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Estimation Method of the Homodyned K-Distribution Based on the Mean
Intensity and Two Log-Moments∗

François Destrempes†, Jonathan Porée‡, and Guy Cloutier§

Abstract. The homodyned K-distribution appears naturally in the context of random walks and provides a
useful model for the distribution of the received intensity in a wide range of non-Gaussian scat-
tering configurations, including medical ultrasonics. An estimation method for the homodyned K-
distribution based on the first moment of the intensity and two log-moments (XU method), namely
the X- and U -statistics previously studied in the special case of the K-distribution, is proposed as
an alternative to a method based on the first three moments of the intensity (MI method) or the
amplitude (MA method), and a method based on the signal-to-noise ratio (SNR), the skewness,
and the kurtosis of two fractional orders of the amplitude (labeled RSK method). Properties of the
X- and U -statistics for the homodyned K-distribution are proved, except for one conjecture. Using
these properties, an algorithm based on the bisection method for monotonous functions was devel-
oped. The algorithm has a geometric rate of convergence. Various tests were performed to study
the behavior of the estimators. It was shown with simulated data samples that the estimations of
the parameters 1/α and 1/(κ+1) of the homodyned K-distribution are preferable to the direct esti-
mations of the clustering parameter α and the structure parameter κ (with respective relative root
mean squared errors (RMSEs) of 0.63 and 0.13, as opposed to 1.04 and 4.37, when N = 1000). Tests
on simulated ultrasound images with only diffuse scatterers (up to 10 per resolution cell) indicated
that the XU estimator is overall more reliable than the other three estimators for the estimation of
1/α, with relative RMSEs of 0.79 (MI), 0.61 (MA), 0.53 (XU), and 0.67 (RSK). For the parameter
1/(κ+1), the relative RMSEs were equal to 0.074 (MI), 0.075 (MA), 0.069 (XU), and 0.100 (RSK).
In the case of a large number of scatterers (11 to 20 per resolution cell), the relative RMSEs of 1/α
were equal to 1.43 (MI), 1.27 (MA), 1.25 (XU), and 1.33 (RSK), and the relative RMSEs of 1/(κ+1)
were equal to 0.14 (MI), 0.16 (MA), 0.17 (XU), and 0.20 (RSK). The four methods were also tested
on simulated ultrasound images with a variable density of periodic scatterers to test images with a
coherent component. The addition of noise on ultrasound images was also studied. Results showed
that the XU estimator was better overall than the other three. Finally, on the simulated ultrasound
images, the average computation times per image were equal to 6.0 ms (MI), 8.0 ms (MA), 6.8
ms (XU), and 500 ms (RSK). Thus, a fast, reliable, and novel algorithm for the estimation of the
homodyned K-distribution was proposed.

Key words. homodyned K-distribution, statistical parameter estimation, random walks, non-Gaussian scat-
tering, optical propagation through turbulent media, microwave sea echo, land clutter, medical
ultrasonics, echo envelope.
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1. Introduction. The homodyned K-distribution appears naturally in the context of a
limiting random walk modeling physical scattering process, with a constant-amplitude coher-
ent component and with a negative binomial distribution for the number of steps [13, 15].
As a special case, the K-distribution [21, 14] corresponds to a vanishing coherent component
of the amplitude of that process. Also, the Rice distribution corresponds to the limiting
case where the scatterer clustering parameter implicit in the negative binomial distribution
is infinite [24, 30, 15]. Finally, the Rayleigh distribution [29, 15] corresponds to the Rice
distribution with a vanishing coherent component. Both the Rice and the Rayleigh distri-
butions correspond to a Gaussian random walk, but not the homodyned K-distribution (or
the K-distribution). The random variable of these distributions is called the amplitude and is
denoted by A. The intensity I is defined as the square of the amplitude.

K-distributions and, more generally, homodyned K-distributions turned out to provide a
useful model for the received amplitude in a wide range of non-Gaussian scattering configu-
rations, such as optical propagation through turbulent media [27], microwave sea echo [38],
land clutter [26], and medical ultrasonics [33, 8, 23, 10, 28, 25]. See [6] for a presentation of
the homodyned K-distribution and related distributions in the context of ultrasound imaging.

The homodyned K-distribution is determined by three parameters that carry a physical
meaning: the mean intensity μ; the scatterer clustering parameter α (i.e., the clustering
parameter in the negative binomial distribution); and the structure parameter κ (i.e., the
ratio of the coherent signal power to the diffuse signal power). Given a sample of the received
amplitude, one is then interested in estimating those three parameters, or related parameters,
such as the signal-to-noise ratio (SNR) of the intensity and the ratio of coherent signal to
diffuse signal, denoted k in [8, 11]. The goal is then to use the estimated parameters in
the context of tissue characterization or quantitative ultrasound (QUS) based on medical
ultrasound images. See [25, 11] as examples.

A simple estimation method of the homodyned K-distribution based on the first three
moments of the intensity E[I], E[I2], and E[I3] was proposed in [8]. In [11], the SNR, the
skewness, and the kurtosis of two fractional orders (namely, 0.72 and 0.88) of the amplitude
were used as statistics for the estimation of the homodyned K-distribution. In the case of the
estimation method of [11], one obtains an overdetermined nonlinear system of equations that
is solved in the sense of the least mean square.

In this paper, an estimation method based on the first moment of the intensity E[I], the U -
statistics E[log I]−logE[I], and the X-statistics E[I log I]/E[I]−E[log I] is proposed. The U -
and X-statistics were introduced in the context of K-distributions in [26] and [4], respectively.
Moreover, an algorithm with a geometric rate of convergence for the computation of this new
estimator is proposed.

The remaining part of this paper is organized as follows. In section 2, the definition of
the homodyned K-distribution is recalled. In section 3, the proposed estimation method is
explained. Experimental results based on simulations of sample sets and of ultrasound imagesD
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Table 1
Main parameters and statistics discussed in this paper.

Definition Notion

A and I = A2 amplitude and intensity

I mean intensity of a sample A1, . . . , AN

U = log I − log I U -statistics

X = I log I/I − log I X-statistics

Homodyned K-distribution with parameters ε ≥ 0, σ2 > 0, and α > 0

α scatterer clustering parameter

ε2 coherent signal power

2σ2α diffuse signal power

μ = ε2 + 2σ2α total signal power (mean intensity)

κ = ε2/(2σ2α) structure parameter

γ = ε2/(2σ2) = κα algorithmic parameter

k =
√
2κ = ε/(σ

√
α) ratio of the coherent to diffuse signal

Rice distribution with parameters ε ≥ 0 and σ2
R > 0

μ = ε2 + 2σ2
R mean intensity

κ = ε2/(2σ2
R) structure parameter

k =
√
2κ = ε/σR ratio of the coherent to diffuse signal

are presented in section 4. The results are discussed in section 5, and we conclude in section 6.

Table 1 presents the definition of the main parameters and statistics discussed in this
paper. Given a sample set {A1, . . . , AN}, the notation f(A) denotes the average value of the
function f over the sample set, i.e., 1

N

∑N
i=1 f(Ai). In particular, the notation I , for instance,

denotes 1
N

∑N
i=1A

2
i . The notation ∂

∂α is used for the partial derivative with respect to, say,
α. For example, the notation PK does not mean partial derivative, but rather that K is used
as a subscript (identifying the K-distribution).

2. The homodyned K-distribution. The reader is referred to [15] for a presentation of the
homodyned K-distribution and the related Rice distribution in the context of random walks,
and to [6] for a presentation in the context of ultrasound imaging. The reader may consult
[2] for the notions of Bessel functions.

The two-dimensional homodyned K-distribution is defined by

PHK(A | ε, σ2, α) = A

∫ ∞

0
u J0(u ε)J0(uA)

(
1 +

u2σ2

2

)−α

du,(2.1)

where ε ≥ 0, σ2 > 0, and α > 0, and J0 denotes the Bessel function of the first kind of order
0. The limiting case of a homodyned K-distribution with parameters ε, σ2 = σ2

R/α, and α,D
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1502 FRANÇOIS DESTREMPES, JONATHAN PORÉE, AND GUY CLOUTIER

where σ2
R > 0 is a positive real number and α → ∞, yields the Rice distribution

PRi(A | ε, σ2
R) =

A

σ2
R

I0

(
ε

σ2
R

A

)
exp

(
−(ε2 +A2)

2σ2
R

)
,(2.2)

where I0 denotes the modified Bessel function of the first kind of order 0.

The compound representation of Theorem 2.1 is useful in simulating the homodyned K-
distribution and in evaluating its values.

Theorem 2.1 (Jakeman and Tough [15]). The compound representation of the homodyned
K-distribution is

PHK(A | ε, σ2, α) =

∫ ∞

0
PRi(A | ε, σ2w)G(w | α, 1)dw,(2.3)

where G(w | α, 1) = wα−1e−w/Γ(α) is the gamma distribution with mean and variance α, and
Γ denotes the Euler gamma function.

Two functions of the three parameters of the homodyned K-distribution are invariant
under scaling of the mean intensity μ = ε2 + 2σ2α: (1) the scatterer clustering parameter
α; (2) the structure parameter κ = ε2/(2σ2α), i.e., the ratio of the coherent signal power ε2

to the diffuse signal power 2σ2α. Let us mention also the ratio of the coherent to diffuse
signal k =

√
2κ = ε/(σ

√
α) adopted in [8, 11]. It was found convenient to also consider the

parameter γ = κα = ε2/(2σ2). This parameter should not be confused with the structure
parameter κ = ε2/(2σ2

R) of the Rice distribution PRi(A | ε, σ2
R). See Table 1 for a summary of

these parameters. The special case where ε = 0 yields the K-distribution PK(A |σ2, α) [21, 15]
and the Rayleigh distribution PRa(A | σ2

R) [29].

3. A new method for estimating the homodyned K-distribution. A new method for
estimating the parameters (ε, σ2, α) of the homodyned K-distribution based on an independent
and identically distributed (i.i.d.) sample set (A1, . . . , AN ) of positive real numbers is now
discussed.

Two statistics will play an important role in what follows: (1) the U -statistics defined by
U := log I − log I and (2) the X-statistics defined as X := I log I/I − log I . For parametric
models, such as the homodyned K-distribution or the Rice distribution, the U -statistics is
defined as E[log I] − logE[I], where expectation is taken with respect to the distribution.
Similarly, the X-statistics is defined as E[I log I]/E[I]−E[log I]. A subindex (such as “HK”)
is then used to identify the distribution (e.g., “UHK”).

For later reference, it is instructive to observe the following result.

Lemma 3.1. (a) For any nonconstant random variable, the U -statistics is negative.

(b) For any nonconstant random variable, the X-statistics is positive.

The proof of Lemma 3.1 is presented in Appendix A.

3.1. Proposed estimator. The proposed method of estimation consists in solving the
following (nonlinear) system of equations in the variables ε2, σ2, and α:

E[I] = I, UHK = U, XHK = X.(3.1)D
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Sufficient conditions for this system to admit a solution are presented below. For this purpose,
it will be convenient to adopt the following change of variables:

μ = ε2 + 2σ2α, γ =
ε2

2σ2
.(3.2)

Proposition 3.2. Let A =
√
I be distributed according to the homodyned K-distribution

PHK(A | ε, σ2, α). With the notation of (3.2), one has

(3.3)

UHK(γ, α)

= −γE − log(γ + α) + ψ(α)

− γα
Γ(−α)

αΓ(α)
1F2(α; 1 + α, 1 + α; γ) + γ

Γ(α− 1)

Γ(α)
2F3(1, 1; 2, 2, 2 − α; γ),

(3.4)

XHK(γ, α)

=
(1 + 2α)

(γ + α)
− 2γα/2+1/2

(γ + α)Γ(α)
Kα+1

(
2
√
γ
)

+
γα

(γ + α)

Γ(−α)

Γ(α)
1F2(α; 1 + α, 1 + α; γ)

− γα+1

(γ + α)

Γ(−1− α)

(1 + α)Γ(α)
1F2(1 + α; 2 + α, 2 + α; γ)

+
γ

(γ + α)
2F3(1, 1; 2, 2, 1 − α; γ) − γ

(γ + α)

αΓ(−1 + α)

Γ(α)
2F3(1, 1; 2, 2, 2 − α; γ),

where γE denotes the Euler constant, ψ is the digamma function, pFq(a1, . . . , ap; b1, . . . , bq; z)
is the generalized hypergeometric series, and Kp denotes the modified Bessel function of the
second kind of order p.

As one can see, (3.3) and (3.4) depend only on the variables γ and α. Thus, the proposed
method amounts to solving the second and third equations of (3.1) in the variables γ and α,
and then using the identities

ε2 = μγ/(γ + α), σ2 = μ/(2(γ + α)),(3.5)

with the estimator I of the mean intensity μ.

The proof of Proposition 3.2 is presented in Appendix A.

3.2. Estimating γ when α is known. Let α > 0 be known. A method for finding γ > 0
satisfying (3.4) is now discussed. Thus, one wants to solve the equation XHK(γ, α) = X.

In Appendix B, the following result is shown.

Theorem 3.3. Use the same notation as above.

(a) One has the left boundary condition limγ→0XHK(γ, α) = XK(α), where XK(α) =
1 + 1/α.

(b) One has the right boundary condition limγ→∞XHK(γ, α) = 0.D
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X
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ta
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XK(α)

XHK(γ, α)

5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

1.4

parameter γ

Figure 1. Illustration of the typical behavior of the X-statistics for the homodyned K-distribution as a
function of γ ≥ 0 with a fixed value of α > 0 (here, α = 2.1).

(c) For any α > 0, the function XHK(γ, α) is decreasing in the variable γ.
See Figure 1 for an illustration of Theorem 3.3. Part (c) of Theorem 3.3 implies that a

binary search algorithm can be used to find the unique solution to (3.4), whenever it exists.
See section 3.4 for details.

Corollary 3.4. Let X > 0. Then, there is at most one solution to the equation XHK(γ, α) =
X.

(a) If X ≤ 1, then there is a solution for any α > 0.
(b) If X > 1, then there is a solution if and only if 0 < α ≤ α0, where α0 = X−1

K (X) =
1/(X − 1).

Thus, one obtains a well-defined function

γ = γ(α,X)(3.6)

on the domain described by Corollary 3.4.

3.3. Estimating γ and α. From Corollary 3.4, one knows that for any α in an interval
of the form (0, α0] or (0,∞), there exists a unique solution γ = γ(α,X) to the equation
XHK(γ, α) = X. Substituting this solution in the second equation of (3.1), one obtains
a function UHK(γ(α,X), α) in the variable α. Thus, one now wants to solve the equation
UHK(γ(α,X), α) = U .

See Appendix C for a proof of the following result.
Theorem 3.5. Let X > 0.
(a) One has the left boundary condition limα→0 UHK(γ(α,X), α) = 0.
(b) Let X > 1. One has the right boundary condition limα→α0 UHK(γ(α,X), α) = UK(α0),

where UK(α) = −γE − log α+ ψ(α), XK(α) = 1 + 1/α, and α0 = X−1
K (X) = 1/(X − 1).

(c) Let X ≤ 1. One has the right boundary condition limα→∞ UHK(γ(α,X), α) = URi(κ0),

where URi(κ) = Γ(0, κ)+log κ
(κ+1) , XRi(κ) =

(2−e−κ)
(κ+1) , and κ0 = X−1

Ri (X). The function XRi(κ)

is decreasing and has the interval (0, 1] for range.
Since the function XRi(κ) is decreasing on its domain [0,∞) and has range (0, 1], the

function X−1
Ri (X) is well defined on the interval X ∈ (0, 1].

Conjecture 1. The function UHK(γ(α,X), α) is decreasing on its domain.D
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U
-s

ta
tis

tic
s

UK(X
−1
K (X))

UHK(γ(α,X), α)

0.1 0.2 0.3 0.4 0.5 0.6

�2.0

�1.5

�1.0

�0.5

parameter α

Figure 2. Illustration of the typical behavior of the U-statistics for the homodyned K-distribution as a
function of α > 0, with a fixed value of X > 0 and γ = γ(α,X). Here, X = 2.5. Since X > 1, the upper bound
for α is α0 = 1/(X − 1).

U
-s

ta
tis

tic
s

U = UK(X−1
K (X))

U =
URi(X

−1
Ri (X))

Rice distr.
(α = ∞)

Rayleigh distr.
(α = ∞, γ = 0)

K-distr.
(γ = 0)

homodyned K-distr.

X = 1

1 2 3 4

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

X-statistics

Figure 3. Illustration of the domain in the (X,U)-plane in which the parameters γ ≥ 0 and α are well
defined. The domains where either the K-distribution, the Rice distribution, or the Rayleigh distribution model
apply are also indicated. The Rayleigh distribution corresponds to the vertical line.

See Figure 2 for an illustration of Theorem 3.5 and the conjecture. The conjecture implies
that a binary search algorithm can be used to find the unique solution to the second and third
equations of (3.1), whenever a solution exists. The details are presented in section 3.4. In
Appendix D, a discussion on Conjecture 1 is presented.

Combining Theorems 3.3 and 3.5 with the conjecture yields the following result.

Corollary 3.6. Let U < 0 and X > 0 be given. Then, there exists a simultaneous solution
to the system UHK(γ, α) = U and XHK(γ, α) = X if and only if

(a) X > 1 and U > UK(X
−1
K (X)), or

(b) X ≤ 1 and U > URi(X
−1
Ri (X)).

Moreover, if a solution exists, it is unique.

Thus, one obtains well-defined functions

γ = γ(X,U), α = α(X,U),(3.7)

where X and U are restricted to the domain described by parts (a) and (b) of Corollary 3.6.
See Figure 3 for an illustration of this domain.D
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XHK(γ, α) function of (3.4);

Input: X > 0 (the X-statistics) and α > 0.
Assumption: α ≤ α0 = 1/(X − 1) if X > 1; no restriction if 0 < X ≤ 1.

Initialization of γ1

Initialization of γ2

B isection method

γ1 = 0

No

γ2 = 0 γ2 +=1

XHK (γ2,α) X

Y es

γ = (γ1 + γ2)/2

XHK (γ,α) ≤ X

γ1 = γ

|γ1− γ2| < toleranceNo

Y es

No

γ2 = γ

E nd
Y es

Start

≤

Figure 4. Algorithm for computing the function γ(α,X) of (3.6). Left: block diagram; right: flow chart.

3.4. Algorithms for solving the system (3.1). The algorithm presented in Figure 4 is
used as a subroutine in the algorithm of Figure 5 that computes the unique solution (according
to Conjecture 1) to the system (3.1), whenever U and X satisfy the conditions of Corollary
3.6.

First of all, Figure 4 gives a binary search algorithm for computing the function γ(α,X) of
(3.6) (α being known) by solving the equation XHK(γ, α) = X. Since (from Theorem 3.3) the
function XHK(γ, α) is decreasing in the variable γ and since (by assumption) X is between
the upper bound XK(α) = 1 + 1/α and the lower bound 0, it follows that the algorithm
of Figure 4 converges to the unique solution of the equation XHK(γ, α) = X, as follows
from the intermediate value theorem. Note that this binary search algorithm corresponds to
the bisection method [9] and converges at a geometric rate; namely, after each iteration the
distance between the current value of γ and the solution decreases by a factor of 2.

Having this algorithm as a tool, one can solve the equation UHK(γ(α,X), α) = U using the
binary search algorithm of Figure 5 for reasons similar to those above, based on Conjecture 1.D
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UHK(γ, α) function of (3.3);
γ(α,X) function computed by the algorithm of Figure 4.

Input: X > 0 and U < 0 (the X- andU-statistics).
Assumption: X > 1 and U > UK(α0), where α0 = 1/(X − 1); OR 0 < X ≤ 1 and U > URi(X

−1
Ri (X)).

Initialization of α1

Initialization of α2

B isection method

α1 = 0

No

α2 = α0 α2 +=1; γ = γ(α2,X)

UHK (γ,α2) ≤ U

Y es

α  = (α1 +α2)/2; γ = γ(α,X)

No

Y es

No

X ≤ 1

α2 = 0

No

Y es

UHK(γ,α) ≤ U

|α1-α2| < tolerance

α2= αα1= α

E nd
Y es

Start

Figure 5. Algorithm for solving simultaneously XHK(γ, α) = X and UHK(γ, α) = U . Left: block diagram;
right: flow chart.

Indeed, according to the conjecture, the function UHK(γ(α,X), α) is decreasing, and Theorem
3.5 gives the upper and lower bounds of that function. Note that the assumptions on X and
U of the algorithm are those of Corollary 3.6. Moreover, observe that the assumption of the
subroutine of Figure 4 is satisfied whenever it is called in the algorithm of Figure 5. Details
on the computation of the functions XHK and UHK are given in Appendix E. Since the value
of γ = γ(α,X) is computed for each value of α considered in the algorithm of Figure 5, an
error on that computation propagates on the error in the estimation of α. So, one has to
allow enough precision. In the implementation of the reported tests, we adopted a tolerance
of 10−4 and 10−2 in the algorithms of Figures 4 and 5, respectively.

3.5. Overall algorithm. We now discuss an extension of the above method in the case
where the system (3.1) has no solution, i.e., whenever U and X do not satisfy the conditions
of Corollary 3.6. Also, there is a further issue on the size of α with respect to numericalD
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considerations. On that matter, one has to know that the various functions appearing in the
expression of XHK and UHK (such as the digamma function) have a finite support in any
implementation. Therefore, in practice, one has to limit the size of α to a finite interval
(0, αmax]. So, we resort to the algorithm of Figure 6 for a practical implementation of the
proposed approach. This algorithm finds a solution to the system

(ε, σ2, α) = argmin |UHK − U |(3.8)

subject to μ = I and XHK = X and α ≤ αmax,

as follows directly from Conjecture 1 (i.e., the function UHK(γ(α,X), α) is decreasing in the
variable α). Observe that a solution to the system (3.1) such that α ≤ αmax is automati-
cally a solution to the system (3.8). Note that in the algorithm of Figure 6, a homodyned
K-distribution with parameters ε, σ2, α > αmax is approximated by the distribution with
parameters

(3.9) ε̃ =

√
μ

γ̃

(γ̃ + αmax)
, σ̃2 =

μ

2αmax(γ̃ + αmax)
, αmax,

where γ̃ = γ(αmax,XHK(
ε2

2σ2α
, α)).

In the reported tests, we chose αmax = 59.5, i.e., as large as possible but within a range for
which the various functions used in the C++ implementation of the method could be supported
numerically. In view of the numerical behavior of the function XHK at integral values of α
(see Appendix E), one might as well choose an odd integer divided by 2 for the value of
αmax. Finally, we have checked numerically that the Kullback–Leibler distance [20] between a
homodyned K-distribution with parameters ε, σ2, α and the distribution with parameters as
in (3.9) is less than 1.8×10−4 for parameter values in the range k = ε

σ
√
α
∈ {0, 0.1, . . . , 1.9, 2.0}

and α,αmax ∈ {59.5, 61.5, . . . , 79.5}. Note that the Kullback–Leibler distance is independent
of the scaling factor μ, so that we assumed μ = 1 in the numerical computations. Thus,
we are inclined to think that a homodyned K-distribution with α > αmax is approximated
sufficiently well by the algorithm of Figure 6 and that the choice of αmax ≥ 59.5 is not crucial,
at least if k ≤ 2. However, we do not have a proof of this hypothesis because the analytical
computations appeared to be intractable.

3.6. Are k and α the right parameters to estimate? The biases and normalized standard
deviations reported in [11] are rather high. For instance, from [11, Figure 3], the relative biases
for k and α go up to about 600% and 100%, respectively, and their normalized standard
deviations reach about 300%. This suggests that one should consider a transformation of
these parameters. In [8], the parameter β = 1/α is considered rather than α itself. For
one estimation, the two solutions are equivalent, but for numerous estimations, the biases
and standard deviations are not necessarily equivalent, because the averaging operator is not
invariant under a transformation unless that transformation is linear. Thus, for instance, the
relative bias of 1/α might be lower than the relative bias of α.

In this study, the parameters 1/(κ + 1) and 1/α were adopted. As will be presented in
section 4.1, the relative biases and normalized standard deviations were improved considerably
with that choice of transformations. So, in the applications considered, the parameters 1/(κ+D
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UHK(γ, α) function of (3.4);
γ(α,X) function computed by the algorithm of Figure 4.
αmax upper bound on α.

Input: Ī > 0 (the mean intensity), X > 0 and U < 0 (the X- andU- statistics).

Computation of μ

Computation of α∗

Computation of ε2 and σ2

μ = I

α0 = 1/(X-1);
α∗ = min(α0,αmax)

UHK (γ (α∗, X),α∗) ≤ U

Y es

Y es

No

X ≤ 1

α∗ = αmax

No

γ = γ  (α∗,X);
α  = α∗

Compute γ and α
as in Figu re 5

Computation of γ and α

ε2 = μγ /( γ  +α ) ;
σ2 = μ /(2(γ+α))

E nd

Start

Figure 6. Algorithm for estimating the parameters ε2, σ2, α of the homodyned K-distribution with the
constraint that α is less than an upper bound αmax. Left: block diagram; right: flow chart.

1) and 1/α are estimated in each frame of a sequence of ultrasound images, and those estimated
values are then averaged out over all frames. See section 4.2 for such an application.

The advantage of the proposed choice of parameters is that, even if α = ∞ (corresponding
to the Rice model), the parameter 1/α has a meaningful finite value (namely 0). In fact, the
parameters 1/(κ + 1) and 1/α have values within the intervals (0, 1] and [0,∞), respectively,
even in the case of the Rice, Rayleigh, or K-distribution model. See section 5.6 for further
discussion on this issue.

4. Experimental results.

4.1. Comparison of estimators based on simulation of data samples. In order to com-
pare the reported experimental results with those of [11], it was decided to present the results
in terms of the scatterer clustering parameter α and the ratio of coherent to diffuse signal
k =

√
2κ, where κ = ε2/(2σ2α) is the structure parameter. Following the same approach

as in [11], 100 sets of values of the parameters k and α were considered in the domainsD
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Figure 7. Relative bias and normalized standard deviation (SD) of the parameter estimates based on the
XU estimator. The sample size is N = 1000. The computation of the biases and standard deviations excluded
the instances where α was greater than αmax.

k ∈ {0.1, 0.2, . . . , 0.9, 1.0} and α ∈ {1, 2, . . . , 9, 10}, and the value of σ2 was taken as 1/α,
so that the diffuse signal power 2σ2α = 2 was kept constant. For each of these sets, 1000
samples of size N = 1000 each were simulated, according to the homodyned K-distribution
model. The parameters from each sample were then estimated using (1) the moments of
intensity method [8] (MI), (2) a method based on the first three moments of the amplitude
(MA), (3) the proposed method based on the mean intensity and the X- and U -statistics
(XU), and (4) the method [11] based on the SNR, skewness, and kurtosis of two fractional
orders of the amplitude (RSK). For each estimation method, the relative biases (E[k̂]− k)/k

and (E[α̂]− α)/α, the normalized standard deviations
√

V ar[k̂]/k and
√

V ar[α̂]/α, and the

relative root mean squared errors (RMSEs) defined by
√

E[(k̂ − k)2]/k and
√

E[(α̂ − α)2]/α

were computed, based on the 1000 estimates k̂ and α̂ of those parameters. The relative bias
and normalized standard deviation of the proposed estimator are presented in Figure 7. As in
[11], the computation of the bias and standard deviation did not include the instances where
α was outside a reasonable range (i.e., α ≥ 59.5 for the MI, MA, and XU methods). In Table
2, the sums of the quantities represented in Figure 7 over the sets of parameters that were
considered are presented for each of the tested methods. See Appendix F for the implementa-
tion of the MI method in the reported tests. The implementation of the MA method follows
a strategy similar to that presented in section 3. We decided to skip the details in the current
paper since the MA method performed less well than the proposed estimator. For the MI andD
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Table 2
Improvements in bias and variance of estimators. The sample size is N = 1000. Estimation methods:

(1) MI [8]; (2) MA; (3) XU (proposed method); (4) RSK [11]. The computation of the biases and standard
deviations excluded the instances where α was greater than αmax for the MI, MA, XU methods. A star ( *)
indicates the best relative RMSE value among the four estimators.

MI MA XU RSK

Total absolute value of the relative bias of α̂ 47.9 19.6 17.5 23.9

Total absolute value of the relative bias of k̂ 42.2 33.2 34.7 60.7

Total normalized standard deviation of α̂ 108.9 73.7 70.3 84.5

Total normalized standard deviation of k̂ 117.0 92.0 91.1 62.1

Total value of the relative RMSE of α̂ 120.3 76.7 72.7∗ 88.2

Total value of the relative RMSE of k̂ 126.6 99.1 99.1 92.7∗

Table 3
Relative RMSE of estimators for various parameters of the homodyned K-distribution. The sample size

is N = 1000. Estimation methods: (1) MI [8]; (2) MA; (3) XU (proposed method); (4) RSK [11]. For the
MI, MA, XU methods, the computation of the biases and standard deviations did not exclude any values of α,
because 1/α = 0 is a solution. A star ( *) indicates the best MSE value among the four estimators.

MI MA XU RSK

Mean relative RMSE of α̂ 1.69 1.06 1.04 0.88∗

Mean relative RMSE of ̂1/α 1.37 0.64 0.63∗ 0.67

Mean relative RMSE of k̂ 1.26 0.99 0.99 0.93∗

Mean relative RMSE of κ̂ 6.90 4.29∗ 4.37 4.87

Mean relative RMSE of
√̂
2γ 1.04 0.86 0.85∗ 0.88

Mean relative RMSE of ̂1/(κ+ 1) 0.18 0.12 0.13 0.11∗

MA methods, a minimization problem similar to (3.8) is considered to circumvent the case
where the system of nonlinear equations has no solution.

Next, the relative RMSEs of the various tested estimators were evaluated for the param-
eters k and α, as well as the parameters κ,

√
2γ = ε/σ, 1/(κ + 1), and 1/α, but without

excluding high values of α for the MI, MA, and XU methods (since 1/α = 0 is a solution).
The results are presented in Table 3.

4.2. Estimation based on simulated ultrasound images.

4.2.1. Experimental set-up. The reported computational simulations were inspired by
the work of [11, section III-D-2]. Namely, radiofrequency (RF) data were simulated using the
Field II ultrasound simulation program [18, 17]. A single-element oscillating focused (f/4)
transducer with a focal length of 50.8 mm was used. Its center frequency was 10 MHz, and
it was excited with a Gaussian windowed sinusoidal pulse with a 50% fractional bandwidth
at −6 dB. The excitation pulse length was 0.616 mm, i.e., four times the wavelength (that
information is missing from [11]). The sampling frequency was 200 MHz, and the scan lines
to produce an image were separated by 0.43 mm. The speed of sound was equal to 1540
m/s. These choices amount to an axial and a lateral discretization of 0.00385 mm and 0.43
mm per pixel, respectively. As in [11], no tissue attenuation was added in these simulations.
The ultrasound echo envelope was computed as the norm of the Hilbert transform of the RFD
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data (see [19]). The resulting unfiltered and uncompressed B-mode image was then decimated
along the beam axis by a factor of 10 in order to have an i.i.d. sample modeled by a single
homodyned K-distribution.

A computational phantom of height 17.2 mm, length 20.7 mm, and width 1.72 mm was also
considered. The center of the volume was located at the geometric focus of the transducer.
The resolution cell (a volume which corresponds to the smallest resolvable detail [5]) was
obtained by scanning one scatterer located at the geometric focus of the transducer and
considering the −20 dB contour of the echo envelope (as in [8]). The resolution cell size was
then estimated using the correlation length method (as in [8]) along the axial and lateral
directions. The resolution cell volume (based on an ellipsoid model) was 0.2153 mm3 (the
ellipsoid semiprincipal axis in the beam direction measured 0.2180 mm, and the two other
semiprincipal axes were 0.4856 mm long). Thus, a density (i.e., average number of scatterers
per unit volume) of Ns scatterers per resolution cell corresponded to Ns × 2844 scatterers
within the numerical phantom (Ns was variable in the reported tests).

4.2.2. Variation of the density of randomly located scatterers. Randomly located scat-
terers were placed in the phantom volume at spatial locations distributed according to a
uniform distribution. The amplitude of each scatterer (related to the contrast in acoustic
impedance between the scatterer and the surrounding medium) was distributed according to
a normal distribution of mean 0 and variance 1, as in [17] (this information is missing in [11]).
Sequences of ultrasound images were simulated with an average number of randomly located
scatterers per resolution cell varying from 1 to 10 (for a total of 10 simulated sequences).
For each value of the scatterer density, a total of 60 images were simulated. See Figure 8 for
examples of simulated images.

For each simulated sequence, the estimated values of 1/(κ+1) and 1/α were averaged over
the 60 images of the sequence within a region of interest (ROI), based on the XU estimator.
The ROI consisted of the rectangle covered by 6 resolution cells in the axial direction and about
35 resolution cells in the lateral direction (for a sample size of N = 13299 pixels), centered at
the geometric focus of the transducer. In Figure 9, the theoretical and estimated values (with
the XU estimator) of these parameters are presented. For the theoretical values, the parameter
1/(κ + 1) should be equal to 1, since there are no periodic scatterers in this simulation (see
section 4.2.3). Also, the parameter 1/α should be inversely proportional to the number of
randomly located scatterers per resolution cell. In fact, from [33, eq. (4)], the parameter α is
of the form αsNs, where Ns is the number of randomly located scatterers per resolution cell
and αs > 0 is related to the homogeneity of the scattering cross-sections. Thus, one obtains
1/α = 1/(αsNs). The constant 1/αs was obtained with the Blacknell–Tough estimator [4],
assuming a K-distribution. Namely, for each simulated sequence, corresponding to an average
of i = 1, . . . , 10 randomly located scatterers per resolution cell, the estimated value of 1/α[i]

was averaged over the 60 images. Then, the average 1
10

∑10
i=1 i/α[i] was considered as the

constant 1/αs (because the index i in the sum represents Ns). In the reported tests, a value
of 1/αs = 2.243 was obtained in that manner.

4.2.3. Variation of the coherent component. A fixed density of 3 randomly located scat-
terers per resolution cell was considered. Coherent scattering was created by using periodically
spaced scatterers along the transducer axis. So, their coordinates in the plane perpendicularD
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to the transducer axis were random, whereas their coordinates along that axis were separated
by a distance of around λ/2, where λ is the wavelength. This corresponds to a subresolvable
periodic alignment of scatterers. The amplitude of the periodic scatterers was fixed to the
constant 1 for each simulation of 60 images, in order to match the average intensity value of
the randomly located scatterers. Indeed, the amplitude of the randomly located scatterers
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Figure 8. Examples of simulated B-mode images with Ns randomly located scatterers per resolution cell,
and Nc periodic scatterers per resolution cell, with or without noise added to the RF signal. Top left: Ns = 1,
Nc = 0, no noise. Top right: Ns = 10, Nc = 0, no noise. Middle left: Ns = 3, Nc = 0, no noise. Middle right:
Ns = 3, Nc = 3, no noise. Bottom left: Ns = 3, Nc = 0, RF SNR of 20 dB. Bottom right: Ns = 3, Nc = 3,
RF SNR of 20 dB. A log-compression was applied to the echo envelope solely for visualization purposes.D
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Figure 9. Values of the parameter 1/(κ+ 1) (left) and of the scatterer clustering parameter 1/α (right) as
a function of the average number of randomly located scatterers per resolution cell. No coherent component was
included in these simulations. The sample size of each frame is 13299, and the number of frames is N = 60
(used for the computation of the standard deviations). The computation of the biases and standard deviations
did not exclude any values of α, because 1/α = 0 is a possible solution.
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Figure 10. Values of the parameter 1/(κ + 1) (left) and of the scatterer clustering parameter 1/α (right)
as a function of the number of coherent scatterers per resolution cell. The sample size of each frame is 13299,
and the number of frames is N = 60 (used for the computation of the standard deviations). The computation
of the biases and standard deviations did not exclude any values of α, because 1/α = 0 is a possible solution.

was distributed according to a Gaussian distribution of mean 0 and variance 1, which implies
a Rayleigh distribution of mean 1 for the intensity (i.e., the square of the amplitude). The
average number of periodic scatterers per resolution cell (i.e., their density) varied from 0 to
9 (with a step of 1), for a total of 10 simulations of 60 images each.

For each simulated sequence, the estimated values of 1/(κ + 1) and 1/α were averaged
over the 60 images of the sequence within the ROI of section 4.2.2. In Figure 10, the theo-
retical and estimated values of these parameters (with the XU method) are presented. As a
first approximation, the theoretical value of κ is equal to the ratio of periodic to randomly
located scatterers. Moreover, one would expect that the theoretical value of α is constant and
corresponds to a density of 3 randomly located scatterers per resolution cell (and no periodic
scatterers) times the constant αs of section 4.2.2. Hence, it can be deduced as in that section.

4.2.4. Presence of noise. The simulations of sections 4.2.2 and 4.2.3 were repeated with
the addition of noise on the RF signals (prior to the computation of the echo envelope) toD
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Table 4
Improvements in mean relative RMSE, mean coefficient of variation (CV) and mean root Fisher’s J cri-

terion (RFJC) of estimators. The sample size of each frame is 13299, and the number of frames is N = 60
(used for the computation of the standard deviations). Estimation methods: (1) MI [8]; (2) MA; (3) XU (pro-
posed method); (4) RSK [11]. For the methods MI, MA, and XU, the computation of the biases and standard
deviations did not exclude any values of α, because 1/α = 0 is a solution. A star (*) indicates the best relative
RMSE, CV, or RFJC value among the four estimators.

Simulations of section 4.2.2 Simulations of section 4.2.3

Method MI MA XU RSK MI MA XU RSK

No noise No noise

Rel. RMSE of ̂1/α 0.79 0.61 0.53∗ 0.67 CV of ̂1/α 0.99 0.65 0.61∗ 0.75

Rel. RMSE of ̂1/(κ+ 1) 0.074 0.075 0.069∗ 0.100 RFJC of ̂1/κ+ 1 4.37 5.27 5.73∗ 3.95

RF SNR of 20 dB RF SNR of 20 dB

Rel. RMSE of ̂1/α 0.80 0.62 0.53∗ 0.67 CV of ̂1/α 0.99 0.65 0.61∗ 0.74

Rel. RMSE of ̂1/(κ+ 1) 0.074 0.075 0.069∗ 0.100 RFJC of ̂1/κ+ 1 4.37 5.25 5.78∗ 3.97

RF SNR of 10 dB RF SNR of 10 dB

Rel. RMSE of ̂1/α 0.83 0.66 0.56∗ 0.70 CV of ̂1/α 0.99 0.64 0.61∗ 0.76

Rel. RMSE of ̂1/(κ+ 1) 0.076 0.078 0.071∗ 0.101 RFJC of ̂1/κ+ 1 4.31 5.04 5.54∗ 3.96

RF SNR of 5 dB RF SNR of 5 dB

Rel. RMSE of ̂1/α 0.89 0.72 0.61∗ 0.76 CV of ̂1/α 0.98 0.67 0.61∗ 0.78

Rel. RMSE of ̂1/(κ+ 1) 0.080 0.085 0.077∗ 0.107 RFJC of ̂1/κ+ 1 4.11 4.55 5.03∗ 3.99

create RF signals with SNRs of 20 dB, 10 dB, or 5 dB. Namely, an SNR of n dB on the RF
signal was simulated by adding to the RF signal a Gaussian noise of mean 0 and of variance τ2

equal to 10−n/10 E[IRF], where IRF denotes the square of the RF signal. In this manner, the
SNR of the RF signal was equal to E[IRF]/τ

2 = 10n/10, which indeed corresponds to n dB. A
comparison with the simulations with no added noise is presented in Table 4. Four methods
were tested: (1) the MI method [8]; (2) the MA method; (3) the XU (proposed) method; and
(4) the RSK method [11]. The relative RMSEs are reported in Table 4. Note that the value
of the constant 1/αs of section 4.2.2 has to be evaluated for each level of noise. We obtained
the values 2.225, 2.106, and 1.896 for SNRs of 20 dB, 10 dB, and 5 dB, respectively.

5. Discussion.

5.1. Comparison of estimators based on simulations of data samples. As can be seen
from Table 2, the XU method for the homodyned K-distribution yielded the lowest total
relative RMSE for the parameter α. On the other hand, the total relative RMSE for the
parameter k was lowest with the RSK method, whereas the MA and XU methods ranked
second.

Note that the values obtained for α and k with the RSK method agree with [11, Table 1].
The values obtained for α with the MI method agree with [11, Table 1], but not the values
obtained for k. This is explained by the fact that in the present study, as well as in [11],
estimated values were excluded when α was outside its range. However, in [11], estimated
values were excluded whenever α was outside its domain for either method [8] or [11]. In the
current study, estimated values were excluded for a given estimator only if α was outside itsD
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1516 FRANÇOIS DESTREMPES, JONATHAN PORÉE, AND GUY CLOUTIER

domain for that estimator. We proceeded in that manner in order to test the performance of
each method as it stands alone.

Moreover, Table 3 indicates clearly that it is preferable to estimate the parameters 1/(κ+1)
and 1/α rather than k (or κ or

√
2γ) and α. The XU method yielded a lower relative RMSE

than the MI method, whereas it was barely better than the MA method for the parameters
α, 1/α, and

√
2γ. On the other hand, the reported tests on simulated images indicate that

the XU estimator is preferable to the MA estimator. The RSK method presented the lowest
relative RMSE for the parameters α, k, and 1/(κ + 1), but the XU method was best for the
parameters 1/α and

√
2γ.

5.2. Estimation based on simulated ultrasound images.

5.2.1. Variation of the density of randomly located scatterers. Table 4 (left part) shows
that the XU estimation method performs better than the other tested methods. These results
are in agreement with the RMSEs obtained on simulated data samples of section 4.1, as far
as the XU and RSK methods are concerned. On the other hand, the XU method appears to
be much better than the MA method on simulated images, whereas the tests performed on
simulated data samples did not stress this fact. This is explained by the fact that the X- and
U -statistics arise in the limiting case where the fractional exponent of the fractional moment
estimator is small [4] (i.e., near 0 or 1), since higher order moments are more sensitive to
noise. Note that the estimates improve in the presence of less noise on the RF signal.

As can be seen from Figure 9, the estimation of the parameters 1/(κ + 1) and 1/α is
reliable up to 3 scatterers per resolution cell (1/α > 0.7) in the context of the reported tests.
This is due to the behavior of the estimator for large values of α when κ = 0. Namely, the
normalized bias and standard deviation of the estimator of k =

√
2κ increase with the size

of α, as can be seen from Figure 7 (right side) on the axis k = 0. Moreover, the normalized
standard deviation of the estimator of α increases with the size of α (left side of Figure 7),
which is consistent with the asymptotic expression 1/α2 of the Fisher information of the K-
distribution [1] (corresponding to k = 0). Indeed, the larger the value of α, the smaller the
information revealed by the data, so that a larger sample size is needed for a finer estimation.
Henceforth, the limitation of the XU estimator for large values of α is intrinsic to the model.
To further study this issue, we have experimented with simulated ultrasound images with 11
to 20 scatterers per resolution cell. The relative RMSEs for 1/α were equal to 1.43 (MI),
1.27 (MA), 1.25 (XU), and 1.33 (RSK); for 1/(κ+1), we obtained 0.14 (MI), 0.16 (MA), 0.17
(XU), and 0.20 (RSK). Thus, the XU estimator is better than the other three for 1/α, but
for 1/(κ+1), the MI estimator is best, whereas the XU estimator is still better than the RSK
estimator.

One way to remedy this limitation is to consider the median of the estimator over a
sequence of images. Figure 11 shows that this approach yields much better results for the
parameter 1/(κ + 1) and slightly better results for 1/α. Taking the median over all frames,
instead of the mean, reduced the normalized bias1 of the XU estimator for the parameter
1/(κ + 1) to 0.08 in the case of the simulations with 11 to 20 diffuse scatterers. So, the bias

1The bias may be defined as E[θ̂]− θ, where θ̂ is the parameter estimator and θ is the gold standard, or as
median(θ̂)− θ when using the median instead of the mean.D
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Figure 11. Median values of the parameter 1/(κ + 1) (left) and of the scatterer clustering parameter 1/α
(right) as a function of the average number of randomly located scatterers per resolution cell. No coherent
component was included in these simulations. The sample size of each frame is 13299, and the number of
frames is N = 60 (used for the computation of the median absolute deviations).

was smaller when using the median instead of the mean. Moreover, the standard deviation (or
the median absolute deviation (MAD) is proportional to 1/

√
N for the average of an estimator

over N images. Thus, taking the median value of the estimator over a sequence of images
greatly improves its performance.

Note also from Figure 11 that although the XU estimator does not allow the exact number
of scatterers per resolution cell for 1/α < 0.7 to be distinguished, this estimator nevertheless
indicates the range of the number of scatterers. This is consistent with the fact that the
homodyned K-distribution gets close to a Rice distribution2 as α increases, so that it becomes
harder to determine the exact value of α. So, again, this phenomenon is intrinsic to the model.

5.2.2. Variation of the coherent component. As can be seen from Figure 10, the estima-
tion of the parameter 1/(κ+1) is quite reliable except when the number of coherent scatterers
is 1 or 2. Also, the estimated parameter 1/α is smaller than the expected constant value in
the case of the simulations with a variable coherent component. So, as it stands, the proposed
theoretical model is only an approximation. For that reason, we have chosen two evaluation
measures that do not depend on a theoretical ground-truth in Table 4 (right). For the param-
eter 1/α, the coefficient of variation (CV) of the estimated parameter indicates the variability
of the estimator with respect to its mean. If θ̂ is the estimator of a parameter θ, the CV is

defined as
√

V ar[θ̂]/E[θ̂]. For the parameter 1/(κ+ 1), the root Fisher’s J criterion (RFJC)
applied to pairs of distinct values of the parameter is an indicator of the discrimination power
of the estimator. For two distinct values of a parameter θ, say θ1 and θ2, the RFJC is defined

as |E[θ̂1]− E[θ̂2]|/
√

V ar[θ̂1] + V ar[θ̂2].

Table 4 (right) shows that the XU estimation method performed better than the other
tested methods, even with RF SNRs of 20–5 dB. Note that, overall, the estimates improved

2We checked numerically that the Kullback–Leibler distance between a homodyned K-distribution with
parameters ε, σ2, α and the Rice distribution with parameters ε and σ2

R = σ2α is less than 8.8 × 10−3 for
values in the range k = ε

σ
√
α

∈ {0, 0.1, . . . , 1.9, 2.0} and α ∈ {10, 11, . . . , 20}. This represents a very good
approximation. Note that the Kullback–Leibler distance is independent of the scaling factor μ so that one may
assume that μ = 1.D
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in the presence of less noise on the RF signal, as expected.

5.3. Computational load. In the case of the experiments of section 4.1, one estimation
took on average 1.0 ms (MI), 1.6 ms (MA), 1.8 ms (XU), and 295.2 ms (RSK). In the case
of the experiments of sections 4.2.2 and 4.2.3, the computation times per image were equal
to 6.0 ms (MI), 8.0 ms (MA), 6.8 ms (XU), and 500 ms (RSK). So, the MI, MA, and XU
methods share a comparable efficiency, whereas the RSK method is slower. That being said,
the implementation for the first three methods was in C++, whereas the RSK method was
implemented with MATLAB. Nevertheless, the first three methods resort to a binary search
algorithm with a geometric rate of convergence, whereas the RSK method does not.

5.4. Hypothesis underlying the simulations of ultrasound images. As in [8, 11], we have
made the hypothesis that the scatterers are dimensionless (upon using the Field II ultrasound
simulation program [18, 17]). In the case of biological tissues, this hypothesis is false. In
fact, the cell nuclei may be viewed as weak scatterers embedded in cytoplasm, considered
as the ambient medium (see [34, 31]). Assuming spherical nuclei with a radius of 4.5 μm,
one obtains a volume of 382 μm3. For flowing red blood cells, which do not have a nucleus,
the cells themselves are viewed as scatterers (of volume 94 μm3 [32]), whereas the plasma is
considered as the ambient medium. The point is that a sufficiently large density of scatterers
with nonzero volume creates a scattering field that departs from the scattering behavior of
uniformly distributed dimensionless scatterers, due to the so-called packing factor [36, 37].
Thus, the simulations reported in the present study are to be interpreted in the context of
a low density of uniformly distributed weak scatterers of sufficiently small size (with respect
to the resolution cell). The study of the homodyned K-distribution in the context of more
realistic simulations with scatterers of finite dimensions would need to be addressed.

5.5. Conjecture 1. The statement that the algorithm of Figure 4 converges to a unique
solution is proved in Appendix B. For the algorithm of Figure 5, all statements of Theorem 3.5
are proved in Appendix C. But Conjecture 1 remains to be proved to obtain the convergence
of the algorithm of Figure 5 to a unique solution of the system of equations (3.1). Yet, we
have explained in Appendix D how that conjecture would follow from two claims. The former
claim is illustrated in Figure 12, whereas the latter is proved in Appendix D. We are convinced
that the first claim is also true, but we do not know whether this strategy for proving the
conjecture is the easiest one. Note that the algorithm of Figure 6 also relies on the conjecture.

5.6. Upper bound on the parameter α. If one does not impose an upper bound on
α (unlike what was done in section 3.5), then one can consider the following minimization
problem, which is similar to (3.8):

(μ, κ, β) = argmin |UHK − U |(5.1)

subject to μ = I and XHK = X,

where κ = ε2/(2σ2α) and β = 1/α. Observe that a solution to the system (3.1) automatically
yields the solution μ = Ī, κ = ε2/(2σ2α) = γ/α, and β = 1/α to the system (5.1).

The first case where the conditions of Corollary 3.6 are not satisfied (i.e., when the system
(3.1) has no solution) corresponds to X > 1 and UK(X

−1
K (X)) ≥ U . Since UK(X

−1
K (X)) isD
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the lower bound of the function UHK(γ(α,X), α) (cf. Theorem 3.3), it follows that |UHK −U |
is minimized at α = α0 = 1/(X − 1), assuming Conjecture 1. But then, one must have
γ(α0,X) = 0, because of Theorem 3.3. Thus, one obtains the K-distribution model with
μ = Ī, κ = 0, and α = α0 (and hence β = 1/α0).

The other case to consider corresponds to X ≤ 1 and URi(X
−1
Ri (X)) ≥ U . Then, |UHK−U |

is minimized at α = ∞, assuming Conjecture 1. Indeed, the lower bound of the function
UHK(γ(α,X), α) is equal to URi(X

−1
Ri (X)) and is reached asymptotically at infinity (cf. The-

orem 3.5(c)). Thus, one obtains the Rice distribution. In fact, as α → ∞, the homodyned
K-distribution with parameters ε2, σ2 = σ2

R/α, and α tends to the Rice distribution with
parameters ε2 and σ2

R. Moreover, from Appendix B, Proof of Theorem 3.5(c), we have

XRi(κ) = limα→∞XHK(γ, α), where κ = ε2

2σ2
R

and γ = ε2

2σ2 = ε2

2σ2
R
α = κα. Furthermore, one

obtains β = limα→∞ 1/α = 0. The special case where X = 1 yields the Rayleigh distribution
because XRi(0) = 1. Thus, if one is willing to include the Rice distribution to the homodyned
K-distribution model as a limit case, then the system (5.1) always admits a solution.

However, the value of α is unbounded with that formulation, which is problematic in any
implementation. For this reason, we adopted the minimization formulation of (3.8). Note
that the MI and MA methods present a similar behavior. Moreover, the RSK method also
restricts the parameters k and α to a bounded domain.

5.7. Biomedical applications. The K-distribution was used in the context of breast cancer
classification in [33]. The parameters of the K-distribution have also been studied in the
context of tissue characterization under shear wave propagation [3]. The homodyned K-
distribution was used for cardiac tissue characterization [10], cancerous lesion classification
[25, 12, 22], breast lesion classification [35], and determination of red blood cell aggregation
[7]. In all these applications, the statistical parameters of the distributions considered are
viewed as classifying features. The underlying assumption is that the scattering properties of
the biological tissues leave a signature on the echo envelope of the received RF signal.

6. Conclusions. A method for the estimation of the parameters of the homodyned K-
distribution was proposed, based on the first moment of the intensity and two log-moments
(i.e., the U - and X-statistics). It was proved that the proposed algorithm converges to an
estimation of the parameters. It was shown that it is preferable to estimate the parameters
1/(κ + 1) and 1/α, rather than k or κ, and α. The experimental results reported here show
that the resulting estimator is, overall, more reliable than the method [8] based on the first
three intensity moments, or a method based on the first three moments of the amplitude, or
the estimator [11] based on the SNR, the skewness, and the kurtosis of two fractional orders
of the amplitude. These results hold even in the presence of noise corresponding to RF SNRs
of 20–5 dB. For simulated data samples, the method [11] was slightly better for the parameter
1/(κ + 1). For simulated ultrasound images with more than 10 scatterers per resolution cell,
the estimator [8] was slightly better for the parameter 1/(κ + 1). Otherwise, the proposed
estimator ranked best among the four tested estimation methods. Moreover, the proposed
method has a geometric rate of convergence, since it is based on the bisection algorithm
for monotonous functions. Thus, a fast, reliable, and novel algorithm for the estimation of
the homodyned K-distribution was proposed. On theoretical grounds, the uniqueness of theD
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solution produced by the proposed method remains to be proved.

Appendix A. The statistics U and X for the homodyned K-distribution. In this ap-
pendix and those which follow, the software Mathematica (Wolfram Research, Inc., Cham-
paign, IL, version 7.0) was used whenever possible for the computations of integrals or limits.
We have indicated any step that could not be obtained directly from that software.

Proof of Lemma 3.1. Part (a). The function log I is concave. Therefore, from Jensen’s
inequality [16], one obtains E[log I] < logE[I], since the random variable I is nonconstant.

Part (b). The function I log I is convex. Thus, E[I log I] > E[I] logE[I]. From part (a),
one concludes that E[I log I] > E[I]E[log I].

Proof of Proposition 3.2. Part (a). First, using the change of variable I = A2, one computes∫ ∞

0
logA2PRi(A | ε, a2) dA =

∫ ∞

0
log I

1

2a2
I0

( ε

a2

√
I
)
e−ε2/(2a2)e−I/(2a2) dI,(A.1)

which is a Laplace transform equal to Γ(0, ε2

2a2
)+log ε2, where Γ(0, x) is the incomplete gamma

function
∫∞
x

e−t

t dt. Then, taking a2 = σ2w, multiplying by G(w | α, 1), and integrating with
respect to w, one obtains

− γE + log(2σ2) + ψ(α)(A.2)

−
(

ε2

2σ2

)αΓ(−α)

αΓ(α)
1F2

(
α; 1 + α, 1 + α;

ε2

2σ2

)
+

ε2

2σ2

Γ(α− 1)

Γ(α)
2F3

(
1, 1; 2, 2, 2 − α;

ε2

2σ2

)
.

Subtracting logE[I] from (A.2), with the identity E[I] = ε2+2σ2α, and setting γ = ε2/(2σ2)
yields the result.

Part (b). Again, using the change of variable I = A2, one computes∫ ∞

0
A2 logA2PRi(A | ε, a2) dA =

∫ ∞

0
I log I

1

2a2
I0

( ε

a2

√
I
)
e−ε2/(2a2)e−I/(2a2) dI.(A.3)

This Laplace transform is equal to 4a2 − 2e−
ε2

2a2 a2 +(ε2 +2a2)(Γ(0, ε2

2a2 ) + log ε2). Then, sub-
tracting by (ε2 +2σ2α)

∫∞
0 logA2PRi(A | ε, a2) dA (corresponding to the term −E[I]E[log I]),

taking a2 = σ2w, and multiplying by G(w | α, 1), one obtains

2σ2w
(
−e−

ε2

2σ2w + 2
)
G(w,α) + 2σ2Γ

(
0,

ε2

2σ2w

)(
−α+w

)
G(w,α)(A.4)

+ 2σ2 log ε2
(
−α+ w

)
G(w,α).

Then, integrating with respect to w yields

2σ2 + 4σ2α− 23/2εσ

Γ(α)

(
ε2

2σ2

)α/2

Kα+1

(√
2ε

σ

)
(A.5)

+ 2σ2Γ(−α)

Γ(α)

(
ε2

2σ2

)α

1F2

(
α; 1 + α, 1 + α;

ε2

2σ2

)

− ε2
Γ(−1− α)

(1 + α)Γ(α)

(
ε2

2σ2

)α

1F2

(
1 + α; 2 + α, 2 + α;

ε2

2σ2

)

+ ε2 2F3

(
1, 1; 2, 2, 1 − α;

ε2

2σ2

)
− ε2

αΓ(−1 + α)

Γ(α)
2F3

(
1, 1; 2, 2, 2 − α;

ε2

2σ2

)
,
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which gives an expression for E[I log I] − E[I]E[log I]. Dividing (A.5) by E[I] = ε2 + 2σ2α
and setting γ = ε2/(2σ2) yields the result.

Appendix B. Estimating γ when α is known.

Proof of Theorem 3.3. Part (a). By definition of the hypergeometric series as a power
series, one has pFq(a1, . . . , ap; b1, . . . , bq;x) = 1 at x = 0. Using this fact, one concludes that
the sum of the last four terms in (3.4) is equal to 0 at γ = 0. Next, from [2, eq. (9.6.9),

p. 375], one has the asymptotic behavior Kα(x) ∼ Γ(α)
2

(
2
x

)α
at x = 0. Hence, the second term

of (3.4) admits the asymptotic form − 2γα/2+1/2

(γ+α)Γ(α)
Γ(α+1)

2

(
1

γ1/2

)α+1
= − α

(γ+α) = −1 at γ = 0.

Collecting all terms, one obtains limγ→0
1+2α
(γ+α) −

α
(γ+α) = 1 + 1

α . Since γ = 0 corresponds to

the K-distribution, this also shows that XK(α) = 1 + 1/α.

Part (b). Writing (A.4) in terms of γ and α, and dividing by μ = E[I], one obtains

w

(γ + α)

(
−e−

γ
w + 2

)
G(w,α) +

Γ(0, γ
w )

(γ + α)

(
−α+ w

)
G(w,α)(B.1)

+
log ε2

(γ + α)

(
−α+ w

)
G(w,α).

The third term of (B.1) is irrelevant because its integral with respect to w is equal to 0. Thus,
one has

XHK(γ, α) =

∫ ∞

0
F (w, γ, α) dw,(B.2)

F (w, γ, α) =
w

(γ + α)

(
−e−

γ
w + 2

)
G(w,α) +

Γ(0, γ
w )

(γ + α)

(
−α+ w

)
G(w,α).

Claim 1. |Γ(0, 1/x)| = Γ(0, 1/x) ≤
√
x for any x > 0.

Proof. Let f(x) = Γ(0, 1/x)−√
x. On the one hand, limx→0 f(x) = 0. On the other hand,

d
dxf(x) =

e−1/x

x − 1
2
√
x
< 0 for x > 0. This last statement is equivalent to 2/

√
x < e1/x for

x > 0 or 4z < e2z for z > 0 (with the change of variable z = 1/x). But now, the function
g(z) = e2z − 4z has an absolute minimum at z0 = 1

2 log 2 (because d
dz g(z) < 0 for z < z0,

whereas d
dz g(z) > 0 for z > z0), and furthermore, g(z0) = 2(1 − log 2) > 0. So, g(z) > 0 for

all z > 0, which completes the proof of the claim.

From the claim, |Γ(0, γ
w )| ≤

√
w
γ . Therefore, the absolute value of the function F (w, γ, α)

of (B.2) admits the upper bound

2w

(γ + α)
G(w,α) + w1/2

γ1/2(γ + α)

(
α+ w

)
G(w,α).(B.3)

Integrating (B.3) with respect to w yields 2α
(γ+α) +

(1+4α)Γ(1/2+α)

2γ1/2(γ+α)Γ(α)
. Thus, limγ→∞XHK(γ, α) =

0.

Part (c). From (B.2), the function XHK(γ, α) can be written as the sum of the followingD
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two functions:

XHK,A(γ, α) =

∫ ∞

0

w

(γ + α)

(
−e−

γ
w + 2

)
G(w,α) dw,(B.4)

XHK,B(γ, α) =

∫ ∞

0

Γ(0, γ
w )

(γ + α)

(
−α+ w

)
G(w,α) dw.

It is now shown that the first function is decreasing in γ and that the second one is strictly
decreasing in γ.

First, one computes

∂

∂γ
XHK,A(γ, α) =

∫ ∞

0

{
1

(γ + α)
e−

γ
w +

w

(γ + α)2

(
e−

γ
w − 2

)}
G(w,α) dw(B.5)

≤
∫ ∞

0

{
1

(γ + α)

1

(1 + γ/w)
+

w

(γ + α)2

(
1

(1 + γ/w)
− 2

)}
G(w,α) dw

=
α

(γ + α)2

(
−1 + eγ αE(1 + α, γ)

)
,

where E(1 +α, γ) =
∫∞
1 e−γ tt−α−1 dt. So, one concludes that ∂

∂γXHK,A(γ, α) ≤ 0 from Claim
2 below.

Claim 2. For γ > 0 and α > 0, E(1 + α, γ) ≤ e−γ/α.

Proof. Since e−γ t ≤ e−γ for t ≥ 1 and t−α−1 > 0, one immediately computes the inequality∫∞
1 e−γ tt−α−1 dt ≤ e−γ

∫∞
1 t−α−1 dt = e−γ/α.

Next, one may write XHK,B(γ, α) as
1

(γ+α)XHK,C(γ, α), where

XHK,C(γ, α) =

∫ ∞

0
Γ

(
0,

γ

w

)(
−α+ w

)
G(w,α) dw.(B.6)

Hence, ∂
∂γXHK,B(γ, α) = − 1

(γ+α)2
XHK,C(γ, α) +

1
(γ+α)

∂
∂γXHK,C(γ, α). Thus, in order to show

that XHK,B is strictly decreasing, it is sufficient to show that XHK,C(γ, α) > 0 and that
XHK,C(γ, α) is decreasing. Therefore, it is sufficient to prove Claims 3 and 4 below.

Claim 3. For γ > 0 and α > 0, ∂
∂γXHK,C(γ, α) < 0.

Proof. One computes

∂

∂γ
XHK,C(γ, α) =

∫ ∞

0
−e−

γ
w

γ

(
−α+ w

)
G(w,α) dw = −2γ(α−1)/2

Γ(α)
Kα−1(2

√
γ) < 0.

Claim 4. For α > 0, limγ→∞XHK,C(γ, α) = 0.

Proof. Observe that |Γ(0, 1/x)| = Γ(0, 1/x) ≤ x for x > 0. Indeed, let f(x) = Γ(0, 1/x)−x.

Then, limx→0 f(x) = 0, and d
dxf(x) =

e−1/x

x − 1 < 0, because e1/x > 1/x for x > 0. Hence,

one has |XHK,C(γ, α)| ≤
∫∞
0

w
γ (α+ w)G(w,α) dw = α(1+2α)

γ . But, limγ→∞
α(1+2α)

γ = 0.

This completes the proof of the theorem.D
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Appendix C. Estimating γ and α.
Lemma C.1.
(a) limα→0XHK(α/x, α) = ∞ for any x > 0.
(b) limα→0 UHK(α/x, α) = − log(1 + x) for any x > 0.
Proof. Part (a). Setting γ = α/x, (3.4) reads as

XHK(α/x, α) =
1

(1/x+ 1)

(1 + 2α)

α
(C.1)

− 2

xα/2+1/2(1/x+ 1)

αα/2−1/2

Γ(α)
Kα+1

(
2
√

α/x
)

+
1

xα(1/x + 1)

Γ(−α)αα−1

Γ(α)
1F2

(
α; 1 + α, 1 + α;

α

x

)

− 1

xα+1(1/x+ 1)

Γ(−1− α)αα

(1 + α)Γ(α)
1F2

(
1 + α; 2 + α, 2 + α;

α

x

)

+
1

(x+ 1)
2F3

(
1, 1; 2, 2, 1 − α;

α

x

)
− 1

(x+ 1)

αΓ(−1 + α)

Γ(α)
2F3

(
1, 1; 2, 2, 2 − α;

α

x

)
.

Using the definition of the hypergeometric series, one sees immediately that 1 ≤ 1F2(α; 1+

α, 1 + α;α/x) ≤ 1F2(1/2; 1, 1;α/x) for α ≤ 1/2; moreover, limα→0
Γ(−α)αα−1

Γ(α) = −∞. There-

fore, Γ(−α)αα−1

Γ(α) 1F2(α; 1+α, 1+α;α/x) ≥ Γ(−α)αα−1

Γ(α) 1F2(1/2; 1, 1;α/x) for α sufficiently small.

Now, 1F2(1/2; 1, 1;α/x) is a power series in the variable α; moreover, limα→0
Γ(−α)αα−1

Γ(α) α = −1

and limα→0
Γ(−α)αα−1

Γ(α) αn = 0 for n > 1. Therefore, Γ(−α)αα−1

Γ(α) 1F2(α; 1 + α, 1 + α;α/x) ≥
Γ(−α)αα−1

Γ(α) + constant for α sufficiently small. Arguing as above, limα→0 1F2(1 + α; 2 +

α, 2 + α;α/x) = 1. In the same manner, one sees that 1 ≤ 2F3(1, 1; 2, 2, 1 − α;α/x) ≤
2F3(1, 1; 2, 2, 1/2;α/x) for α ≤ 1/2, but, one has that limα→0 2F3(1, 1; 2, 2, 1/2;α/x) = 1.
Similarly, one shows that limα→0 2F3(1, 1; 2, 2, 2 − α;α/x) = 1. From there, one obtains

Γ(−α)αα−1

Γ(α)
1F2(α; 1 + α, 1 + α;α/x) ≥ Γ(−α)αα−1

Γ(α)
+ constant,(C.2)

lim
α→0

−Γ(−1− α)αα

(1 + α)Γ(α)
1F2(1 + α; 2 + α, 2 + α;α/x) = −1,

lim
α→0

2F3(1, 1; 2, 2, 1 − α;α/x) = 1,

lim
α→0

−αΓ(−1 + α)

Γ(α)
2F3(1, 1; 2, 2, 2 − α;α/x) = 0× 1.

Using the limiting form K1(z) ∼ z−1 [2, eq. (9.6.9), p. 375] valid for small arguments z,
one computes

lim
α→0

−αα/2−1/2

Γ(α)
Kα+1

(
2

√
α

x

)
= −

√
x

2
.(C.3)

Finally, combining equations (C.1), (C.2), and (C.3), one has lim infα→0XHK(α/x, α) ≥
lim infα→0

1
(1/x+1)

(1+2α)
α + 1

xα(1/x+1)
Γ(−α)αα−1

Γ(α) + constant = ∞.D
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Part (b). Setting γ = α/x, (3.3) reads as

−γE − log

(
α

x
+ α

)
+ ψ(α)−

(
α

x

)αΓ(−α)

αΓ(α)
1F2

(
α; 1 + α, 1 + α;

α

x

)
(C.4)

+

(
α

x

)
Γ(α− 1)

Γ(α)
2F3

(
1, 1; 2, 2, 2 − α;

α

x

)
.

Using the definition of the hypergeometric series, one sees immediately that 1 ≤ 2F3(1, 1; 2, 2,
2−α;α/x) ≤ 2F3(1, 1; 2, 2, 3/2;α/x) for α ≤ 1/2, but, on the other hand, one has limα→0 2F3(1,

1; 2, 2, 3/2;α/x) = 1. So, limα→0 2F3(1, 1; 2, 2, 2−α;α/x) = 1. Since limα→0(α/x)
Γ(α−1)
Γ(α) = 0,

one concludes that limα→0(α/x)
Γ(α−1)
Γ(α) × 2F3(1, 1; 2, 2, 2 − α;α/x) = 0. Next, one writes

1F2(α; 1 + α, 1 + α;α/x) = 1 + h(x, α), where h(x, α) =
∑∞

n=1
(α)n

(1+α)n(1+α)n

(α/x)n

n! . Let us

observe that 0 ≤ h(x, α) ≤
∑∞

n=1 α (α/x)n = α2

x
1

1−α/x (for α sufficiently small), and from

there it follows that limα→0(α/x)
α Γ(−α)
αΓ(α)h(x, α) = 0. Finally, one has limα→0 −γE − log(α/x+

α) + ψ(α)− (α/x)α Γ(−α)
αΓ(α) = − log(1 + x).

Lemma C.2. For any γ > 0 and α > 0, ∂
∂γUHK(γ, α) > 0.

Proof. From the proof of Proposition 3.2(a), one has

UHK(γ, α) =

∫ ∞

0

(
Γ

(
0,

γ

w

)
+ log

γ

γ + α

)
G(w | α, 1) dw.(C.5)

So, one computes

∂

∂γ
UHK(γ, α) =

∫ ∞

0

∂

∂γ

(
Γ

(
0,

γ

w

)
+ log

γ

γ + α

)
G(w | α, 1) dw(C.6)

=

∫ ∞

0

1

γ

(
− e−

γ
w +

α

(γ + α)

)
G(w | α, 1) dw

≥
∫ ∞

0

1

γ

(
− 1

(1 + γ/w)
+

α

(γ + α)

)
G(w | α, 1) dw

=
eγ α

(γ + α)

(
E(α, γ) − E(α+ 1, γ)

)
,

where E(α, γ) =
∫∞
1 e−γtt−α dt. Since the function E(α, γ) is obviously decreasing in the

variable α for a fixed value of γ, the result follows.
Proof of Theorem 3.5. Part (a). Let x > 0 be fixed for now. From Lemma C.1(a) and

Theorem 3.3(c), one has that γ(α,X) > α/x for α sufficiently small. Then, from Lemma C.2,
one obtains that UHK(α/x, α) < UHK(γ(α,X), α) < 0 for α sufficiently small. Therefore, using
Lemma C.1(b), one has − log(1 + x) = limα→0 UHK(α/x, α) ≤ lim supα→0 UHK(γ(α,X), α) ≤
0. Since x > 0 can be taken arbitrarily small, one deduces that limα→0 UHK(γ(α,X), α) = 0.

Part (b). Let X > 1. From Theorem 3.3, one has that α = X−1
K (X) = 1/(X − 1) implies

that γ(α,X) = 0. Then, taking γ = 0 and α = X−1
K (X) in (3.3) yields the result.

Part (c). Let X ≤ 1. The homodyned K-distribution with parameters ε2, σ2 = σ2
R/α, α

tends to the Rice distribution with parameters ε2 and σ2
R as α → ∞. The structure parameterD
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κ for that Rice distribution is equal to ε2

2σ2
R
, and this is the same value for the homodyned K-

distribution (because 2σ2α = 2(σ2
R/α)α = 2σ2

R). Therefore, limα→∞XHK(κα, α) = XRi(κ),
since γ = κα. In the same manner, one obtains limα→∞ UHK(κα, α) = URi(κ). Now, take
κ = X−1

Ri (X) and let 0 < η < κ. Then, for α sufficiently large, one has (κ− η)α < γ(α,X) <
(κ+η)α. Therefore, one obtains UHK((κ−η)α,α) < UHK(γ(α,X), α) < UHK((κ+η)α,α), since
from Lemma C.2, the function UHK(γ, α) is increasing in the variable γ. Taking the limit as
α → ∞ (which is possible since 0 < X ≤ 1 implies that γ(α,X) is well defined for any α > 0),
one deduces that URi(κ− η) ≤ lim infα→∞ UHK(γ(α,X), α) ≤ lim supα→∞ UHK(γ(α,X), α) ≤
URi(κ+ η). Since η > 0 can be taken arbitrarily small, the result follows.

Next, an argument similar to the proof of Theorem 3.3 (i.e., making the change of variable
I = A2 and computing Laplace transforms) shows that URi(κ) = Γ(0, κ) + log κ

(κ+1) and

XRi(κ) = (2−e−κ)
(κ+1) . Finally, from basic calculus, one obtains the statement on the function

XRi(κ).

Appendix D. Discussion on Conjecture 1. Let f(α) = UHK(γ(α,X), α) (X being known).
Then, Conjecture 1 amounts to the inequality

(D.1)
d

dα
f(α) =

∂

∂γ
UHK(γ, α)

∂

∂α
γ(α,X) +

∂

∂α
UHK(γ, α) < 0,

where γ = γ(α,X). Since γ(α,X) is defined by the identityXHK(γ(α,X), α) ≡ X, the implicit

function theorem implies that ∂
∂αγ(α,X) = −

∂
∂α

XHK(γ,α)
∂
∂γ

XHK(γ,α)
. Moreover, since ∂

∂γXHK(γ, α) < 0,

we conclude that (D.1) is equivalent to

(D.2) Δ(γ, α) =
∂

∂γ
XHK(γ, α)

∂

∂α
UHK(γ, α) −

∂

∂α
XHK(γ, α)

∂

∂γ
UHK(γ, α) > 0.

In particular, it is sufficient to prove the inequality Δ(γ, α) > 0 for any γ > 0 and α > 0. For
this purpose, it is sufficient to show the following two claims.

Claim 5. For any fixed value of x > 0, the function Δ(αx, α) is decreasing in the variable
α > 0.

We have not succeeded in proving Claim 5, but Figure 12 convinced us that it is true.

Claim 6. For any fixed value of x > 0, limα→∞Δ(αx, α) = 0.

Proof. Using the identity γ = xα and making the change of variable w = αw′, we obtain
from (C.6)

∂

∂γ
UHK(xα, α) =

∫ ∞

0

1

γ

(
− e−

γ
w +

α

(γ + α)

)
G(w | α, 1) dw(D.3)

=
1

α

∫ ∞

0

1

x

(
− e−

x
w′ +

1

(x+ 1)

)
G(w′ | α, 1/α) dw′ .

The distribution G(w′|α, 1/α) is concentrated on w′ = 1 as α → ∞. Therefore, ∂
∂γUHK(xα, α) ∼D
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Figure 12. Left: A few level curves of the function Δ(γ, α) by steps of 1.2 × 10−4. The function Δ is
increasing in the direction pointing to the origin. Right: Typical graph of Δ(xα,α) for a fixed value of x.

1
α

1
x{−e−

x
w′ + 1

(x+1)}
∣∣
w′=1

= O(1)
α for large values of α. Similarly, we have

∂

∂α
UHK(xα, α) =

∫ ∞

0
Γ

(
0,

γ

w

)(
logw − ψ(α)

)
G(w | α, 1) dw − 1

(γ + α)
(D.4)

=

∫ ∞

0
Γ

(
0,

x

w′

)(
logw′ + log α− ψ(α)

)
G
(
w′ | α, 1

α

)
dw′ − 1

α(x+ 1)
.

Thus, ∂
∂αUHK(xα, α) = O(1) + Γ(0, x)(log α − ψ(α)) + O(1)

α = O(1) + O(1)(log α − ψ(α)) for
large values of α.

Next, we have for the X-statistics

∂

∂γ
XHK(xα, α) =

∫ ∞

0

(
1

(γ + α)
e−

γ
w +

w

(γ + α)2
(
−e−

γ
w + 2

))
G(w | α, 1) dw

+

∫ ∞

0

(
− (−α+ w)

γ(γ + α)
e−

γ
w − (−α+ w)

(γ + α)2
Γ

(
0,

γ

w

))
G(w | α, 1) dw

=
1

α

∫ ∞

0

(
1

(x+ 1)
e−

x
w′ +

w′

(x+ 1)2
(
−e−

x
w′ + 2

))
G
(
w′ | α, 1

α

)
dw′

+
1

α

∫ ∞

0

(
− (−1 + w′)

x(x+ 1)
e−

x
w′ − (−1 + w′)

(x+ 1)2
Γ

(
0,

x

w′

))
G
(
w′ | α, 1

α

)
dw′.

(D.5)

Hence, ∂
∂γXHK(xα, α) ∼ 1

α(
1

(x+1)e
−x + 1

(x+1)2
(−e−x + 2)) ∼ O(1)

α for large values of α. Also,

the partial derivative of X with respect to α is given by

(D.6)

∂

∂α
XHK(xα, α)

=

∫ ∞

0

(
w

(γ + α)

(
−e−

γ
w + 2

)
+

Γ(0, γ
w )

(γ + α)

(
−α+ w

))(
logw − ψ(α)

)
G(w | α, 1) dw

+

∫ ∞

0

(
− w

(γ + α)2
(
−e−

γ
w + 2

)
−

Γ(0, γ
w )

(γ + α)2
(
γ +w

))
G(w | α, 1) dw
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=

∫ ∞

0

(
w′

(x+ 1)

(
−e−

x
w′ + 2

)
+

Γ(0, x
w′ )

(x+ 1)

(
−1 + w′))(logw′ + log α− ψ(α)

)
G(w′ | α, 1/α) dw′

+
1

α

∫ ∞

0

(
− w′

(x+ 1)2
(
−e−

x
w′ + 2

)
−

Γ(0, x
w′ )

(x+ 1)2
(
x+ w′))G(w′ | α, 1/α) dw′.

So, ∂
∂αXHK(xα, α) = O(1)+( 1

(x+1) (−e−x+2))(log α−ψ(α))+ O(1)
α = O(1)+O(1)(log α−ψ(α))

for large values of α.
Finally, since limα→∞

(
logα− ψ(α)

)
/α = 0, the claim follows.

Appendix E. Implementation issues. Using standard identities of the Euler gamma func-
tion and permuting the terms, one rewrites (3.4) as

XHK(γ, α) =
(1 + 2α)

(γ + α)
− 2γα/2+1/2

(γ + α)Γ(α)
Kα+1

(
2
√
γ
)

(E.1)

+
γ

(γ + α)

×
{

2F3(1, 1; 2, 2, 1 − α; γ) − π

sin(πα)

γα−1
1F2(α; 1 + α, 1 + α; γ)

Γ(α)Γ(1 + α)

+
π

sin(π(α + 1))

γα 1F2(1 + α; 2 + α, 2 + α; γ)

Γ(α)Γ(2 + α)(1 + α)
− α

(α− 1)
2F3(1, 1; 2, 2, 2 − α; γ)

}
,

which is valid for α > 1. If α < 1, the last term − α
(α−1) 2F3(1, 1; 2, 2, 2 − α; γ) is replaced by

π
sinπ(1−α)

α
Γ(α)Γ(2−α) 2F3(1, 1; 2, 2, 2 − α; γ).

Either expression can be computed directly for α > 0 if α is not an integer. When α is a
positive integer, the four terms of lines three and four of (E.1) tend to ±∞. Nevertheless, it
can be shown that the corresponding sum has a finite value. In the implementation used in
the reported tests, we chose the simplest solution that consists in approximating XHK(γ, α) by
interpolation of the values XHK(γ, n− 10−7) and XHK(γ, n+10−7) in the interval n− 10−7 ≤
α ≤ n + 10−7, where n is an integer. On the other hand, the first two terms of (E.1) are
well-defined for any value of α > 0.

Similar remarks apply to the computation of UHK. In particular, one obtains

UHK(γ, α) = −γE − log(γ + α) + ψ(α)(E.2)

+
π

sin(πα)

γα 1F2(α; 1 + α, 1 + α; γ)

αΓ(α)Γ(α + 1)
+

γ

(α− 1)
2F3(1, 1; 2, 2, 2 − α; γ),

which is valid for α > 1. If α < 1, the last term γ
(α−1) 2F3(1, 1; 2, 2, 2 − α; γ) is replaced by

− π
sinπ(1−α)

γ
Γ(α)Γ(2−α) 2F3(1, 1; 2, 2, 2 − α; γ). These expressions are valid for α not an integer.

One uses an approximation as explained above for values of α near integers.

Appendix F. Method in [8] revisited. The method in [8] is equivalent to solving the
following (nonlinear) system of equations in the variables ε2, σ2, and α:

E[I] = I,(F.1)

E[I2]/E[I]2 = I2/I
2
:= M,

E[I3]/E[I]3 = I3/I
3
:= L.D
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Sufficient and necessary conditions for this system to admit a solution are presented below.
For that purpose, the change of variables (3.2) was adopted.

Proposition F.1. Let A =
√
I be distributed according to the homodyned K-distribution

PHK(A | ε, σ2, α). With the notation of (3.2), one has

E[I2]/E[I]2 = MHK(γ, α) =
(γ2 + 4γα+ 2α(α + 1))

(γ + α)2
,(F.2)

E[I3]/E[I]3 = LHK(γ, α) =
(γ3 + 9γ2α+ 18γα(α + 1) + 6α(α + 1)(α + 2))

(γ + α)3
.(F.3)

As one can see, (F.2) and (F.3) depend only on the variables γ and α. Thus, the method
in [8] amounts to solving (F.2) and (F.3) in the variables γ and α and then using (3.5) with
μ = E[I].

Let α > 0 be known. Using (F.2), one deduces the value of γ ≥ 0 explicitly.
Proposition F.2. Let M > 1 be a real number and α be fixed. Then, there exists at most

one solution γ ≥ 0 to the equation MHK(γ, α) = M , namely

γ =
(
α(2 −M) +

√
2(M − 1)α + (2−M)α2

)
/
(
M − 1

)
.(F.4)

(a) If M ≤ 2, then there is a solution for any α > 0.
(b) If M > 2, then there is a solution if and only if 0 < α ≤ α0 = M−1

K (M) = 2/(M − 2).
Thus, one obtains a well-defined function γ = γ(α,M) on the domain described by Propo-

sition F.2. Next, proceeding as in section 3.3, the expression of (F.4) is substituted in (F.3),
thus yielding a function LHK(γ(α,M), α) in the single variable α.

Proposition F.3. Let M > 1 be a real number.
(a) One has the left boundary condition limα→0 LHK(γ(α,M), α) = ∞.
(b) If M ≤ 2, then limα→∞LHK(γ(α,M), α) = LRi(κ0), where κ0 = M−1

Ri (M) = 1/(1 −√
2−M)− 1.
(c) If M > 2, then limα→α0 LHK(γ(α,M), α) = LK(α0), where α0 = M−1

K (M) = 2/(M −
2).

(d) The function LHK(γ(α,M), α) is decreasing on its domain.
In Proposition F.3(b), the functionsMK(α) = 2

(
1+1/α

)
and LK(α) = 6

(
1+1/α

)(
1+2/α

)
correspond to the computation of the M - and L-statistics for the K-distribution. In part (c),

the functions MRi(κ) = 2− κ2

(κ+1)2
and LRi(κ) =

(κ3+9κ2+18κ+6)
(κ+1)3

correspond to the computation

of the M - and L-statistics for the Rice distribution.
Part (d) of the proposition implies that a binary search algorithm can be used to find the

unique solution to (F.2) and (F.3), whenever a solution exists.
Corollary F.4. Let M > 1 and L > 1 be given. Then, there exists a simultaneous solution

to the system MHK(γ, α) = M and LHK(γ, α) = L if and only if
(a) M ≤ 2 and L > LRi(M

−1
Ri (M)), or

(b) M > 2 and L > LK(M
−1
K (M)).

Moreover, if a solution exists, it is unique.
Thus, one obtains well-defined functions γ = γ(M,L) and α = α(M,L), where M and L

are restricted to the domain described by parts (a) and (b) of Corollary F.4.D
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