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a  b  s  t  r  a  c  t

The  goal  of this  study  was  to show  the  feasibility  of  a 2D  segmentation  fast-marching  method  (FMM)
in  the  context  of  intravascular  ultrasound  (IVUS)  imaging  of  coronary  arteries.  The  original  FMM speed
function  combines  gradient-based  contour  information  and  region  information,  that  is the  gray  level
probability  density  functions  of  the vessel  structures,  that  takes  into  account  the variability  in  appear-
ance  of  the  tissues  and  the  lumen  in IVUS  images  acquired  at 40  MHz.  Experimental  results  on  38  in vivo
IVUS sequences  yielded  mean  point-to-point  distances  between  detected  vessel  wall  boundaries  and
manual  validation  contours  below  0.11  mm,  and  Hausdorff  distances  below  0.33  mm,  as  evaluated  on
3207  images.  The  proposed  method  proved  to be robust  in  taking  into  account  various  artifacts  in  ultra-
sound  images:  partial  shadowing  due  to calcium  inclusions  within  the  plaque,  side branches  adjacent  to
the  main  artery  to segment,  the  presence  of  a stent,  injection  of contrast  agent  or  dissection,  as  tested  on
209 images  presenting  such  artifacts.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Intravascular ultrasound (IVUS) is a medical imaging modality
that produces a sequence of cross-sectional frames of the vascular
wall of arteries as a catheter is pulled-back inside blood vessels. It
has become very useful for studying atherosclerotic diseases [1].

Various segmentation techniques have been developed for IVUS
images of coronary arteries. Among methods that are based on
statistics of the B-mode image, a Maximum A Posteriori (MAP) esti-
mator was derived using Rayleigh statistics of the signal for the
lumen contour segmentation [2]. A multi-surface 3D graph search
using Rayleigh distributions and Chan-Vese terms is proposed in
[3]. In [4], a knowledge-based approach is used to determine which
level of gray corresponds statistically to the different regions of
interest, i.e., the intima, plaque and lumen, in the context of the
arterial wall segmentation. In [5], a non-parametric probabilistic
model is integrated into a shape-driven method for the segmenta-
tion of the arterial wall. Among other probabilistic segmentation
methods of the luminal borders, let us mention [6–8].
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University of Montreal Hospital Research Center (CRCHUM), Montreal,
Canada. Tel.: +1 514 890 8000x24703; fax: +1 514 412 7505.
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Several other techniques than the ones based on speckle statis-
tics have also been proposed in the past five years. Edge information
alone [9] or combined gray level intensity attributes [10,11] were
used. Other segmentation algorithms are based on different textu-
ral features [12–15]. Gray level intensity and textural information
were combined to detect the lumen boundary [6]; edge attributes
were added for the external elastic membrane (EEM) [16]. In these
methods, different frameworks were used to extract the vessel wall
boundaries from the different image information, classifiers being
the most prevalent recently [6,13,15,16]. Threshold and contour
filtering [12] and binary morphological operations [14] were also
proposed. Taki et al. [9] used deformable models while [10] com-
bined them to graph search. Finally, a multi-agent segmentation
[11] and a 3D parallel segmentation method [17] were investigated.
Less recent techniques can be found in Section 4.

The aim of this work was  to show that an adaptation of the fast-
marching segmentation method developed in [18,19] for femoral
artery IVUS segmentation is also powerful in the context of coro-
nary imaging. Compared to femoral arteries [18,19], the artery
wall of the coronaries presents a much more complex move-
ment (see Fig. 1, left image). Moreover, since the IVUS images
were acquired at a higher frequency (40 MHz) than in the case of
femoral arteries (20 MHz), the lumen presents more speckle and
hence, its appearance is more variable in the present study than
in the context of [18,19] (see Fig. 1, right image). Therefore, we
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Fig. 1. Left: example of half a longitudinal cut of a pullback. Right: example of a cross-section that presents a calcified area from that in vivo sequence pullback.

considered an original modification of the speed function proposed
in [18,19]. A textural gradient, defined in terms of the distribution
of the gray levels in the different components of the vessel wall,
was introduced in this new speed function. Moreover, mixtures of
gamma  probability density functions (PDFs) were used to model the
gray level distribution of the log-compressed and filtered envelop
of the IVUS images [20,21] that could not be modeled with Rayleigh
distributions assuming uniform scattering tissues [22], as was used
in our previous work. We  also included a process that computes
adaptive weights to calibrate the two components of the speed
function to accommodate for various ranges of values coming from
different image features. The vessel wall boundaries were modeled
as layered contours that propagate simultaneously under that new
speed function, which is based on a combination of complemen-
tary contour and region information. The multiple interfaces were
propagated in the IVUS series of images after having been initially
positioned using approximate manual segmentations on 2 perpen-
dicular longitudinal views (L-views) of the 3D volume, to allow the
tracking of the artery wall. This type of initialization is adapted for
the segmentation of large pullbacks (several millimeters) where the
vessel wall components might change across the sequence due to
the heterogeneity of the image, and when adjacent cross-sections
are discontinuous due to the beating heart movement for acquisi-
tions that are not gated. This segmentation model handles contour
irregularities, partial shadowing due to calcium inclusions within
the plaque, side branches adjacent to the main artery to segment,
the presence of a stent, injection of contrast agent or dissection as
often observed for atherosclerotic coronary plaques.

2. Materials and methods

2.1. In vivo data

A total of 38 in vivo IVUS pullbacks from diseased coronary
arteries was obtained from a database of Boston Scientific and
clinical studies conducted at the Montreal Heart Institute. From
these two sources, we segmented 20 sequences acquired with the
Boston Scientific “Galaxy II” scanner, and 18 sequences with the
“iLab” echograph. Ultrasound transducers at 40 MHz  (mounted on
catheters) were used in all cases. The IVUS cross-section image size
varied between 8.2 mm and 11.4 mm.  In what follows, a sequence
refers to a series of IVUS images obtained by a pullback, at a
constant speed, of the ultrasound catheter. The echograph “iLab”
corresponds to the newest platform of Boston Scientific.

The segmentation algorithm was implemented on Matlab (ver-
sion 7.04, the MathWorks, Natick, MA,  USA), using some of our
VC++“mex” libraries. In order to comply with Matlab memory
restriction, each of the 38 original sequences was broken up into 2

Table 1
The eight categories of comments written by the technicians for the 1388 frames
from dataset 1 that were manually segmented.

Category Comment Number of frames

1 None 1179
2  Dissection 20
3  Calcium 91
4  Stent 72
5  Calcium and dissection 8
6  Branching 10
7  Branching and calcium 4
8  Injection of contrast agent 4

or 3 smaller sequences, each one of about 1000 frames, for a total
of 78 sequences totalizing 82, 848 frames.

A subset of images from each available pullback, with a step
of twenty between frames, was manually segmented by experi-
mented technicians of the Montreal IVUS Core Laboratory1 at the
Montreal Heart Institute. Overall, 4142 images were selected for
the validation (82,848/20 images). Three technicians were involved
in the manual segmentation of these images; the final contours
were reviewed and approved by at least two  technicians. The
instructions given to the technicians were the following: if ever the
visual perception of the image (and of the video sequence) did not
allow the manual segmentation of either contour (lumen-intima
or EEM-adventitia), then the image was classified as non-usable.2

Consequently, some of the images could not be manually seg-
mented and the total number of images that could be quantitatively
analyzed (i.e., comparison of the algorithmic and manual segmen-
tations) was 3207 (77.4% of the 4142 images, more precisely, 1388
of the 1782 “iLab” and 1819 of the 2360 “Galaxy II” frames). Thus,
two datasets were used for the quantitative evaluation of the pro-
posed segmentation method: dataset 1 consisting of the 1388
“iLab” frames (including 209 difficult frames that were neverthe-
less manually segmented – see Section 3.4) and dataset 2 consisting
of the 1819 “Galaxy II” frames.

The technicians also wrote up in a lab book any difficulties
encountered in the manual segmentation. The categories of their
comments are summarized in Table 1

1 The intraclass coefficients for interobserver variability associated with measure-
ments of plaque and vessel volumes in this laboratory are 0.98 and 0.99, respectively
[23].

2 This instruction was imposed by the fact that a large portion of the database
came from a clinical study where the area of the plaque was considered; the lumen-
intima and EEM-adventitia contours are required to establish the atherosclerotic
plaque area.
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2.2. The fast-marching method (FMM)  and its speed function

The segmentation of the two coronary artery boundaries (i.e.,
the lumen-intima and the EEM-adventitia boundaries) was per-
formed with the FMM  [24]. The goal of that method is to find the
boundary between two regions (i.e., in the present study, two tis-
sues) m and n by letting evolve two interfaces, one that starts within
tissue m and moves toward the boundary, and the other one that
starts within tissue n and moves toward the same boundary. Thus,
in this study, there are 4 interfaces to consider. As displayed in Fig. 2,
the first one B1 corresponds to m = lumen and n = region comprising
the intima, and is initialized inside the lumen. The second interface
B2 is initialized inside the intima-media and corresponds to m =
region comprising the intima and n = lumen. The two interfaces
meet at the boundary between the lumen and the intima. Simi-
larly, the third interface B3 corresponds to m = region comprising
the media and n = surrounding, and is initialized inside the lumen
and intima-media region. Finally, the fourth interface B4 is located
initially inside surrounding tissues and corresponds to m = sur-
rounding and n = region comprising the media. These two interfaces
meet at the EEM-adventitia boundary.

For that purpose, a speed function F is associated to each of
the two interfaces, which should range between 0 and 1. The goal
of the FMM  is to construct the “arrival time” function T(i, j) that
satisfies the differential equation | ∇ T|F = 1. As in the case of [25],
there is one arrival time function per interface, i.e., per speed func-
tion. When the algorithm stops, the two interfaces have met  at the
boundary and the speed functions are minimal. In this study, the
speed function was based on two components: (1) a textural gra-
dient inspired by [26]; and (2) the gray level gradient as in [19].
Thus, the former speed function is based on region information,
whereas the latter is based on contour information. Although the
former speed function is based on the B-mode PDF, it differs from
the one adopted in [19].

The region-based speed function uses posterior probabilities in
order to define a textural gradient. The purpose of the textural
gradient is to locate the border between two regions presenting
a difference in their gray level distributions (corresponding to dif-
ferent mixtures of gamma  distributions), rather than to measure
the data likelihood within a region. Two neighboring tissues m and
n are considered with interface B moving within m toward n. Let
v be the neighborhood of pixels (i, j) up winding the interface of
the FMM.  So, v is inside the tissue m.  Let w be the neighborhood
of pixels (i, j) down winding the interface. Thus, w falls eventually
outside the tissue m,  or equivalently inside the neighboring tissue
n. See Fig. 2 for an illustration. Then, the proposed region-based
speed function is of the form

Fm,n(i, j) =

(
1 +

{
1
Nv

∑
s ∈ v

P(s ∈ m|As)

}
×

{
1

Nw

∑
s ∈ w

P(s ∈ n|As)

}
/�

)−1

(1)

The term {(1/Nv)
∑

s∈vP(s ∈ m|As)} × {(1/Nw)
∑

s∈wP(s ∈ n|As)}
plays the role of a textural gradient, which is now explained. Firstly,
the likelihood that a pixel s of v is actually inside the region m is
denoted P(As|m), while the likelihood that it is inside the region
n is denoted P(As|n). Here, As is the gray level of pixel s. Adopt-
ing the prior probabilities of each region P(m) = P(n) = 1/2, then,
one obtains from Bayes’ theorem the posterior probability that s is
inside m in the form P(s ∈ m|As) = P(As|m)/(P(As|m) + P(As|n)). Simi-
larly, the posterior probability that a pixel s of the neighborhood w is
inside the region n is equal to P(s ∈ n|As) = P(As|n)/(P(As|m)  + P(As|n)).
The constant � was automatically calibrated on each IVUS image,
as explained below. By construction, the proposed speed function
should be minimal at the boundary of the two tissues m and n, when

the interface B matches the boundary between the two  considered
tissues.

The contour-based speed function uses the gray level gradient
in the form:

Fgrad(i, j) = (1 + |∇G� ∗ As|/�)−1, (2)

where ∇ is the gradient operator, G� is the 9 × 9 pixels sym-
metric Gaussian filter of standard deviation � = 3.5. The size of
the filter and the � value were chosen to smooth the speckle
inside the vessel components while keeping their boundaries. In
this equation, � is a normalizing constant that was  calibrated
with the constant � so that the expressions within the paren-
theses in the right-hand side of Eq. (1) (related to the texture
gradient) and Eq. (2) (related to the gray-level gradient) had
the same average value c, i.e., c = E[1 + {(1/Nv)

∑
s∈vP(s ∈ m|As)} ×

{(1/Nw)
∑

s∈wP(s ∈ n|As)}/�] = E[1 + |∇G� ∗ As|/�], where E means
average. In the reported tests, that average value was set equal to
c = 10. Thus, the two speed functions had an average value around
1/c = 1/10, which means that for each image, parameters � and �
were calculated according to this fraction and the average values
of the gradients in Eqs. (1) and (2). The parameter c = 10 was set
empirically to produce speed function values close to zero near the
boundaries. See Section 2.5 for details about the regions on which
these average values were computed.

Globally, the proposed speed function of the current study was
selected as the average of the components given in Eqs. (1) and (2):

F(i, j) = 1
2

Fm,n(i, j) + 1
2

Fgrad(i, j). (3)

Since the adopted values of the constants � and � were estimated,
they allowed to calibrate the contribution of each type of gradient
in the combined speed function.

2.3. Choice of the probability density function (PDF)

In [19], the Rayleigh PDF was  chosen as the model for the gray
level amplitude distribution of the ultrasonic speckle pattern in an
IVUS B-mode image under the hypothesis of a uniform scattering
tissue [22]. The Nakagami PDF is a more general model for the gray
level amplitude distribution of the ultrasonic speckle pattern in a
B-mode image as it takes into account the various possible con-
figurations of ultrasound scatterers in a tissue [27]. The Nakagami
distribution can be viewed as an approximation of the homodyned
K-distribution [20] that is a statistical model for the echo enve-
lope [21] and that is more easily handled. The Rayleigh distribution
is a special case of the Nakagami distribution. Note that when the
transducer center frequency is higher, the resolution cell is smaller,
resulting in a lower scatterer’s density, so that the distribution of
the gray level in the B-mode image might depart from the Rayleigh
distribution [27].

However, when a log-compression operator or various filters
are applied to the B-mode image to improve visual perception,
the Nakagami distribution might no longer be appropriate [28]. In
such circumstances, the gamma  PDF on the gray level amplitude
was tested, in [29], as a valid approximation in the case of B-mode
images in the context of clinical cardiac images. See also [30] for a
similar study. Recall that the gamma  distribution on the amplitude
As is defined by:

G(As|k, �) = Ak−1
s

� (k)�k
e−As/�, (4)

where k > 0 is a shape parameter, � is the Euler gamma function,
and � > 0 is a scaling parameter. The mean and variance of this PDF
are equal to k� and k�2, respectively.

A model of mixtures of gamma  distributions for the gray level
of B-mode images was  adopted for the post-processed B-mode
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Fig. 2. Left: illustration of the nomenclature used in Eq. (1). Right: illustration of the 4 interfaces used in our implementation of the FMM  algorithm; full lines represent
the  searched boundaries, whereas dashed lines are moving boundaries of the FMM  algorithm, where B1–B2 are moving in opposite directions to define the lumen-intima
boundary and B3–B4 are also moving in opposite directions to define the EEM boundary.

images of our study. This strategy provided enough flexibility
for modeling the echogenicity of the lumen (blood), vessel wall
(plaque) and tissues surrounding the coronary artery. So, in the
definition of the region-based function of Eq. (1), mixtures of
gamma  distributions were used as likelihoods in order to compute
the posterior probabilities P(s ∈ m|As) and P(s ∈ n|As). The parame-
ters of the gamma  mixture distributions were estimated with the
Expectation-Maximization (EM) algorithm [31], as adapted to mix-
tures of gamma distributions in [32, Table I]. The EM algorithm
was initialized with a clustering based on the four quantiles of the
gray level intensities. The initial parameters for the first gamma
PDF were thus computed on the lowest 25% of the data; the initial
parameters for the following PDFs of the mixture were respectively
computed with the following quartiles of the data.

The number of gamma distributions � was set empirically to 4.
The 4 estimated gamma  distributions were classified by increasing
order of means. Then, the distributions were combined as follows
in order to represent the four relevant tissues or artifacts present
within images:

P(As|j) =
4∑

i=1

pi,jG(As|ki, �i), (5)

where the index j = 1, 2, 3, 4 represents the guide wire and the
lumen, a region comprising the intima (inside the intima-media), a
region comprising the media (inside the EEM) and the surrounding
tissues (outside the EEM), respectively, as well as any other arti-
fact present within the tissue (calcium, its shadow cone, stent, side
branches). In Eq. (5), As represents the gray level of pixel s, G is the
gamma  distribution of Eq. (4) and the index i = 1, 2, 3, 4 represents
each gamma  distribution of the mixture. The proportions p1,j, . . .,
p4,j of each gamma distribution in the mixture representing the tis-

sue j are non-negative real numbers that satisfy
∑4

i=1pi,j = 1. These
proportions for each tissue j were estimated based on the initial
interpolated lumen and EEM boundaries discussed in Section 2.4.

In the case of the IVUS images of the database of this study, some
of them presented a large number of pixels with gray level varying
between 0 and 3 (on the scale of [0, 255]). It was observed that the
presence of a peak in the histogram of gray levels caused the EM
algorithm to get stuck with only two classes of hidden labels, even
when the number of such classes was set to �=4, due to an exceed-
ingly small variance of the gamma  distribution corresponding to
the peak. The solution consisted in imposing a lower bound on the
variance of the distribution.

2.4. Manual initialization of the FMM  segmentation algorithm

The FMM  requires initial contours representing approximate
boundaries between the lumen and the intima, and between the
media and the adventitia, respectively. The initial radial contours
of all frames were determined from manually traced boundaries on

two longitudinal cuts (L-views) of the IVUS sequence correspond-
ing to two planes at equally spaced angles. In brief, the operator
selected, for each L-view and for each vessel region to segment
(lumen-intima or media-adventitia boundary), two longitudinal
lines (one on each side of the catheter) of 10.7 ± 2.3 control points
that were interpolated to produce boundary points for each 2D
cross-sectional image of the whole 3D sequence. By considering
the 2 L-views, this yielded four contour points in each 2D frame
that were spline-interpolated radially to obtain each closed approx-
imate initial boundary (lumen-intima and media-adventitia) that
were forbidden to overlap (see Fig. 3). The images (in the polar
domain) corresponding to a given position in the pullback were
also available while doing the manual initialization for additional
visualization (but not for entering control points).

2.5. Implementation of the FMM algorithm

The following description explains the implementation of the
FMM  algorithm on each image of an IVUS sequence for defining the
media-adventitia boundary, and then the lumen-intima interface.

For the media-adventitia boundary, we started with the initial
interpolated contour obtained by the manual initialization (Sec-
tion 2.4). The initial interface B4 for the FMM  was obtained by
translating radially the initial contour 0.4 mm in the direction of
surrounding tissues (i.e., outward). The desired boundary should
thus be within a 0.4 mm distance from the initial contour (see Fig. 3,
left image). Another interface B3 was  obtained by translating radi-
ally the same contour 0.4 mm toward the center of the artery (i.e.,
inward). Note that the proportions pi,j for i = 1, 2, 3, 4 in Eq. (5), for
the surrounding tissues (j = 4) and the region comprising the media
(j = 3) between B3 and the EEM, were computed with the EM algo-
rithm of [33], based on the initial interpolated EEM contour and
the two initial interfaces B3 and B4. Also, the parameters � and �
in Eqs. (1) and (2), respectively, were estimated for the interface B4
on the region within the initial positions of the interfaces B3 and
B4; those constants were estimated similarly for the interface B3.
When the FMM  stops, the two  interfaces B3 and B4 have met  at the
boundary between the EEM of the media and surrounding tissues
(see Fig. 2). Note that if the intima-media is thinner than 0.4 mm,
the region between B3 and the EEM will comprise other tissues than
the media. Note also that B3 will eventually be located inside the
media during the propagation of the interfaces.

Next, an initial contour representing the boundary between the
lumen and the intima was  considered. The initial interface B2 for the
FMM  was also obtained by translating it 0.4 mm outward, but no
further than the EEM boundary. Another interface B1 was obtained
by translating the same initial contour 0.4 mm inward, but no fur-
ther than the IVUS catheter. Then, the FMM  was applied as above,
using the appropriate speed functions. Again, note that B2 will even-
tually be located inside the intima during the propagation of the
interfaces.
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Fig. 3. Left: example of initial manually traced boundaries (yellow dashed curves) on half a longitudinal cut of a pullback. Right: example of a cross-section that presents a
calcified area from that in vivo sequence pullback; the red full curves represent the lumen and EEM contours detected with the FMM  algorithm; the light blue dashed curves
represent the contours obtained by b-spline interpolating the manually traced boundaries on the L-views. (For interpretation of the references to color in this figure legend,
the  reader is referred to the web version of the article.)

For convenience, all ungated IVUS images were expressed into
polar coordinates (with 512 values for the angle and half the size
of the Cartesian image for the radius). The FMM was applied to the
resulting 2D images. We  chose not to apply the FMM  on the 3D
volume due to the cardiac motion discontinuities in the sequences
caused by the lack of ecg-gating. Also, the IVUS catheter displayed
as a black circle on the images was removed automatically before
using the FMM.  Finally, a simple Gaussian smoothing filter was
applied to the segmented boundaries, after the segmentation pro-
cess. Namely, the contour was smoothed by applying radially the
Gaussian filter [0.1, 0.2, 0.4, 0.2, 0.1], and once again with the filter
[0.1, 0, 0.2, 0, 0.4, 0, 0.2, 0, 0.1]. This operator amounts to setting a
prior on the smoothness of the contours.

2.6. Reproducibility of the FMM  with regard to random
perturbations

To test the robustness of the FMM  with regard to the manual
initialization, we performed the following reproducibility study.
For each L-view, every interpolated point on each 2D frame that
was moved radially by ±0.4 mm to define the initial boundaries
B1–B4 (Fig. 2), was perturbed randomly in the radial direction by
±0.05, ±0.1, ±0.2 and ±0.3 mm (according to a uniform distri-
bution). The range of these perturbations included the measured
average distance between manually drawn contours by different
users of 0.06–0.18 mm [18,19]. Then, the eight randomly perturbed
contour points of each searched boundary were spline-interpolated
radially, as mentioned earlier, to form a closed contour. The perfor-
mance of the FMM  segmentation was then tested again with those
new initial contours.

2.7. Data analysis

Once having all manual segmentations for quantitative com-
parisons, the analysis steps involved the manual initialization on
L-views, the computation of the performance metrics, the compar-
ison of results between datasets 1 and 2, the reproducibility analysis
that aimed to determine the robustness to the manual L-view ini-
tializations, and comparison of vessel wall areas (plaque areas for
IVUS images with atherosclerosis) between manual and computed
segmentations. Note that the manual gold standard segmenta-
tions and manual initializations were performed independently
by different technicians. The time required for the manual L-view
initializations was on average 3 min  and 46 s per sequence. This
included viewing the IVUS video, displaying the 4 half L-views, and
clicking of control points on each estimated boundary.

The algorithmic FMM  segmentation was  applied to all frames
of each sequence, for a total of 82,848 images. Thus, contours were
detected even on the frames that did not have to (78,706 frames) or
could not be (935 frames) manually segmented by the technicians.
The time required to segment both boundaries (lumen-intima and
EEM-adventitia) of each sequence was on average 7 min  and 23 s.
This corresponds approximately to a processing time of 0.42 s per
2D IVUS image. Optimization of the Matlab code and parallelization
would improve processing time.

2.7.1. Performance metrics of the FMM segmentations
For each of the 3207 frames where both lumen-intima and

EEM-adventitia contours were segmented by the technicians,
we compared the manual segmentation with the segmentation
obtained by the proposed method.

We  considered the mean point-to-point and Hausdorff dis-
tances [34] between the algorithmic and manual segmentations
in mm.  We  also computed these distances relative to the largest
diameter of the contour obtained by the manual segmentation (i.e.,
the largest distance between two  points of that contour). Namely,
if MD represents the mean point-to-point distance between con-
tours at a given frame, and if D is the diameter of the manual
contour at that frame, then we  considered the ratio MD/D × 100%.
We then computed the average of the mean distance MD  as well
as the ratio MD/D × 100% over all manually segmented frames of
each sequence. We  similarly computed the average of HD and of
HD/D × 100% for the Hausdorff distance HD over all manually seg-
mented frames of each sequence.

We also used the error of area [2,4,7,35,36] as another perfor-
mance assessment metric. Namely, if A represents the area obtained
by the algorithmic segmentation and B is the area of the man-
ual segmentation, then the error of area EA is defined by |A − B|
in mm2 (note the absolute value). We  also computed the rela-
tive error of area |A − B|/B × 100%. These values for the lumen and
EEM areas were averaged over all manually segmented frames of
each sequence. Some studies [6,37–39] defined the error of area as
(A − B)/B × 100%, which of course decreases significantly the value
of the measure. Indeed, when averaged over all frames, positive and
negative biases may  cancel. This last measure may underestimate
the true error of area unless A is always considered as the largest
surface.

As additional assessment metrics, the plaque areas and plaque
areas normalized by the EEM surfaces were computed for all
datasets 1 and 2 sequences. For each frame for which both the
lumen and the EEM could be manually segmented by the tech-
nicians, we considered the ratio |P − Q|/Q × 100%, where P is the
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Table  2
Comparison of the mean point-to-point (MD) and Hausdorff (HD) distances, and of the errors of areas (EA) for the lumen-intima and EEM-adventitia boundaries for IVUS
images  from datasets 1 and 2.

Dataset 1 (n = 35 sequences with 1388 frames) Dataset 2 (n = 43 sequences with 1819 frames) p-Value

MD (mm) Lumen 0.10 ± 0.03 0.13 ± 0.03 <0.001
(3.3  ± 0.7%) (4.5 ± 1.5%) <0.001

EEM  0.10 ± 0.03 0.10 ± 0.03 0.252
(2.4 ± 0.6%) (2.4 ± 0.7%) 0.880

HD  (mm)  Lumen 0.31 ± 0.07 0.34 ± 0.08 0.064
(10.2 ± 1.8%) (12.0 ± 2.3%) <0.001

EEM  0.32 ± 0.09 0.30 ± 0.09 0.388
(7.6  ± 2.0%) (7.6 ± 2.0%) 0.778

EA  (mm2) Lumen 0.43 ± 0.17 0.53 ± 0.19 0.009
(6.9 ± 2.6%) (11.1 ± 7.2%) 0.002

EEM  0.58 ± 0.31 0.52 ± 0.25 0.422
(4.3 ± 1.8%) (4.6 ± 2.3%) 0.960

plaque area computed with the FMM,  whereas Q is the manu-
ally segmented plaque area. Those ratios were averaged over all
manually segmented frames of each sequence.

We  also computed, on each frame, the error of plaque area rela-
tively to the EEM surface. The ratio |P − Q|/R × 100% was considered,
where P remains the plaque area computed with the algorithmic
segmentation, Q is still the plaque area computed manually, and
R is the EEM area computed from the manual segmentation. This
error ratio was also averaged over all manually segmented frames
of each sequence.

3. Results

3.1. Performance metrics of the FMM  segmentations

On average over all sequences, the mean point-to-point and
Hausdorff distances for the lumen contours were 0.11 ± 0.03 mm
(4.0 ± 1.4%) and 0.33 ± 0.07 mm (11.2 ± 2.3%), respectively. Recall
that there are 3207 frames in all performance assessments and
that values in parenthesis are MD  × 100/D and HD × 100/D, respec-
tively. The mean point-to-point and Hausdorff distances for the
EEM contours were 0.10 ± 0.03 mm (2.4 ± 0.7%) and 0.31 ± 0.09 mm
(7.6 ± 2.0%), respectively. On average, errors of areas were
0.49 ± 0.18 mm2 (9.3 ± 6.0%) for the lumen and 0.55 ± 0.28 mm2

(4.5 ± 2.1%) for the vessel external boundary, when averaged over
all sequences. Numbers in parenthesis are relative errors of areas.

We compared the performance of the FMM  versus manual “gold
standard” segmentations for both types of IVUS sequences. As can
be seen in Table 2, there were no significant differences for the EEM
interface between the datasets 1 and 2 sequences (unpaired t-tests,
p > 0.05). On the other hand, all performance metrics between the
manual and the automatic segmentations of the lumen interface
were significantly better for dataset 1 (unpaired t-tests, p < 0.05),
except for the Hausdorff distance.

3.2. Reproducibility of the FMM  segmentations for dataset 1

The reproducibility of the L-view manual initializations to ran-
dom perturbations was limited to dataset 1 since the Hausdorff
distances (in mm)  turned out to be equivalent between datasets
1 and 2 (see Table 2). Moreover, there was no significant dif-
ferences in the various performance metrics for the EEM. The
results of this analysis are summarized in Table 3. To compare
each measure corresponding to different random initializations, we
performed multiple comparisons with respect to the case where
no random perturbation was applied using an analysis of variance
(Kruskal–Wallis one-way analysis of variance on ranks with Tukey
test for multiple comparisons whenever normality test failed, or

else, Holm–Sidak method). Note that for this analysis, a pertur-
bation of the initialization by 1 mm corresponds to about 70.9%
of the lumen radius and 50.6% of the EEM radius. Therefore, the
reproducibility analysis considers perturbations of the initializa-
tion within ±3.5% to ±21.3% of the lumen radius, and ±2.5% to
±15.2% of the EEM radius.

As shown in Table 3, a perturbation of ±0.1 mm (in the radial
direction) did not affect the performance metrics for the lumen
as well as for the EEM. This finding reveals the stability of the
FMM  segmentation for such a perturbation. For random displace-
ments of the initialization by ±0.2 mm,  only the Hausdorff EEM
distances and the EEM errors of area in mm2 were not affected
(p > 0.05). All performance metrics were significantly increased
following perturbations of ±0.3 mm (p < 0.05). The performances
of the FMM  algorithm are thus degraded by such perturbations
of the initialization. Nevertheless, the mean point-to-point dis-
tances, Hausdorff distances as well as errors of area remained
acceptable (all performance metrics were, on average, below
13.1%).

3.3. Plaque areas

On average, the errors of plaque area between manually and
automated segmentations were 14.6 ± 12.3% for all sequences (for
a total of 3207 frames). This error was equivalent for dataset 1
(14.0 ± 8.3%) and dataset 2 (15.1 ± 14.9%, p > 0.05). The errors of
plaque area normalized by the EEM surfaces for all sequences were
5.4 ± 2.2%. This error was  equivalent for dataset 1 (5.5 ± 1.7%) and
dataset 2 (5.4 ± 2.6%).

3.4. Frames that presented artifacts

Out of the 1388 dataset 1 images that were manually segmented
by the technicians, there were 209 of them that presented a dif-
ficulty in the manual segmentation due to one or more artifacts
(see Table 1). To compare the Hausdorff and mean point-to-point
distances between the segmented contours and the validation con-
tours for the lumen and the EEM, as well as the difference of areas
corresponding to each category, we  performed multiple compar-
isons with respect to the case where no comment was written using
an analysis of variance (Kruskal–Wallis one-way analysis of vari-
ance on ranks with Dunn’s method for multiple comparisons). The
comparisons are presented in Table 4. As shown, none of the arti-
facts in the images (c.f. Table 1) affected the performance metrics
for the lumen or for the EEM, when compared with category 1
(i.e., no comment on artifacts). This finding suggests the stability
of the FMM  segmentation under such artifacts. Note, however, that
some of the categories had few samples. So, the algorithm would
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Table  3
Comparison of the mean point-to-point (MD) and Hausdorff (HD) distances, and of the errors of areas (EA) for the lumen-intima and EEM-adventitia boundaries (n = 35
sequences from the 1388 frames of dataset 1) using random perturbations of the four longitudinal views that were used for the initialization. The random perturbations
were  within ±0.05, ±0.1, ±0.2 and ±0.3 mm (in the radial direction). The reference group corresponds to no random perturbation (i.e., 0 mm,  thus being the initial manual
initialization).

Reference Perturbation Perturbation Perturbation Perturbation
0  mm ±0.05 mm ±0.1 mm ±0.2 mm ±0.3 mm

MD (mm)  Lumen 0.10 ± 0.03 0.10 ± 0.02 0.10 ± 0.02 0.11 ± 0.02* 0.14 ± 0.03*

(3.3 ± 0.7%) (3.3 ± 0.7%) (3.4 ± 0.7%) (3.8 ± 0.7%)* (4.5 ± 0.8%)*

EEM 0.10 ± 0.03 0.10 ± 0.03 0.11 ± 0.03 0.12 ± 0.03* 0.15 ± 0.03*

(2.4 ± 0.6%) (2.4 ± 0.6%) (2.5 ± 0.6%) (2.9 ± 0.6%)* (3.5 ± 0.6%)*

HD (mm) Lumen 0.31 ± 0.07 0.32 ± 0.07 0.32 ± 0.07 0.35 ± 0.07 0.40 ± 0.08*

(10.2 ± 1.8%) (10.3 ± 1.8%) (10.6 ± 1.7%) (11.4 ± 1.7%)* (13.1 ± 2.1%)*

EEM 0.32 ± 0.09 0.32 ± 0.09 0.33 ± 0.09 0.36 ± 0.08 0.41 ± 0.08*

(7.6 ± 2.0%) (7.7 ± 2.0%) (7.8 ± 2.0%) (8.6 ± 1.9%) (9.8 ± 1.9%)*

EA (mm2) Lumen 0.43 ± 0.17 0.44 ± 0.17 0.47 ± 0.16 0.56 ± 0.22* 0.71 ± 0.21*

(6.9 ± 2.6%) (7.1 ± 2.7%) (7.4 ± 2.5%) (8.8 ± 2.8%)* (11.1 ± 2.7%)*

EEM 0.58 ± 0.31 0.60 ± 0.31 0.63 ± 0.30 0.76 ± 0.34 0.92 ± 0.35*

(4.3 ± 1.8%) (4.4 ± 1.8%) (4.7 ± 1.7%) (5.7 ± 1.8%)* (7.1 ± 1.6%)*

* p < 0.05.

Table 4
Comparison of the mean point-to-point (MD) and Hausdorff (HD) distances, and of the errors of areas (EA) for the lumen-intima and EEM-adventitia boundaries (dataset 1
with  1388 images) within the eight categories of comments written by the technicians (Table 1). The reference group (category 1) corresponds to no comment.

MD  (mm) HD  (mm)  EA (mm2)

Lumen EEM Lumen EEM Lumen EEM

Cat. 1 (n = 1179) 0.097 ± 0.045 0.102 ± 0.047 0.304 ± 0.137 0.326 ± 0.153 0.424 ± 0.393 0.590 ± 0.550
Cat.  2 (n = 20) 0.105 ± 0.039 0.087 ± 0.026 0.338 ± 0.122 0.267 ± 0.083 0.257 ± 0.186 0.432 ± 0.350
Cat.  3 (n = 91) 0.091 ± 0.034 0.120 ± 0.048 0.299 ± 0.115 0.366 ± 0.135 0.366 ± 0.303 0.580 ± 0.459
Cat.  4 (n = 72) 0.079 ± 0.025 0.104 ± 0.039 0.286 ± 0.105 0.304 ± 0.098 0.480 ± 0.291 0.976 ± 0.659
Cat.  5 (n = 8) 0.131 ± 0.060 0.079 ± 0.017 0.374 ± 0.163 0.198 ± 0.047 0.221 ± 0.194 0.434 ± 0.407
Cat.  6 (n = 10) 0.105 ± 0.049 0.089 ± 0.032 0.330 ± 0.116 0.282 ± 0.081 0.346 ± 0.299 0.546 ± 0.347
Cat.  7 (n = 4) 0.275 ± 0.058 0.171 ± 0.100 0.728 ± 0.123 0.491 ± 0.264 0.907 ± 0.894 0.993 ± 1.214
Cat.  8 (n = 4) 0.078 ± 0.009 0.131 ± 0.036 0.260 ± 0.052 0.536 ± 0.155 0.226 ± 0.134 0.697 ± 0.384

have to be tested on a large number of images with such artifacts
and compared with manual segmentations in order to confirm its
robustness. The multiple comparisons also showed the following
findings: (1) the mean point-to-point distance for the lumen with
a stent (category 4) is significantly better than in the presence of
branching and calcium (category 7); (2) the Hausdorff distance for

the EEM is significantly better in the presence of calcium and dis-
section (category 5) than with a contrasting agent (category 8); (3)
the error of area for the EEM is significantly better in the presence
of dissection (category 2) than with a stent (category 4). Aside from
these exceptions, there were no significant differences between the
various categories for all metrics.

Table 5
Summary of the errors of area (EA) and of the mean point-to-point (MD) and Hausdorff (HD) distances for the lumen and the EEM according to the literature before 2006. The
parameter n is the number of IVUS images used for the validation. The type of algorithm is indicated: fully automatic (F), semi-automatic (S) and/or interactive (I) (possibly
only  for the initialization – init.).

Type Lumen EEM

EA (mm2 or %) MD (mm or %) HD (mm) n EA (mm2 or %) MD (mm or %) HD (mm) n

Sonka et al. 1995 [41]a I (init.) 1.13 mm2 0.07 ± 0.02 mm 38 1.33 0.09 ± 0.03 mm 38
Li  1997 [37] S-I −0.21 ± 0.342 mm2b 127 0.27 ± 0.492 mm2b 127

S-I  −0.80 ± 7.283%c 4000 0.17 ± 4.443%c 4000
Mojsilovic  et al. 1997 [42] F 0.19 ± 0.18 mm2 29 0.68 ± 0.39 mm2 29
Zhang  et al. 1998 [43] I 0.13 ± 0.05 mm 30 0.17 ± 0.08 mm 30
Haas  et al. 2000 [44] F −1.9 ± 10.5% 29 −2.9 ± 7.6% 29
Klingensmith  et al. 2000 [45] S 0.60 (WI)d 0.65 (WI)d 185 0.81 (WI)d 0.68 (WI)d 185
Kovalski  et al. 2000 [35] F 15.2 ± 17.4% 44 6.5 ± 7.6% 44
Takagi  et al. 2000 [38] F −0.15 ± 0.84 mm2 193 −0.18 ± 1.36 mm2 78e

0.4 ± 14.4% 193 0.6 ± 9.7% 78e

Bovenkamp 2004 [39] F −0.14 ± 1.01 mm2 1067 0.13 ± 2.16 mm2 1067
Brusseau  et al. 2004 [2] F 0.70 ± 0.48 mm2 0.10 ± 0.03 mm 15

8.2  ± 5.4% 15
Plissiti  et al. 2004 [46] I (init.) 4.9%f 18 2.1%f 18
Present  study S 0.49 ± 0.18 mm2 0.11 ± 0.03 mm 0.33 ± 0.07 mm 3207 0.55 ± 0.28 mm2 0.10 ± 0.03 mm 0.31 ± 0.09 mm 3207

9.3  ± 6.0% 4.0 ± 1.4% 11.2 ± 2.3% 3207 4.5 ± 2.1% 2.4 ± 0.7% 7.6 ± 2.0% 3207

a The validation was  performed with in vitro IVUS images.
b Validation from the study by [47].
c Validation from the study by [40], variability between different segmentation users was  calculated and the results have not been compared with manually traced contours.
d The Williams index (WI) is the ratio of the average observer-observer variability to the average computer-observer variability [45].
e Images used for the validation of a total of 270.
f Percentage of volume error for whole sequences.
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Table  6
Summary of the errors of area (EA) and of the mean point-to-point (MD) and Hausdorff (HD) distances for the lumen and the EEM according to the literature of the past 7
years.  The parameter n is the number of IVUS images used for the validation. The type of algorithm is indicated: fully automatic (F), semi-automatic (S) and/or interactive (I)
(possibly only for the initialization – init.).

Type Lumen EEM

EA (mm2 or %) MD (mm or %) HD (mm) n EA (mm2 or %) MD (mm or %) HD (mm) n

Gil et al. 2006 [48] F 8.60 ± 3.34% 0.23 ± 0.07 mm 540
Whale  et al. 2006 [3] F 0.180 ± 0.027 mm 3288 0.200 ± 0.069 mm 3288
Giannoglou  et al. 2007 [49] F 0.70 ± 1.34 mm2 50 0.17 ± 2.29 mm2 50
Sanz-Requena  et al. S 11.095%a 408 4.985%a 408
2007  [4] I 10.956%b 408 7.276%b 408
Taki  et al. 2008 [9] F 6.27 ± 1.73 mm2 0.20 ± 0.15mm 0.71 ± 0.25 mm 60 5.02 ± 3.79 mm2 0.21 ± 0.05 mm 0.45 ± 0.31 mm 60
Unal  et al. 2008 [5] F 0.60 ± 0.99 mm2 0.08 ± 0.10 mm 0.44 ± 0.76 mm 1272 0.49 ± 0.76 mm2 0.07 ± 0.08 mm 0.84 ± 1.74 mm 1272

0.65  ± 1.27 mmc 647 0.98 ± 1.78 mmc 647
Papadogiorgaki  et al. 2008 [12] F 0.17 ± 1.34 mm2d 320 0.03 ± 1.53 mm2d 320
Downe  et al. 2008 [10] I 2.709 mm2 0.117 mma 15e 2.726 mm2 0.097 mma 15e

Ciompi et al. 2009 [6] F 0.08 ± 0.24 mm2 10
Bovenkamp  et al. 2009 [11] S-I 0.20 ± 0.69 mm2a 1067 −0.37 ± 0.55 mm2a 1067
Katouzian  et al. 2010 [13] F 86–88% (TP) 205
Moraes  et al. 2011 [14] F 10.7 ± 11.7% (FP) 1300 9.1 ± 17% (FP) 1300

7.3  ± 7.5% (FN) 8.1 ± 6.7% (FN)
Ciompi  et al. 2012 [16] F 0.594 mm2, 10.1% 0.211 mm 0.528 mm 522
Mendizabal-Ruiz  et al. 2013 [15] F 13.4 ± 3.8% (Obs. 1) 585

14.6  ± 5.3% (Obs. 2)
Present  study S 0.49 ± 0.18 mm2 0.11 ± 0.03 mm 0.33 ± 0.07 mm 3207 0.55 ± 0.28 mm2 0.10 ± 0.03 mm 0.31 ± 0.09 mm 3207

9.3  ± 6.0% 4.0 ± 1.4% 11.2 ± 2.3% 3207 4.5 ± 2.1% 2.4 ± 0.7% 7.6 ± 2.0% 3207

a Interactive version of the segmentation.
b Version with initialization of the segmentation.
c Segmentation with feature detection for the more challenging second test dataset.
d Texture and low-pass filtering version of the algorithm.
e Number of patients.

3.5. Examples of segmentations

A few examples of segmentations are presented in Figs. 4–6.
In these 2D examples taken from each sequence considered, full
line contours correspond to the algorithmic FMM  segmentations,
whereas dashed lines represent the “gold standard” manual seg-
mentations of the lumen-intima and EEM-adventitia boundaries.
Results from dataset 1 are presented in Fig. 4 followed by examples
of dataset 2 results in Fig. 5. In Fig. 6, typical segmentations from
dataset 1 are presented for different categories of artifacts noted by
the expert technicians while doing the manual segmentation (c.f.
Table 1).

4. Discussion

As can be seen from Tables 5 and 6, our study is the most impor-
tant of the literature with [3] as far as the number of images used
for the comparison of algorithmic and manual segmentations is
concerned (n = 3207).3 Our validation came from sequences
acquired on 35 patients, which allowed insuring a good statistical
sampling since datasets 1 and 2 consisted of 3207 regularly spaced
frames from an original database of 82,848 images. We  believe
that this reduced the chance of having too many similar frames in
the validation datasets (since adjacent frames from an IVUS pull-
back are likely to present similarities). Besides, it could be noticed
that our results are based on manually segmented images that
included problematic situations as the presence of a stent, calcium
inclusions within the atherosclerotic plaque, lateral coronary
branches, catheter frictions within the narrowed vessel lumen,
injection of a contrast agent, and artery dissections. Note that the

3 The study [40] used by [37] was realized with 4000 images. However, the
reported results correspond to the variability of the algorithm under different users.
These results do not correspond to a comparison with manually traced contours by
expert technicians.

proportion of frames where the lumen-intima and EEM-adventitia
interfaces could be detected by the IVUS core laboratory experts
was similar for both “iLab” and “Galaxy II” databases. Indeed,
77.9% of the 1782 “iLab” images (one out of twenty images of all
sequences, n = 1388) and 77.1% of the 2360 “Galaxy II” selected
frames (n = 1819) could be segmented manually to constitute
datasets 1 and 2, respectively.

As mentioned in [50], direct comparisons between algorithms
can only be made from tests performed on a common database.
For that purpose, let us mention [51], written by the organizers
of the IVUS Segmentation Challenge that was  part of the 2011
Medical Image Computing and Computer Assisted Intervention
(MICCAI) workshop on Computing and Visualization for (Intra)
Vascular Imaging (CVII). In that paper, the proposed segmentation
method was  compared with other methods in the context of the
IVUS Segmentation Challenge, based on a common database. Nev-
ertheless, we  present an indirect comparison of IVUS segmentation
algorithms based on reported results. Note that in [51, Figs. 8 and
9], examples of segmentation results obtained from the methods
of the various participants versus the ground truth annotations are
given, some of them including artifacts.

One can also see from Tables 5 and 6 that errors of area reported
in the literature were within 0.19 and 1.13 mm2 [2,5,41,42,49]
(or 8.2% and 15.2% [2,4,14,35]) for the lumen, and within
0.17–1.33 mm2 [5,16,41,42,49] (or 5.0% and 9.1% [4,14,35,48]) for
the EEM. On average, we have obtained an error of area of 0.49 mm2

(or 9.3%) for the lumen and of 0.55 mm2 (or 4.5%) for the EEM.
Of these methods, [2,5,14,35,42,48,49] are fully automatic. Here,
we did not include the studies [6,11,12,37–39], because the differ-
ence of area was  not considered in absolute value, which decreased
significantly its mean value, as noted in Section 2.7.1. We did not
include the study [46] because volumetric measurements were pro-
vided. Note that the errors of area reported in [9,10] are much
higher (i.e., above 2.7 mm2). Our results are thus comparable to
other studies, despite the fact that our validation was performed
on more than 3000 images, without excluding any image for which
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Fig. 4. First row: two frames from a dataset 1 sequence for which the combined Hausdorff distances (HD) for the lumen and EEM boundaries were the lowest (good concordance
between algorithmic and manual segmentations). When averaged over the whole sequence, the HD for the lumen was 0.242 ± 0.068 mm,  whereas it was 0.179 ± 0.061 mm
for  the EEM. Second row: two frames of another dataset 1 sequence for which combined HD for the lumen and EEM boundaries were highest (poor concordance between
algorithmic and manual segmentations). When averaged over the whole sequence, the HD for the lumen was 0.588 ± 0.272 mm,  whereas it was 0.393 ± 0.166 mm for the
EEM.  FMM  segmentations (red full lines) compared with manual segmentations (green dashed lines). Frames with the best segmentation of each sequence (a) and (c). Frames
with  the worse segmentation of each sequence (b) and (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the
article.)

the lumen and the EEM could be both manually segmented with
certainty (even if artifacts were present). As also noted in these
tables, our results are comparable to the study of [4] that was vali-
dated with only 408 IVUS images.

As reported in Section 3.1, the mean point-to-point and Haus-
dorff distances were on average 0.10 and 0.31 mm (or 2.4% and
7.6%), in the case of the EEM. This is a very interesting result since
the EEM can be especially difficult to segment in the case of images
with stents, calcium nodules and coronary bifurcations. Note that
from Tables 5 and 6, the mean distance for the EEM varies between
0.07 and 0.23 mm [3,5,9,10,16,41,43,48] and the Hausdorff distance
between 0.45 and 0.98 mm [5,9,16]. Of these studies, [3,5,9,16,48]
presented fully automatic segmentation methods. We  excluded
[44] from that comparison since signed distances were considered
in that study, which decreases significantly the measure. Another
important challenge of our study was to validate the robustness of
the FMM  segmentation in the case of IVUS images acquired with
a 40 MHz  catheter. Indeed, our previous study [19] was performed
on femoral arteries using 20 MHz  IVUS catheters; that lower fre-
quency reduces considerably artifacts caused by blood speckle into
the lumen, which helps the segmentation task. Our mean point-
to-point and Hausdorff distances were 0.11 and 0.33 mm (or 4.0%

and 11.2%) for the lumen, which is very acceptable. As indicated in
Table 5, only the study [44] reported mean point-to-point distances
in percents.11 However, this study included only 29 IVUS images,
which is not representative of the clinical reality.

To assess whether the proposed segmentation method was sig-
nificantly better than the method of [19] (that was  developed for
femoral artery IVUS segmentation) in the context of IVUS coro-
nary imaging, the segmentations of the EEM and lumen boundaries
were performed on datasets 1 and 2 using the region-based speed
function of [19] with the same initialized boundaries. All measures
were significantly better with the proposed implementation (that
is based on gamma  distributions, the textural gradient, and with
weights between the region-based and gradient speed functions
automatically adjusted) than with the implementation based on
[19] (that is based on Rayleigh distributions, the PDF-region-based
speed function, and with fixed weights between the region-based
and gradient speed functions automatically adjusted); the p-values

11 Studies usually do not report Hausdorff distances, as far as we can tell; that
severe performance metric is not always advantageous to be shown. Acceptable
results were obtained in the present study, better than the ones reported in [5].
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Fig. 5. First row: two frames from a dataset 2 sequence for which the combined Hausdorff distances (HD) for the lumen and EEM boundaries were the lowest (good concordance
between algorithmic and manual segmentations). When averaged over the whole sequence, the HD for the lumen was  0.236 ± 0.113 mm,  whereas it was 0.212 ± 0.071 mm
for  the EEM. Second row: two frames of another dataset 2 sequence for which combined HD for the lumen and EEM boundaries were highest (poor concordance between
algorithmic and manual segmentations). When averaged over the whole sequence, the HD for the lumen was 0.617 ± 0.196 mm,  whereas it was 0.620 ± 0.250 mm for the
EEM.  FMM  segmentations (red full lines) compared with manual segmentations (green dashed lines). Frames with the best segmentation of each sequence (a) and (c). Frames
with  the worse segmentation of each sequence (b) and (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the
article.)

of paired t-tests were all less than 10−3. Note that the use of
Rayleigh distributions in [19] were based on the hypothesis of fully
developed speckle, which seemed valid for femoral IVUS imaging at
20 MHz. However, for the present study, it was preferable to adopt
the gamma distributions. This behavior of the method [19] can be
explained by the fact that at a higher frequency of 40 MHz, the
hypothesis of fully developed speckle may  not hold anymore since
the number density of scatterers is then smaller due to a smaller
resolution cell.

A further interesting comment can be made on our study. We
have presented the first comparison of segmentations performed
on “iLab” (dataset 1) versus “Galaxy II” (dataset 2) images. It is clear
that technological developments by “Boston Scientific” allowed the
acquisition of IVUS images of superior quality with their new plat-
form generation, namely the “iLab” platform. [52] did notice the
great variability in the texture of IVUS images acquired with the
“Galaxy II” platform. Despite that fact, as shown in Table 2, the per-
formance metrics were equivalent for “iLab” and “Galaxy” images
for the EEM segmentation, although not for the lumen contours.
The performance measures for the lumen were superior for “iLab”
images, but nevertheless the Hausdorff distances were equivalent
for both types of images. This can be explained by the fact that

our segmentation algorithm is based on region and contour fea-
tures of the IVUS images combining probability density functions
of the vessel wall components and intensity gradients of the image
gray levels. A better image quality (with a more uniform texture)
makes the definition of image components easier, and hence also
the segmentation.

Concerning the calibration of the parameters � and �
in Eqs. (1) and (2), such that E[1 + {(1/Nv)

∑
s∈vP(s ∈ m|As)} ×

{(1/Nw)
∑

s∈wP(s ∈ n|As)}/�] and E[1 +|∇ G� ∗ As|/�] are equal to
a same value c, we  have tested the segmentation algorithm
dataset 1 with an average value equal to c = 8 or c = 12, instead of
10. Then, Kruskal–Wallis one-way analysis of variance on ranks
yielded no statistically significant differences on the various per-
formance measures (in mm or mm2) mentioned in Section 2.7.1
between the three groups of segmentations (i.e., x, using c = 8,
10 or 12). Thus, the performance of the proposed segmentation
algorithm is robust to the choice of the average value c within
the range 8–12. These tests were performed on dataset 1 since
these images were acquired on a more recent platform than
dataset 2.

We  have compared the various dissimilarity measures (mean
point-to-point distance MD,  Hausdorff distance HD, error of
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Fig. 6. Typical images from dataset 1 that presented difficulties in the manual segmentation. Cat. 1: no difficulty in the manual segmentation (a), the Hausdorff distance (HD)
was  0.177 mm for the lumen, whereas it was 0.415 mm for the EEM. Cat. 2: dissection (b), the HD was 0.339 mm for the lumen, whereas it was 0.294 mm for the EEM. Cat.
4:  stent (c), the HD was  0.479 mm for the lumen, whereas it was  0.535 mm for the EEM. Cat. 5: calcium and dissection (d), the HD was 0.184 mm for the lumen, whereas it
was  0.182 mm for the EEM. Cat. 7: branching of the vessel and calcium (e), the HD was 0.563 mm for the lumen, whereas it was 0.541 mm for the EEM. Cat. 8: injection of a
contrast agent (f), the HD was 0.284 mm for the lumen, whereas it was  0.662 mm for the EEM. FMM  segmentations (red full lines) are compared with manual segmentations
(green  dashed lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

area EA) between the contours obtained from the random
perturbations of the manual initializations of the L-views and the
gold standard contours, on one hand, and these measures between
the algorithmic segmentations based on the random perturba-
tions and the same gold standards, on the other hand. For the
MD between the EEM contours, the algorithmic segmentations
improved significantly the random perturbations of the initial-
izations for 0.2, 0.3 mm;  for the EA, this was  true for random
perturbations of 0.3 mm.  For the MD  between the lumen contours,
the improvement of the algorithmic segmentations on the ran-
dom perturbations of the initializations was significantly better
for 0.1, 0.2 and 0.3 mm.  For the HD of the EEM and lumen con-
tours, the random perturbations of the manual initializations were
significantly better than the algorithmic segmentations based on
those perturbations of the initializations. The other measures pre-
sented no significant differences except for the EA in percentage
that was better for the initial contours. To illustrate further the
improvement of the algorithmic segmentations on the MD mea-
sure, Fig. 7 presents the difference between the MD  of the final
computerized results and the initial contours versus the MD of
the initial contours for the EEM and lumen boundaries, with or
without ±0.2 mm random perturbation of the manual initializa-
tions. From this figure, one can see the tendency of the algorithm

to have improved the initial contours when these were further
away from the gold-standards. Thus, the algorithm improved the
initial contours the more so when the initial contours were less
precise.

A last comment concerns the comparison between datasets 1
and 2 segmentations presented in Table 2, and the reproducibility
study reported in Table 3. In all cases, the performance metrics in
percentage were always better for the EEM than for the lumen.
This fact could be interpreted as meaning that the lumen was
more difficult to segment than the EEM. However, since the perfor-
mance metrics are relative (i.e., expressed in percent) and since the
diameter and the area of the lumen are always smaller than
those of the EEM (because of the anatomy of the artery), it was
expected to observe higher relative measures for the lumen. Indeed,
in absolute units, i.e., mm for distances and mm2 for areas, we
have obtained an equivalent performance for the two bound-
aries with dataset 1, based on a t-test (but for the Hausdorff
distances, the power of the test was below the desired power of
0, 800). On the other hand, for dataset 2, there was a significant
difference between the mean-point-to-point and Hausdorff dis-
tances of the lumen and EEM boundaries. Again, this result can be
explained by the lesser quality of the dataset 2 images compared to
dataset 1.
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Fig. 7. Top: scatter plots of the difference between mean point-to-point distances (MD) of the final computerized results and initial contours versus the MD of the initial
contours for the EEM and lumen boundaries, when the inital contours are the manual initializations. Bottom: corresponding scatter plots, when the initial contours are the
±0.2  mm random perturbations of the manual initializations. A negative value along the vertical axis indicates that the MD  measure is better for the computerized results
than  for the initial contours. Thus, the algorithm improved the initial contours the more so when the initial contours were less precise.

5. Conclusion

This study showed with success, for the EEM as well as for
the lumen, the good performance of the “fast-marching” algorithm
based on the proposed region and contours-based speed functions,
compared to other methods of the literature. Note that the PDFs
were estimated on each sequence based on the initial contours.
In this manner, the proposed method is adaptive to the appear-
ance of the tissues due to various artifacts. An interesting avenue
to pursue would be the development of a quantitative metric for
the quality assessment of the FMM  segmentations. According to Eq.
(3), each boundary was defined by a speed function that depends
on the contrast in PDF and intensity gradients of speckle inside
and outside that boundary. One may  calculate the mean speed
of the boundary once stabilized to assess the value of that con-
trast as good (i.e., reliable segmentation), average (i.e., probable
segmentation) and low (i.e., uncertain segmentation). With such
a quality assessment for each IVUS image of a given sequence,
one may  decide to analyze only reliable and probable segmen-
tations. This would allow analyzing, in clinical protocols, a much
higher number of frames than it is currently the case, with manual
segmentations.
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