-k migrati

The Stolt’s f-k migration is based on the E
provides an exact solution to the migration pro
constant wave speed [8], [10]. In the ERM, e
sources are located along the reflecting interface
sources explode in concert and emit waves whic
gate upward and are recorded by the receivers at
face [30]. In comparison with Lu’s migration te
the Stolt migration operates with upward waves o
ERM model generates normal-incidence reflec
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model. The ERM, however, works for a zero-o
tion; i.e., this model is valid only if each single
of the transducer emits independently (as for a 
synthetic aperture, see Section I). To make the E
able for plane wave imaging, we had to modify

Fig. 9. Effect of depth on the lateral resolution. Seven-angle compounded 
plane wave images, reconstructed with the different migration meth-
ods [Lu’s method, delay-and-sum (DAS), or f-k migration], were com-
pared with dynamically focused images in a Gammex phantom using the 
Verasonics scanner. Only seven firing sequences were used to obtain a 
plane wave image (see left grayscale image obtained with f-k migration), 
whereas 896 sequences were needed in the dynamic focusing mode (dyn. 
focus. in the figure). The locations of the foci used in dynamic focusing 
are represented by the left markers in the rightmost image. 
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fraction hyperbolas by using basic spatial transformations 
(see Section II-A). This numerical step inevitably corrupts 
the exactness of the Stolt solution. However, because the 
fitting is performed up to third order in the vicinity of the 
hyperbola apex and because most of the signal energy is 
concentrated around the apex of the diffraction hyperbola, 
the Stolt’s f-k migration remains highly accurate in PWI, 
as confirmed by our in vitro findings.

B. Plane Wave Imaging Versus Dynamic Focusing

An ultrasound image usually contains about a hundred 
lines. In conventional ultrasound, each scanline is gener-
ated by a single- or multi-transmit focused scheme. The 
state-of-the-art focused technique is dynamic focusing, 
which focuses both on transmission and reception [44], 
[45]. In the Verasonics system, receipt focusing is per-
formed by a digital DAS beamformer and the image is di-
vided into several focal zones. Multi-focus imaging is thus 
a slow process. Indeed, a total of [number-of-scanlines × 
number-of-foci] transmit–receive sequences are required to 
get a single image. In comparison, only a few steered plane 
wave insonifications (typically 7 to 11 in this study) pro-
vides an image of quality comparable to dynamic focusing 
(see Figs. 7–9). Of particular importance is the repetitive 
acoustic energy concentration that occurs with transmit 
focusing. High acoustic peak pressures are generated by 
transmit-focusing techniques. In PWI, the acoustic pres-
sure is uniformly spread over the insonified medium. As 

an example, PWI thus helps to preserve microbubbles and 
improves ultrasound contrast imaging [46]. To sum up, 
conventional focus imaging is a high-energy, slow modal-
ity, whereas PWI is a low-energy, fast process.

C. PWI Using f-k Migration: Limitations and Perspectives

Ultrasound PWI needs the wavefronts to be planar and 
tilted with the desired incident angle. To get high-quality 
images by PWI, one must ensure that a planar wavefield is 
synthesized properly. An unlimited number of coplanar el-
ementary sources can produce a perfect slant plane wave. 
In practice though, the amount of elements in a linear-ar-
ray transducer is limited to 64, 128, or 192. This technical 
limitation may cause adverse effects that may negatively 
affect the resulting images. First, the wave equation is not 
limited to a plane and out-of-plane scatterers may thus 
contribute to the RF signals. More importantly, a more 
disturbing effect may rise from the grating lobes which 
are induced by the regular spacing of the individual trans-
ducer elements. It is known that the grating lobes are of 
larger magnitude as the steering angle increases [47]. This 
may explain in part why the migration was less efficient 
beyond 10°. Whether an appropriate transmit apodiza-
tion can significantly reduce this adverse effect remains 
to be investigated. Besides the technical aspects, the f-k 
migration model is also subject to restrictions. This al-
gorithm is based on the 2-D wave equation and the Born 
approximation, assuming a constant speed of sound and 

Fig. 10. Spectral mapping. Spectral mapping of the migrated images using the three techniques [delay-and-sum (DAS), Lu’s method, f-k migration]. 
The top left figure shows the spectrum of the raw RF signals before migration: kx stands for the spatial wavenumber related to x and f is the tempo-
ral frequency. The empty region, where | f/kx| < c, corresponds to the evanescent waves, which exhibit exponential decay in the very near-field. The 
rightmost figures represent the absolute differences of the Lu’s and f-k or DAS spectra. The RF signals were simulated using the freeware Field II 
[43] with randomly distributed scatterers. See also Fig. 10-bis in the supplementary materials. 
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only upcoming waves. In soft tissues, however, the speed 
of sound is not absolutely uniform [32] and one must 
therefore use an average or root-mean-square value. As 
with conventional focusing imaging [48], a mismatch in 
the speed of sound may significantly affect the quality of 
the images reconstructed by migration [49]. To illustrate 
the effect of a speed-of-sound mismatch in the context of 
plane wave imaging, image quality was determined in the 
Gammex phantom by repeating the migration processes 
with different speed values (the speed of sound within 
the Gammex phantom is claimed to be 1540 m/s). We 
studied the CNR of the 8-cm-deep cyst as well as the 
lateral resolution at 3-cm depth (see Sections III-C and 
III-D) for speeds of sound ranging from 1400 to 1700 m/s 
in the algorithms. B-mode images were generated using 
seven steering angles (−3° to +3°). Our measures (Fig. 
11) show that image quality indeed quickly degrades when 
the speed of sound is under- or over-estimated. CNR and 
lateral resolution, however, were little affected in the 1450 
to 1550 m/s range.

Several correctors have been proposed to adjust the 
speed of sound in ultrasound imaging [50]–[52]. As a side 
note, because it is a constant-speed method, the Stolt’s f-k 
migration would be also limited in transcranial ultrasound 
imaging because the sound propagates much faster in the 
skull bone than in the brain. Less-limiting models valid for 
vertically varying velocities, such as the phase-shift meth-
od [19], [53], would be better adapted in this situation.

V. Conclusion

PWI offers the major advantage to yield high-quality 
images at very high frame rates with low acoustic energy. 
The Stolt’s f-k migration, which is based on a physically 
sound seismic technique, yields high-quality PWI-derived 
ultrasound images. An advantage of the f-k migration over 
the classical DAS is its faster computational speed, re-

sulting from the use of FFTs. More importantly, the f-k 
migration has the potential to return better lateral reso-
lution. The Stolt’s f-k migration has thus the capability 
to significantly improve ultrasound PWI, and one could 
bet than PWI can look forward to a prosperous future in 
medical ultrasound. Further theoretical and experimental 
investigations will help to identify the best conditions for 
optimal PWI in different physiological contexts.

Appendix 
A Simplified Matlab Code for the Stolt’s f-k 

Migration With Horizontal Plane Waves

A simplified Matlab code is provided for Stolt’s f-k mi-
gration of RF signals with PWI. Note that this program 
is simplified and works with horizontal plane waves only. 
In addition, the number of options is limited. A complete 
protected code with in vitro examples is provided in the 
supplementary materials or can be downloaded from D. 
Garcia’s webpage (www.biomecardio.com).
function migRF = ezfkmig(RF,fs,pitch) 
  
%EZFKMIG   f-k migration for plane wave imaging 
%   (Easy version) 
%    
%   MIGRF = EZFKMIG(RFMAT,FS,PITCH) performs a f-k 
%   migration of the RF signals stored in the 2-D 
%   array RFMAT. MIGRF contains the migrated 
%   signals. FS and PITCH represent the sampling 
%   frequency (in Hz) and the pitch (in m) that 
%   were used to acquire the RF signals. 
% 
%   The RF signals in RFMAT must have been 
%   acquired using a PLANE WAVE configuration with 
%   a linear array. Each column corresponds to a 
%   single RF signal over time acquired by a 
%   single transducer element. 

Fig. 11. Effect of speed-of-sound image on image quality. Contrast-to-noise ratio (CNR) of the 8-cm-deep cyst (left panel) and lateral resolution at 
3 cm depth (right panel) for different values of speed of sound (in vitro results, see also Figs. 7 and 8). The vertical dashed line represents the speed 
of sound value given by the documentation of the Gammex phantom. 
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% 
%   IMPORTANT NOTE: 
%   -------------- 
%   EZFKMIG is a simplified and non-optimized 
%   version of FKMIG. The code has been simplified 
%   for academic purposes. It only works with 
%   horizontal plane waves generated by a linear 
%   array, without delay in reception. The number 
%   of options with EZFKMIG is also limited. Use 
%   FKMIG for a more general application. 
% 
%   Reference 
%   ---------  
%   Garcia et al., Stolt’s f-k migration for plane 
%   wave ultrasound imaging. IEEE UFFC, 2013 
% 
%   See also FKMIG 
%    
%   -- Damien Garcia -- 2013 
%   website: <a 
%   href=”matlab:web(... 
%   ‘http://www.biomecardio.com’... 
%   )”>www.BiomeCardio.com</a> 
   
[nt0,nx0] = size(RF); 
   
% Zero-padding 
nt = 2^(nextpow2(nt0)+1); 
nx = 2*nx0; 
   
% Exploding Reflector Model velocity 
c = 1540; % propagation velocity (m/s)  
ERMv = c/sqrt(2); 
   
% FFT 
fftRF = fftshift(fft2(RF,nt,nx)); 
   
% Linear interpolation 
f = (-nt/2:nt/2-1)*fs/nt; 
kx = (-nx/2:nx/2-1)/pitch/nx; 
[kx,f] = meshgrid(kx,f); 
fkz = ERMv*sign(f).*sqrt(kx.^2+f.^2/ERMv^2); 
fftRF = interp2(kx,f,fftRF,kx,fkz,’linear’,0); 
   
% Jacobian (optional) 
kz = (-nt/2:nt/2-1)’/ERMv/fs/nt; 
fftRF = bsxfun(@times,fftRF,kz)./(fkz+eps); 
   
% IFFT & Migrated RF 
migRF = ifft2(ifftshift(fftRF),’symmetric’); 
migRF = migRF(1:nt0,1:nx0);
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Effect of the steering angle on the contrast 
 

 
 

Figure 6.bis – Effect of the steering angle on the contrast. In vitro results. Contrast for a 6 
mm-diameter 3 cm-deep anechoic target (using a Gammex phantom and the Verasonics 
scanner). The contrast remained almost unchanged up to 10o then decreased with angles > 10o. 
DAS: delay-and-sum; Lu: Lu’s method; f-k: f-k migration. See also Fig. 6 in the paper. 
 
 
The contrast (in dB) was defined as: 

C = 20 log10
|𝜇t − 𝜇b|

(𝜇t − 𝜇b)/2
 

 
  



Effect of the number of compounding angles on the contrast 
 

 
 

Figure 7.bis – Effect of the number of compounding angles on the contrast. In vitro results. 
Contrast for 6 mm-diameter 3 and 8 cm-deep anechoic targets (using a Gammex phantom and 
the Verasonics scanner). The targets of interest are delimited by dashed circles in Fig. 6 in the 
paper. Multi-angle compounding PWI provided contrast similar to those given by the dynamic 
focusing mode of the Verasonics scanner (black dashed horizontal lines). DAS: delay-and-sum; 
Lu: Lu’s method; f-k: f-k migration. See also Fig. 7 of the paper. 
 
 
The contrast (in dB) was defined as: 

C = 20 log10
|𝜇t − 𝜇b|

(𝜇t − 𝜇b)/2
 

 
  



Lu’s method vs. f-k migration: spectral mapping 
 
We seek the (𝑘𝑥,𝑘𝑧) maps of the migrated RFs. Assuming horizontal plane waves only, we have 
𝑐̂ = 𝑐/√2 (see Eq. 7 and 9). We define the wavenumber 𝑘 = 𝑓/𝑐. We neglect the evanescent 
waves, so that |𝑘| ≥ |𝑘𝑥|. Note also that 𝑘�𝑧/𝑐̂ = 𝑘𝑧/𝑐. 
 
 
1) Remapping 
 
Both Lu and f-k migrations are spectral methods based on the 2-D wave equation. The only 
difference lies in the spectral remapping. Assuming horizontal plane waves only and choosing 
𝑘𝑧 = 2𝑘, the remapping for the f-k migration is yielded by equation (14): 
 
𝑓

 
→ 𝑓𝑓-𝑘 =  sign(𝑓) 𝑐

√2
�𝑘𝑥 2 + 2𝑓2 𝑐2⁄ . (18) 

 
For Lu’s method, one has (see Eq. 43 in Cheng and Lu, IEEE UFFC, vol. 53, 2006): 
 
𝑓

 
→ 𝑓𝐿𝑢 = 𝑓 + 𝑐2𝑘𝑥 2

4𝑓
. (19) 

 
A Taylor series about (𝑘𝑥,𝑓) = (0,𝑓0), where f0 is the central frequency, yields: 
 

𝑓𝑓-𝑘 = 𝑓 +
𝑐2�𝑓−2𝑓0��𝑓

2−2𝑓𝑓0+2𝑓0
2�𝑘𝑥 2

4𝑓0
2 + Ο�𝑘𝑥4�𝑓 − 𝑓0�

4
�, (20) 

 
and 
 

𝑓𝐿𝑢 = 𝑓 +
𝑐2�𝑓−2𝑓0��𝑓

2−2𝑓𝑓0+2𝑓0
2�𝑘𝑥 2

4𝑓0
2 + Ο�𝑘𝑥4�𝑓 − 𝑓0�

4
�. (21) 

 
The two remapped frequencies are thus equivalent up to the third order about (𝑘𝑥,𝑓) = (0,𝑓0). 
This is visible on Fig. 10 (rightmost top panel).  
 
 
2) Spectral mapping of the migrated RFs 
 
2.a) Stolt’s f-k migration 
 
The wavenumber 𝑘�𝑧, associated to the ERM model is given by Eq. (12). Because 𝑘�𝑧/𝑐̂ = 𝑘𝑧/𝑐, 
Eq. (12) becomes: 
 
𝑘𝑧 2 = 𝑘2 − 𝑘𝑥 2/2 . (22) 
 
Equation (22) gives the relationship between the (𝑘𝑥,𝑘) and (𝑘𝑥,𝑘𝑧) maps, which are the spectral 
maps before and after migration, for the Stolt’s f-k migration. 
 



2.b) Lu’s method 
 
The 𝑘𝑧’s can be deduced from Eq. 43 in [Cheng and Lu, IEEE UFFC, vol. 53, 2006]. 
Considering horizontal plane waves only, one gets: 
 
𝑘𝑧 = �𝑘 + �𝑘2 − 𝑘𝑥2� /2 . (23) 
  
Equation (23) gives the relationship between the (𝑘𝑥,𝑘) and (𝑘𝑥,𝑘𝑧) for the Lu’s method. One 
can now compare the spectral maps yielded by the two migration methods (see Fig. 10.bis). 
 
 

 
 

Figure 10.bis – Spectral mapping. Spectral mapping of the Lu- and f-k migrated images 
(arbitrary units). The left figure shows the spectrum of the raw RF signals before migration 
around the central frequency. The empty region, where |𝑘 𝑘𝑥⁄ | < 1, corresponds to the 
evanescent waves. The central and right figures represent the Lu’s and f-k spectra, respectively. 
See also Fig. 10 of the paper. 

 


