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Abstract. The Horn–Schunck (HS) method, which amounts to the Jacobi iterative scheme in the interior of
the image, was one of the first optical flow algorithms. In this paper, we prove the convergence
of the HS method whenever the problem is well-posed. Our result is shown in the framework of
a generalization of the HS method in dimension n ≥ 1, with a broad definition of the discrete
Laplacian. In this context, the condition for the convergence is that the intensity gradients not all
be contained in the same hyperplane. Two other works ([A. Mitiche and A. Mansouri, IEEE Trans.
Image Process., 13 (2004), pp. 848–852] and [Y. Kameda, A. Imiya, and N. Ohnishi, A convergence
proof for the Horn-Schunck optical-flow computation scheme using neighborhood decomposition, in
Combinatorial Image Analysis, Springer, Berlin, 2008, pp. 262–273]) claimed to solve this problem
in the case n = 2, but it appears that both of these proofs are erroneous. Moreover, we explain why
some standard results about the convergence of the Jacobi method do not apply for the HS problem,
unless n = 1. It is also shown that the convergence of the HS scheme implies the convergence of the
Gauss–Seidel and successive overrelaxation schemes for the HS problem.

Key words. optical flow, Horn–Schunck algorithm, Jacobi iterations

AMS subject classifications. 68U10, 11D04, 05C50, 65F10, 65N22, 65F35

DOI. 10.1137/130904727

1. Introduction. Optical flow refers to the distribution of apparent movement of intensity
patterns in an image caused by the relative motion between an observer and the scene. The
Horn–Schunck (HS) method was one of the first optical flow algorithms used to determine a
displacement field from several successive images [10]. The original HS method is based on a
global approach and introduces a quadratic prior term of smoothness in the classical equation
of the optical flow. This algorithm is especially adapted to speckled or diffuse images like
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those encountered in several modalities where a displacement field without discontinuity or
significantly high gradients is expected [24, 16, 14]. Thus, the HS method and its derived
forms remain of high interest in some areas of motion imaging. Other complex and very
proficient estimators for optical flow, however, now exist in the context of natural scenes [2, 3]
to take into account discontinuities at object edges.

Based on a discretization of the differential operators appearing in the HS optical flow
formulation, the HS method results in a linear system that can be solved with direct or iterative
methods. In comparison to direct methods, the iterative solvers have the advantage of needing
lower computational data storage and to be easily programmable. It is well known that the
matrix involved in the HS linear system is symmetric positive definite, as a consequence of
the V-ellipticity of the HS functional [18]. This ensures, for example, the efficiency of the
direct Cholesky decomposition and of the iterative Gauss–Seidel or successive overrelaxation
(SOR) solvers. However, the positive definiteness does not permit one to conclude about the
method proposed in Horn and Schunck’s initial paper, which is an iterative 2 × 2 blockwise
solver [10] and corresponds to the Jacobi solver for the interior points of the image only. In
fact, it is shown in this work that the positive definiteness is implied by the convergence of
the HS scheme. The Gauss–Seidel and SOR solvers are known to converge at least twice as
fast as the Jacobi solver [4, Theorem 5.3-4]. These iterative solvers can be made parallelizable
using, for instance, a special red-black reordering of the unknowns in the linear system [6, 25].
The Jacobi iterative solver, however, has the advantage of being directly parallelizable since
it does not use values computed in the current iteration step [20, 21].

One known general result about the convergence of the Jacobi method concerns strictly
(block) diagonally dominant matrices, which is not the case here. Another result concerns
(block) irreducible and weakly dominant matrices, an assumption which is not satisfied for
images of dimension greater than 1 under the appropriate Neumann boundary conditions.
Whether the iterative method for the HS linear system with the Neumann boundary conditions
converges still remains unsolved. Indeed, the paper of Horn and Schunck did not include a
proof of convergence [10]. Two proofs of convergence have been published since then, in [17]
and [13], both for 2-dimensional images. However, as far as we can tell, these two proofs are
erroneous. There is also a short argument in [23, p. 249] based on diagonally dominant matrices
(without blocks), for the convergence of the pointwise Jacobi method, that is erroneous.

Under a general perspective, there are three main points in an optical flow algorithm:
(1) the formulation of the continuous energy (functional) to be minimized; (2) the discretiza-
tion scheme; and (3) the solver used to minimize the energy. The scope of this work is to
present a proof that the HS iterative solver (and hence the Gauss–Seidel and SOR solvers) con-
verges for the original quadratic HS functional under a generic discretization scheme adopted
in this paper.

In section 2, we state a generalization of the HS method in dimension n. In section 3, we
explain why the previous proofs are erroneous and cannot be fixed. In section 4, we define
some hypotheses about the discrete Laplacian, propose a necessary and sufficient condition for
the linear system of Horn and Schunck to be invertible, and state our convergence result. The
proof is presented in section 5. In section 6, we define a general way of calculating a discrete
Laplacian in dimension n. In section 7, we show that our general discrete Laplacian satis-
fies the hypotheses imposed to get the convergence result. In Appendix A, the HS iterativeD
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ON CONVERGENCE OF THE HORN–SCHUNCK METHOD 279

scheme is derived in detail from the discretization of the HS problem. In Appendix B, it is
explained why the coefficient matrix of the HS scheme is not strictly (block) diagonally dom-
inant matrices, nor (block) irreducible and weakly dominant matrices under the appropriate
Neumann boundary conditions for images of dimension greater than 1. A result is shown
in Appendix C that implies the convergence of the Gauss–Seidel and SOR iterative schemes
whenever the Jacobi method converges, under appropriate conditions. This result also implies
that the Gauss–Seidel and SOR methods converge for the HS problem, as a consequence of
the convergence of the HS iterative scheme. In Appendix D, details are given to explain why
the proofs of [17, 13] are erroneous.

2. Statement of the problem. The optical flow problem is usually applied to 2-
dimensional images of a moving scene [10]. Optical flow has also been used to analyze motion
in one, three, or four dimensions [22, 9, 5]. In this work, we investigate the convergence of
the HS optical flow problem in the generalized case of dimension n ≥ 1. We thus consider
an orthotope V ⊂ R

n, i.e., a parallelotope whose edges are all mutually perpendicular (a seg-
ment if n = 1, a rectangle if n = 2, or a cuboid if n = 3). In the optical flow problem,
each element of V generally corresponds to an intensity or brightness that varies over time.
Given the intensity field over two or more successive instants, the aim of the HS method is to
determine the corresponding displacement field. As we propose here a proof of convergence
in the context of n-dimensional arrays, we first state an n-dimensional generalization of the
HS method (for the classical 2-dimensional formulation, we refer the reader to [10]).

Let I denote the intensity field on V , It its derivative with respect to time t, ∇I its
gradient with respect to position, and u the displacement field. We start from the well-known
optical flow identity:

(2.1) ∇I · u+ It = 0,

which means that a given (apparently moving) point of V keeps its initial intensity during its
displacement. Then, a regularization method is employed to impose low spatial variations in
the displacement field. By definition, the HS method consists in minimizing the unconstrained
functional:

(2.2) J(u) =

∫
V
{(∇I · u+ It)

2 + μ ‖∇u‖2} dV,

where μ > 0 is a positive real number and ‖ · ‖, in the entire paper, represents the Euclidean
norm. The Euler–Lagrange equation corresponding to this minimization problem reads as
follows:

μ�u = (∇I · u+ It)∇I = [∇I∇IT ]u+ It∇I on V,(2.3)

∂u

∂n
= 0 on ∂V.(2.4)

Here, ∂
∂n is the differentiation operator in the direction of the normal n to the boundary

∂V , and the superscript T denotes transposition of matrices. The displacements without the
superscript T are considered to be column vectors (in R

n). Note that the Neumann boundary
conditions (2.4) arise naturally from the unconstrained minimization problem (2.2).D
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Now, we will discretize the expression of (2.3) on a lattice Λ covering the orthotope V .
The restriction of the intensity field on the lattice Λ can be viewed as a (discretized) image.
In what follows, we assume that there are N ≥ 2 elements in the lattice Λ. Then, a discretized
displacement field is of the form u = (ui)i∈Λ, where ui = (ui1, . . . , uin)

T denotes the displace-
ment vector at the point i. In the following, we will say that a displacement field u is uniform
if all the displacement vectors ui are identical. Now, (2.3) can be written for i ∈ Λ as

(2.5) μ�(u)i = [∇I∇IT ]i ui + It,i ∇Ii,

where It,i denotes the partial derivative of the intensity I with respect to t evaluated at the
point i. In (2.5), �(u)i is a discretized Laplacian that depends linearly on the vectors ui for
i ∈ Λ. Hence, the consideration of (2.5) for i ∈ Λ yields a linear system of nN equations and
nN unknowns, where N is the number of points in Λ. The discretization of the Laplacian
can classically be written as

(2.6) �(u)i = κ {M(u)i − ui},

where κ > 0 is a positive real number and M a linear transformation (on the vector space of
displacement fields) that returns for each point an average of the displacement field over its
neighbors:

(2.7) M(u)i =
∑
j∈Λ

λij uj,

where λij, for i, j ∈ Λ, are nonnegative real numbers. We will adopt in section 6 a general
expression of this operator. In the following, we denote for notational convenience

(2.8) α = μκ,

where μ is the regularization weight of (2.2), so that the coefficient α is a positive real number.
In order to solve the linear system (2.5), Horn and Schunck [10] proposed an iterative method
that is assumed to converge to the solution. Let P be the linear transformation (on the vector

space of displacement fields) defined by P (u)i = Pi ui for i ∈ Λ, where Pi = In− [∇I∇IT ]i
α+‖∇Ii‖2 and

In is the n × n identity matrix. Let d be the displacement field defined by di = − It,i∇Ii
α+‖∇Ii‖2

for i ∈ Λ. Then, the HS iterative scheme is expressed as follows:

(2.9) uk+1 = P M
(
uk

)
+ d.

See Appendix A for a derivation of (2.9). Also, it is shown in Appendix B that the HS iterative
scheme of (2.9) amounts to the Jacobi iterative scheme in the interior of the orthotope V , but
never at its boundary points. Moreover, in that appendix, we explain why standard results
(based on block diagonally dominant matrices) on the convergence of the Jacobi iterative
scheme do not apply in this context, due to the natural Neumann boundary conditions (2.4).
We also explain why the short argument of [23, p. 249] based on diagonally dominant matrices
(without blocks) for the pointwise Jacobi method is erroneous for the HS problem.D
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In Appendix C, it is shown that the convergence of the Gauss–Seidel and SOR iterative
schemes is implied by the convergence of the Jacobi method, under appropriate conditions,
based on a result about symmetric positive definite matrices. In particular, this result implies
that the Gauss–Seidel and SOR methods converge for the HS problem, as a consequence of
the convergence of the HS iterative scheme.

It would be straightforward to prove the convergence of the Jacobi solver in the presence
of Dirichlet boundary conditions since the matrix would be block irreducible and weakly
block diagonally dominant in that case. However, we recall that the Neumann conditions are
intrinsically related to the minimization of the cost function (2.2).

3. Previous proofs. As stated in the introduction, the two existing proofs of convergence
of the Jacobi solver in the context of the HS problem ([17] and [13]) appear to be erroneous.
Let us now see in detail where the errors occurred and why we think that they cannot be
fixed.

In [17], the cornerstone of the proof of convergence of the Jacobi method for solving the
HS linear system relies on [17, eq. (16)], which states that the function defined by the matrix
“P” of [17, eq. (9)] (not to be confused with the linear transformation P of (2.9) of the present
paper) is contracting for the norm defined by [17, eq. (10)], for any image. However, it appears
that the only case for which this can be true is if the image is uniform, as explained in detail
in Appendix D.

In [13, eq. (20)], we notice that no condition is given for the convergence of the HS
iterations. However, in view of Theorem 4.1 below, that assertion is false (a condition on the
image gradients is needed to make the HS problem well-posed). Thus, the proof in [13] must
be erroneous. In Appendix D, we give further details on intermediate statements that are
false in [13].

Finally, in [23, p. 249], the special case of the HS problem amounts to Ψ′(s2) = 1 (see also
[23, p. 247, second column]). In that case, the iterations of [23, eqs. (14) and (15)] amount
to the Jacobi iterative scheme for the system (2.5), but without considering n × n blocks.
It is asserted that “If the discrete image gradient does not vanish at one point, the system
matrix of these equations is irreducibly diagonally dominant. This guarantees the existence
of a unique solution of the linear system and global convergence of the Jacobi iterations [26]”.
But, as shown in Appendix B, the coefficient matrix of the system is not even diagonally
dominant, except in a special case. Thus, that argument is also erroneous.

4. Statement of the main result. First, the operator M of (2.6) and (2.9) comes from
the Laplacian discretization and returns, for each point, an average of the displacement field
over its neighbors as in (2.7). We will have to define several hypotheses about M . In what
follows, we will assume the following:
(H1) For all points i and j of Λ, λij = λji.
(H2) At every point i of Λ,

∑
j∈Λ λij = 1.

Intuitively, (H1) comes from the isotropy property of the smooth Laplacian, and (H2) is nec-
essary in order to have a null Laplacian when the displacement field is uniform. As we will see
in section 7, these hypotheses are verified with the general discretization scheme of section 6.
In order to state the last hypothesis, we have to define the graphG by its set of vertices V (G) =
Λ and its set of edges E(G) = {(i, j) ∈ Λ2 : λij �= 0}. If (i, j) ∈ E(G), we write i ∼G j.D
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We assume that the lattice Λ is of the form {(i1, i2, . . . , in) : i� is an integer ranging from 0
to N� − 1 for 1 ≤ � ≤ n}, where N� ≥ 1 for 1 ≤ � ≤ n. Thus, the number of points in Λ is
equal to N =

∏n
�=1N�. From (H1), this graph is undirected (i.e., i ∼G j if j ∼G i). Let us

now recall that an undirected graph G is connected if, for any two vertices i and j of G, there
exists a path from i to j in G. We can now state the last hypothesis:
(H3) The graph G is connected.

We will see in section 7 that (H3) is also true with the general discretization scheme of
section 6. Actually, this is an immediate consequence of the fact that the closest neighbors
of a point are taken into account in the average calculation at this point. In the following,
we will call rank of (∇Ii) the dimension of the subspace of Rn that is spanned by the vectors
∇Ii, i ∈ Λ.

Theorem 4.1. Under hypotheses (H1), (H2), and (H3), the following hold:
• If the rank of (∇Ii) is n, the linear system (2.5) has a unique solution and the iterations

(2.9) converge to this solution.
• If the rank of (∇Ii) is not n, the problem is ill-posed; i.e., the linear system (2.5) does

not have a unique solution.
Let us notice that the rank of (∇Ii) is different from n if and only if the intensity gradients

are all contained in the same hyperplane. In that case, the image is invariant along the
direction orthogonal to this hyperplane. The fact that this condition makes the problem ill-
posed is not surprising, as it is clear that a displacement along this particular direction cannot
be detected by studying the variations of intensity over time.

5. Proof of the main result. The linear transformation M and the coefficients λij are
defined in (2.7). The linear transformation P and the matrix Pi are defined in section 2 before

(2.9). We define the norm of a displacement field u by ‖u‖ =
(∑

i∈Λ ‖ui‖2
)1/2

, where ‖ui‖ is
the Euclidean norm on R

n.
Lemma 5.1. Under hypotheses (H1) and (H2), the following hold:
• For every displacement field u, ‖M(u)‖ ≤ ‖u‖.
• If equality holds, then for any two points i ∼G j, we have M(u)i = uj.

Proof. For each point i, we get by hypotheses (H1) and (H2) that
∑

j∈Λ λij =
∑

j∈Λ λji =
1. Then, for each direction �, Jensen’s inequality [12] applied to the strictly convex function
x → x2 yields

(5.1)
[∑
j∈Λ

λij uj�

]2
≤

∑
j∈Λ

λij u
2
j�.

We can now write

‖M(u)‖2 =

n∑
�=1

∑
i∈Λ

[∑
j∈Λ

λij uj�

]2

≤
n∑

�=1

∑
i∈Λ

∑
j∈Λ

λij u
2
j� =

n∑
�=1

∑
j∈Λ

∑
i∈Λ

λij u
2
j�

=

n∑
�=1

∑
j∈Λ

u2j�

[∑
i∈Λ

λij

]
=

n∑
�=1

∑
j∈Λ

u2j� = ‖u‖2.(5.2)
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Moreover, let us suppose that ‖M(u)‖ = ‖u‖. Then, for each point i and each �, the equality
in (5.1) is reached. Thus, the coordinates uj� associated with the nonvanishing coefficients
λij are all identical (cf. [8]). This means that uj = uj′ for any two points i ∼G j and i ∼G j′.
Therefore, it follows that M(u)i =

∑
j′∈Λ λij′uj′ = (

∑
j′∈Λ λij′)uj = uj , where j is any point

such that i ∼G j.
Lemma 5.2. For every displacement field u, we have ‖P (u)‖ ≤ ‖u‖. The equality holds if

and only if ui is orthogonal to the gradient ∇Ii at any point i of Λ. In that case, P (u)i = ui

at any point i of Λ.
Proof. Let u be a displacement field and i a point of the image. There exist a vector �a

of Rn and a real number b such that ∇ITi �a = 0 and ui = �a + b∇Ii. From the expression of

Pi, we find Pi �a = �a (because ∇ITi �a = 0) and Pi∇Ii =
(
1 − ‖∇Ii‖2

α+‖∇Ii‖2
)
∇Ii. Thus, Pi ui =

�a + b∇Ii
(
1 − ‖∇Ii‖2

α+‖∇Ii‖2
)
. We notice here that ‖ui‖2 = ‖�a‖2 + b2 ‖∇Ii‖2 and ‖Pi ui‖2 =

‖�a‖2 +
(
1− ‖∇Ii‖2

α+‖∇Ii‖2
)2

b2 ‖∇Ii‖2. So, we get that ‖Pi ui‖ ≤ ‖ui‖, and that the equality holds

if and only if b = 0 or ∇Ii = �0 (i.e., ui = �a), which means if and only if ∇ITi ui = 0. Finally,
‖P (u)‖2 =

∑
i∈Λ ‖Pi ui‖2 ≤

∑
i∈Λ ‖ui‖2 = ‖u‖2, with equality if and only if ∇ITi ui = 0 at

every point i of Λ. In that case, it is clear that Pi ui = ui at every point i of Λ.
Let us recall that the HS iterations read as uk+1 = P M(uk) + d. We can now show

the convergence of these iterations, under our condition on the intensity field. From Lemmas
5.1 and 5.2, we find that ‖PM(u)‖ ≤ ‖u‖ for any displacement field u. A feature of the
following proof consists in showing that ||(PM)N (u)|| < ‖u‖ for any nonzero displacement
field u, where N is the number of points in Λ.

Proof of Theorem 4.1. We still suppose that (H1), (H2), and (H3) are verified. Let
us assume that the rank of (∇Ii) is n. Let us assume, by contradiction, that there is a
displacement field u �= 0 such that ‖(PM)N (u)‖ = ‖u‖. So, there is a point i∗ ∈ Λ such that
ui∗ �= �0. Let i be any point of Λ. We claim that there is a path from i to i∗ in the graph G
of length 1 ≤ L ≤ N (N is the number of elements in G). Indeed, if i �= i∗, then a minimal
path will do; if i = i∗, then the path i0 = i ∼G i1 ∼G i∗ = i will do, where i1 is any neighbor
of i in the graph G. Let this path be of the form i0 = i ∼G i1 ∼G i2 ∼G · · · ∼ iL = i∗.
From Lemmas 5.1 and 5.2, the assumption ‖(PM)N (u)‖ = ‖u‖ implies that ‖(PM)L(u)‖ =
‖M(PM)L−1(u)‖ = ‖(PM)L−1(u)‖ = · · · = ‖u‖. Moreover, again from Lemmas 5.1 and 5.2,
we have (PM)L(u)i0 = M(PM)L−1(u)i0 = (PM)L−1(u)i1 = · · · = uiL . Also, from Lemma
5.2, we have that M(PM)L−1(u)i0 is orthogonal to ∇Ii0 and thus that uiL = ui∗ is orthogonal
to∇Ii0 = ∇Ii. Since the point i is arbitrary, we deduce that the space spanned by the gradient
vectors ∇Ii is orthogonal to the nonzero vector ui∗ , which is a contradiction. Thus, under the
condition of convergence stated in the theorem and for u �= 0, we have ‖(P M)N (u)‖ < ‖u‖.

We now consider the function u → ‖(P M)N (u)‖ defined on the hypersphere {u | ‖u‖ = 1}.
This function is continuous and defined on a compact set, i.e., a bounded closed subset of
the vector space of displacement fields. Therefore, the function is bounded and reaches its
maximal value. This ensures that there exists β < 1 such that for every displacement field u,
‖(P M)N (u)‖ ≤ β ‖u‖. Since, moreover, ‖PM(u)‖ ≤ ‖u‖, the conclusion about the existence
of a solution for the linear system (2.5), its uniqueness, and the convergence of the iterations
(2.9) to this solution is then a classical result (see [19, p. 101], for example).
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We now suppose that the rank of (∇Ii) is less than n. In this case, the intensity gradients
are all contained in the same hyperplane. Let us consider a displacement field u∗ that is
uniform, different from zero, and orthogonal to this hyperplane. Because of hypothesis (H2),
which imposes

∑
j∈Λ λij = 1 at each point i, and because u∗ is uniform, we get M(u∗) = u∗.

Moreover, because ∇ITi u∗
i = 0 at each point i, Lemma 5.2 says that P (u∗) = u∗. Thus,

P M(u∗) = u∗. This shows that the linear system u = P M(u) + d (equivalent to the linear
system (2.5)) has a nonzero solution when d = 0, so that the coefficient matrix of the linear
system (2.5) is not invertible.

6. The discrete Laplacian in dimension n.

6.1. Description of a general scheme. Recall that the lattice Λ is assumed to be of
the form {(i1, i2, . . . , in) : i� is an integer ranging from 0 to N� − 1 for 1 ≤ � ≤ n}, where
N� ≥ 1 for 1 ≤ � ≤ n. The lattice Λ is viewed as a subset of the Cartesian product Z

�.
In the following, the norms L1 and L∞ are denoted by ‖(i1, i2, . . . , in)‖L1 =

∑n
�=1 |i�| and

‖(i1, i2, . . . , in)‖L∞ = max1≤�≤n |i�|. We will now define a general way of calculating a discrete
Laplacian in dimension n, based on [15]. As proposed in [15], we consider the n-dimensional
finite-difference stencil Si around a point i, consisting of the 3n − 1 points k ∈ Z

� that verify

‖i − k‖L∞ = 1. Then, we divide these stencil points into the sets S
(r)
i (1 ≤ r ≤ n) of points

k ∈ Z
� that verify ‖i−k‖L1 = r. As explained in [15], it turns out that for each r in {1, . . . , n},

a discretization of the Laplacian can be constructed from the Taylor expansions of the points

of S
(r)
i about the point i. The remaining part of this section concerns only interior points of

the lattice Λ; the boundary cases are discussed in section 6.2. So, if i is not a boundary point,
the discretization of the Laplacian is given in [15, formula (2.2)]:

(6.1) �(r)(u)i = κr
∑

k∈S(r)
i

(uk − ui),

where κr = 2n

r Card(S
(r)
i )

. Based on the definition of S
(r)
i , it is clear that Card(S

(r)
i ) =

(n
r

)
2r,

where
(
n
r

)
= n!

r!(n−r)! . Thus, κr is independent of the point i. Then, a general way to calculate

a global discrete Laplacian at the point i is to make a weighted average of the Laplacians

obtained for the different sets S
(r)
i . Such a discretization can be written as

(6.2) �(u)i =

n∑
r=1

wr �(r)(u)i,

where the weights wr ≥ 0 are nonnegative real numbers such that
∑n

r=1wr = 1. We also

denote κ =
∑n

r=1wr κr Card(S
(r)
i ), independent of i, and γr =

wr κr
κ , so that

(6.3) �(u)i = κ
{( n∑

r=1

∑
k∈S(r)

i

γr uk

)
− ui

}
.

We notice here that the coefficients γr are nonnegative and verify

(6.4)

n∑
r=1

∑
k∈S(r)

i

γr =

n∑
r=1

γr Card
(
S
(r)
i

)
=

n∑
r=1

wr κr
κ

Card
(
S
(r)
i

)
= 1.
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In the following, we will impose w1 �= 0. This is a natural hypothesis because it means that
�(1)(u)i, which is calculated from the closest neighbors of i, is taken into account in the
Laplacian calculation at i. Therefore, we have γ1 �= 0. Note that a simple way of calculating
a discrete Laplacian in dimension n is to set w1 = 1. The dimension independent Laplacian
given in [15] is obtained by setting wr =

(n−1
r−1

)
21−n. These coefficients are chosen so that

some properties of the smooth Laplacian are kept with the discrete Laplacian (see [15] for more
details). The scheme chosen by Horn and Schunck [10] in the 2-dimensional case, detailed
below, is obtained by setting w1 = w2 =

1
2 (which is the dimension independent Laplacian in

the case n = 2).

� � �f g h

� � �d i e

� � �a b c
Λ

Figure 1. The 2-dimensional finite-difference stencil for the Laplacian calculation at an interior point i of
a lattice Λ.

In Figure 1, as an example, the stencil Si is composed of the points {a, b, c, d, e, f, g, h}.
We have S

(1)
i = {b, d, e, g} and S

(2)
i = {a, c, f, h}. The scheme of Horn and Schunck [10] is

�(u)i = κ {1
6 (ub + ud + ue + ug) +

1
12 (ua + uc + uf + uh) − ui}, with κ = 3. Here, the

coefficient γ1 associated with S
(1)
i is 1

6 , and the coefficient γ2 associated with S
(2)
i is 1

12 .
Finally, from (2.4), the boundary conditions considered here are that the normal deriva-

tives vanish at the boundary of the image. In [10], Horn and Schunck explained how to deal
with these conditions: when a point outside the image is needed, the displacement of the
closest point inside the image is copied.

The description of the discretization scheme given above is sufficient for programming the
HS algorithm: just choose some coefficients wr, calculate the corresponding coefficients γr,
use (2.9) with M(u)i =

∑n
r=1

∑
k∈S(r)

i

γr uk (cf. (2.6) and (6.3)), and apply the boundary

conditions when necessary.

6.2. Determination of the weights in the average calculation. We will now give an
expression of the coefficients λij defined in (2.7), in order to verify hypotheses (H1), (H2), and
(H3) in the next section.

Let us give a rigorous definition of the boundary conditions. We denote Λ′ = {(k1, k2, . . . ,
kn) : −1 ≤ k� ≤ N�, 1 ≤ � ≤ n} and define the function f from Λ′ to Λ such that
f{(k1, k2, . . . , kn)} = (j1, j2, . . . , jn), where, for each � in {1, . . . , n}, the following hold:

• If 0 ≤ k� ≤ N� − 1, then j� = k�.
• If k� = −1, then j� = 0.
• If k� = N�, then j� = N� − 1.D
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Then, our discretization scheme can be written at each point i of Λ, even if i is a boundary
point:

(6.5) �(u)i = κ
{( n∑

r=1

∑
k∈S(r)

i

γr uf(k)

)
− ui

}
.

Now, given two points i and j of Λ and an integer r in {1, . . . , n}, we denote A
(r)
ij the set of

points defined by

(6.6) A
(r)
ij = {k ∈ S

(r)
i ⊂ Λ′ : f(k) = j}.

Then, for two points i and j of Λ, we set

(6.7) λij =

n∑
r=1

Card
(
A

(r)
ij

)
γr.

It is clear that at each point i of Λ and for every displacement field u

(6.8)
∑
j∈Λ

λij uj =

n∑
r=1

∑
k∈S(r)

i

γr uf(k).

Thus, from (6.5), our discretization scheme can be written as in (2.6) and (2.7): �(u)i =
κ {M(u)i − ui}, with M(u)i =

∑
j=∈Λ λij uj.

� � � �

� � � �f g h

� � � �d i e
Λ

Λ′
� � � �a b c

Figure 2. The 2-dimensional finite-difference stencil for the Laplacian calculation at a boundary (corner)
point i.

In Figure 2, as a complement to the example of Figure 1, the stencil Si of the boundary
point i (located at a corner of the lattice Λ) is composed of the points {a, b, c, d, e, f, g, h}.
As for Figure 1, we have S

(1)
i = {b, d, e, g} and S

(2)
i = {a, c, f, h}. Based on the definition of

(6.6), one obtains A
(1)
i,i = {b, d} and A

(2)
i,i = {a}; A(1)

i,e = {e} and A
(2)
i,e = {c}; A(1)

i,g = {g} and

A
(2)
i,g = {f}; A(1)

i,h = ∅ and A
(2)
i,h = {h}. The corresponding scheme of Horn and Schunck [10] is

�(u)i = κ {1
6 (2ui+ue+ug)+

1
12 (ui+ue+ug+uh)−ui} = κ { 1

12 (5ui+3ue+3ug+uh)−ui},
with κ = 3. Again, the coefficient γ1 associated with S

(1)
i is 1

6 , and the coefficient γ2 associated

with S
(2)
i is 1

12 . The case of a boundary point not located at the corner of Λ (such as the point
e in Figure 2) can be treated similarly.D
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7. Verification of the hypotheses. We now have to verify that the general n-dimensional
scheme described in section 6 fulfills the hypotheses of section 4:
(H1) For all points i and j of Λ, λij = λji.
(H2) At every point i of Λ,

∑
j=∈Λ λij = 1.

(H3) The graph G is connected.
Proposition 7.1. With the discretization scheme of section 6, (H1) is satisfied.
Proof. Let i and j be two points of Λ, and let r be an integer in {1, . . . , n}. As in section

6.2, we denote A
(r)
ij the set of points k belonging to S

(r)
i and satisfying f(k) = j. By definition,

a point k belongs to A
(r)
ij if and only if the following hold:

• ‖k − i‖L∞ = 1;
• ‖k − i‖L1 = r;
• f(k) = j.

Let us now define the function gij from N
n to N

n by gij(k) = k + i − j. We will show that

gij(A
(r)
ij ) ⊂ A

(r)
ji . We denote i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn). Let k = (k1, k2, . . . , kn)

be a point of A
(r)
ij , and let � be an integer in {1, . . . , n}.

• If k� = −1, then j� = 0 (because f(k) = j) and i� = 0 (because ‖k − i‖L∞ ≤ 1 and i
belongs to Λ), so that k� + i� − j� = −1.

• If k� = N�, similarly, j� = i� = N� − 1 and k� + i� − j� = N�.
• In the other cases, k� = j� (because f(k) = j), so that k� + i� − j� = i�.

First, from the definition of the function f , the three previous cases applied to each coordinate
l of {1, . . . , n} yield f

(
gij (k)

)
= f(k + i − j) = i. Moreover, in each of these three cases, it

is clear that |(k� + i� − j�)− j�| = |k� − i�| (either because j� = i� or because k� = j�). Thus,
from ‖k − i‖L∞ ≤ 1 and ‖k − i‖L1 = r, we obtain ‖gij(k)− j‖L∞ = 1 and ‖gij(k)− j‖L1 = r.

This permits us to conclude that gij(A
(r)
ij ) ⊂ A

(r)
ji .

Now, as gij is a translation, it is injective, so that Card(A
(r)
ij ) ≤ Card(A

(r)
ji ). Then, as we

did not impose any hypothesis about i and j, we can exchange them and write Card(A
(r)
ji ) ≤

Card(A
(r)
ij ), so that Card(A

(r)
ij ) = Card(A

(r)
ji ). Finally, (6.7) imposes that λij = λji, so that

(H1) is verified.
Proposition 7.2. With the discretization scheme of section 6, (H2) is satisfied.
Proof. Let i be a point of Λ. Equation (6.8) applied to a displacement field u that is

uniform and different from zero yields
∑n

r=1

∑
k∈S(r)

i

γr =
∑

j=∈Λ λij . Then, (6.4) imposes∑
j=∈Λ λij = 1, so that (H2) is verified.
Proposition 7.3. With the discretization scheme of section 6, (H3) is satisfied.
Proof. Let i be a point of the image lattice Λ. By hypothesis, we have that γ1 �= 0. So,

from (6.7), we have that for two close neighbors i and j of Λ, i.e., such that ‖i − j‖L1 = 1,

λij �= 0. Indeed, in that case, j belongs to A
(1)
ij , so that Card(A

(1)
ij ) �= 0. So, two close

neighbors are always linked in G, and the connectedness of G becomes obvious.
So, (H1), (H2), and (H3) are fulfilled with the discretization scheme of section 6, and we

are under the conditions of Theorem 4.1.

8. Conclusion. The proposed convergence result was shown using a general definition of
the discrete Laplacian. That definition includes the classical scheme of Horn and SchunckD
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in dimension 2 and a general scheme (see section 6) for n-dimensional Laplacians. In this
context, a necessary and sufficient condition for the problem to be well-posed (i.e., to have a
unique solution) is that the intensity gradients not all be contained in the same hyperplane.
Under that condition, the HS iterations converge to the solution. It was also shown that the
convergence of the HS iterative scheme implies the convergence of the Gauss–Seidel and SOR
solvers for the HS problem.

Appendix A. Here the details of the derivation of (2.9) in dimension n ≥ 1 are presented.
From (2.6) and (2.8), equation (2.5) is equivalent to

(A.1) (α In + [∇I∇IT ]i)ui − αM(u)i = −It,i∇Ii,

where In denotes the n× n identity matrix. Let us now notice that

(A.2) [∇I ∇IT ]2i = ∇Ii [∇IT ∇I]i∇ITi = ‖∇Ii‖2 [∇I∇IT ]i.

Thus,

(α In + [∇I ∇IT ]i) (α In + ‖∇Ii‖2In − [∇I∇IT ]i)

= α (α+ ‖∇Ii‖2)In.(A.3)

So,

(α In + [∇I ∇IT ]i)
−1 =

α In + ‖∇Ii‖2 In − [∇I∇IT ]i
α (α+ ‖∇Ii‖2)

= α−1 In − α−1 [∇I∇IT ]i
α+ ‖∇Ii‖2

.(A.4)

We also have

(A.5) [∇I∇IT ]i It,i∇Ii = It,i ∇Ii [∇IT ∇I]i = ‖∇Ii‖2 It,i∇Ii.

Now, from (A.4) and (A.5), the expression (A.1) can be rewritten as

(A.6) ui =

(
In − [∇I∇IT ]i

α+ ‖∇Ii‖2

)
M(u)i −

It,i ∇Ii
α+ ‖∇Ii‖2

.

This equality leads us to write the general HS iterations for an n-dimensional image:

(A.7) uk+1
i =

(
In − [∇I∇IT ]i

α+ ‖∇Ii‖2

)
M(uk)i −

It,i∇Ii
α+ ‖∇Ii‖2

.

With the notation introduced in section 2, we thus obtain (2.9).

Appendix B.We discuss the condition of block diagonally dominant matrices in the context
of the Jacobi solver for the HS problem. We refer the reader to [11, 1] for results on the
convergence of the Jacobi method for strictly diagonally dominant matrices or irreducible and
weakly diagonally dominant matrices, as well as [7] for the corresponding notions in the case
of block matrices.D
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First, using (2.5), (2.6), (2.7), and (2.8), we observe that (2.5) can be rewritten in the
form (see (A.1))

(B.1)
{
αui + [∇I ∇IT ]i ui

}
−

N∑
j=1

αλij uj = −It,i∇Ii.

Let Aij , for i, j ∈ Λ, be the n× n matrices defined by

Aij = −αλijIn, i �= j;(B.2)

Aii =
(
α In + [∇I ∇IT ]i

)
− αλiiIn.(B.3)

Then, the Jacobi iteration is expressed as

(B.4) uk+1
i = A−1

ii

(
−
∑
j 
=i

Aij u
k
j − It,i ∇Ii

)
.

Lemma B.1. Assume that 0 ≤ λii < 1. Then, the inverse matrix of the block Aii is equal

to 1
α(1−λii)

P ′
i , where P ′

i = In − [∇I∇IT ]i
α(1−λii)+‖∇Ii‖2 .

Proof. The lemma follows directly from (A.4) upon replacing α by α′ = α(1− λii).
So, let i be a point in the interior of Λ. From section 6, λii is then equal to 0. Then,

P ′
i = Pi and the Jacobi iteration for the point i of (B.4) reads as

uk+1
i = α−1Pi

(∑
j 
=i

αλiju
k
j − It,i∇Ii

)
(B.5)

= PiM(uk)i + di,(B.6)

which amounts to the HS iteration (2.9). On the other hand, since λii �= 0 if i is a boundary
point, the Jacobi iteration is never the HS iteration at boundary points.

Let ||P ′
i || be the norm of the matrix P ′

i defined by maxui 
=0
||P ′

iui||
||ui|| based on any norm

of Rn.
Lemma B.2. Let n ≥ 2, and consider a vector ui in R

n that is orthogonal to ∇Ii. Then,
P ′
i (ui) = ui. Therefore, ||P ′

i || ≥ 1 no matter the norm used on R
n.

Proof. This result follows directly from the proof of Lemma 5.2.
Lemma B.3. If n ≥ 2 and hypothesis (H2) is fulfilled, then ||A−1

ii ||−1 ≤
∑

j 
=i ||Aij ||, for
any i, no matter the norm used on R

n.
Proof. From the definition (B.2) of Aij , j �= i, we have

∑
j 
=i ||Aij || = α

∑
j 
=i λij . Then,

from Lemmas B.1 and B.2 and hypothesis (H2), we have ||A−1
ii ||−1 = α(1 − λii) ||P ′

i ||−1 ≤
α(1− λii) = α

∑
j 
=i λij .

From Lemma B.3, one concludes that the matrix A is never weakly (or strictly) block
diagonally dominant if n ≥ 2 under hypothesis (H2).1 On the other hand, if one uses the
Euclidean norm on R

n, one can easily show that ||A−1
ii ||−1 =

∑
j 
=i ||Aij ||, for any i, because

1Recall that a matrix A is weakly (or strictly) block diagonally dominant if ||A−1
ii ||−1 ≥ ∑

j �=i ||Aij || for any
i and if that inequality is strict for some (or any, respectively) i.D
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||P ′
i || = 1 for that norm. So, in that case, A is block diagonally dominant (i.e., ||A−1

ii ||−1 ≥∑
j 
=i ||Aij || for any i), but the inequality is never strict.
Next, we show that the matrix A defined by (B.2) and (B.3) is not diagonally dominant if

n ≥ 2 (here, the matrix is not viewed as a block matrix), except in very special cases. We first
treat the case n = 2. The absolute values of the diagonal elements of the matrix Aii are equal
to α(1−λii)+I2x,i and α(1−λii)+I2y,i, whereas the sum of the absolute values of the elements off
the diagonal for the corresponding rows of the matrix A are equal to

∑
j 
=i αλij+|Ix,i||Iy,i| and∑

j 
=i αλij + |Iy,i||Ix,i|. Using the identity
∑

j λij = 1, diagonal dominance is then equivalent

to I2x,i ≥ |Ix,i||Iy,i| and I2y,i ≥ |Iy,i||Ix,i|, which implies that |Ix,i| = |Iy,i| for each i such that
Ix,i and Iy,i are both different from 0. This is a very special case, so that the assertion that
the matrix A is diagonally dominant (in general) is false. If n > 2, the absolute values of
the diagonal elements of the matrix Aii are equal to α(1−λii)+I2x�,i

for 1 ≤ � ≤ n, whereas the
sum of the absolute values of the elements off the diagonal for the corresponding rows of the
matrix A are equal to

∑
j 
=i αλij + |Ix�,i|

∑
�′ 
=� |Ix�′ ,i| for 1 ≤ � ≤ n. Therefore, the diagonal

dominance of A implies that
∑n

�=1 |Ix�,i| ≥ (n− 1)
∑n

�=1 |Ix�,i|, which implies that ∇Ii = �0 for
each point i. So, again, the assertion that the matrix A is diagonally dominant (in general) is
false. Therefore, it appears that the short argument given in [23, p. 249] for the convergence
of the pointwise Jacobi method is erroneous.

Remarks.
1. The HS iterative scheme amounts to the Jacobi iterative scheme at the interior points

of the image, but never at its boundary points. But then we believe that it is usually
the HS scheme that is implemented rather than the Jacobi method. Indeed, it is easy
to implement (cf. the end of section 6.1), still fully parallelizable, and it is the original
method proposed by Horn and Schunck. The difference between the two schemes is
due to the Neumann boundary conditions (because then λii �= 0 at a boundary point).

2. The Neumann boundary conditions (2.4) that come from the unconstrained minimiza-
tion problem are very important. In particular, they imply that the Laplacian of a
uniform displacement field vanishes, i.e., Δ(u)i = κ(M(u)i−ui) = κ(

∑
j∈Λ λij −1)ui,

so that we must have
∑

j∈Λ λij = 1.
3. Due to this condition, known convergence results of the (block) Jacobi and Gauss–

Seidel methods do not apply, unless n = 1. The result [1, Theorem 1, (a)] assumes
that the matrix A is strictly diagonally dominant, which is not the case here. Also,
the result [1, Theorem 1, (b)] assumes that A is irreducible and weakly diagonally
dominant, which is not the case either. Note that one can generalize [1, Theorem 1]
using the notion of block diagonally dominant matrices [7]; namely, one can prove along
the lines of [1] that if A is strictly block diagonally dominant or if it is block irreducible
and weakly diagonally dominant, then both the block Jacobi and the Gauss–Seidel
solvers converge. But again, these hypotheses never hold for the HS problem, unless
n = 1.

4. On the other hand, if one wants to relax the boundary condition (2.4) and allow∑
j∈Λ λij < 1 at a boundary point, then one can show that A is weakly block diagonally

dominant for the Euclidean norm and block irreducible (based on the connectedness of
the graph G, i.e., hypothesis (H3)), so that both the block Jacobi and the Gauss–Seidel
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solvers then converge. This may happen if one considers a minimization problem with
constraints, for instance if the displacement is known at some points of the image.

Appendix C. In this appendix, we discuss the implications of Theorem 4.1 (i.e., the conver-
gence of the HS method) on the convergence of the Gauss–Seidel and SOR iterative schemes
through the property of positive definiteness of the coefficient matrix of the HS problem. We
also present a more general result that states conditions under which the convergence of the
Gauss–Seidel and SOR methods is implied by the convergence of the Jacobi method. In what
follows, ρ(A) denotes the spectral radius of a square matrix A.

Proposition C.1. Let B̃ and C̃ be real symmetric matrices of the same dimensions such
that B̃ is positive definite and ρ(B̃−1C̃) < 1. Then, the matrix B̃ + C̃ is symmetric positive
definite.

Proof. Since the matrix B̃ is symmetric positive definite, it can be expressed in the form
LL, where L is a symmetric invertible matrix. Indeed, one can write B̃ = RΨRT , where
RRT = I (I is the identity matrix) and Ψ is a diagonal positive definite matrix; thus, B̃ = LL,
where L = RΨ1/2RT . Then, A = B̃ + C̃ = L(I + L−1C̃L−1)L. Since L is symmetric and
invertible, then A is positive definite if and only if the symmetric matrix A′ = I + L−1C̃L−1

is positive definite. Now, one has that ρ(L−1C̃L−1) = ρ(L−1L−1C̃L−1L) = ρ(B̃−1C̃) < 1.
Therefore, the real symmetric matrix L−1C̃L−1 can be written as QTΛQ, where QTQ = I and
Λ is a diagonal matrix such that ρ(Λ) = ρ(L−1C̃L−1) < 1. It follows that A′ = QT (I + Λ)Q,
where I +Λ is a diagonal positive definite matrix (because any eigenvalue λ of Λ is such that
|λ| < 1). Thus, A′ is a symmetric positive definite matrix, and so is A.

Corollary C.2. Let Ax = b be a linear system, where A is a real symmetric matrix. Let A
be written in the form D−B−C, where D, B, and C are block diagonal, block upper triangular,
and block lower triangular matrices, respectively. Assume that D is positive definite. Then,
the convergence of the Jacobi iterative scheme xk+1 = D−1((B + C)xk+1 + b) implies the
convergence of the Gauss–Seidel and SOR iterative schemes. In fact, the matrix A is positive
definite under the assumptions.

Proof. Let B̃ = D and C̃ = −B − C. The convergence of the Jacobi iterative scheme
is equivalent to ρ(D−1(B + C)) < 1. Thus, from Proposition C.1, the matrix A is positive
definite. Henceforth, the Gauss–Seidel and SOR methods converge; see, for instance, [4,
Theorem 5.3-2].

Corollary C.3. Under hypotheses (H1), (H2), and (H3), assume that the rank of (∇Ii) is n.
Then, the coefficient matrix A of (B.1), with blocks defined by (B.2) and (B.3), is symmetric
positive definite. In particular, the Gauss–Seidel and SOR iterative schemes converge under
these conditions.

Proof. Let B̃ = αP−1 and C̃ = −αM , where P and M are as in (2.9). Then, B̃ is the
block diagonal matrix with diagonal matrix entries A′

ii = α In + [∇I∇IT ]i, as follows from
Appendix A. Moreover, the eigenvalues of A′

ii are α with multiplicity n − 1 and α + ||∇Ii||2
with multiplicity 1. Thus, the symmetric matrix B̃ is positive definite. Also, Theorem 4.1
implies that ρ(B̃−1C̃) = ρ(PM) < 1. Finally, A = αP−1 − αM = B̃ + C̃, using Appendix A.
The statement on the positive definiteness of the matrix A now follows from Proposition C.1
since M is symmetric. Hence, the Gauss–Seidel and SOR iterative schemes converge under
these conditions, as in the proof of Corollary C.2.D
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Remark. The positive definiteness of the coefficient matrix of the HS problem has been
proved directly in [17]. Moreover, as mentioned in section 1, the V-ellipticity of the HS
functional [18] implies the positive definiteness of the coefficient matrix of the HS problem.
Thus, Corollary C.3 is not a new result. However, the more general result, Corollary C.2,
might be of interest to further understand the convergence of the Jacobi, Gauss–Seidel, and
SOR methods.

Appendix D. In this appendix, we give more details to explain why we think the proofs
presented in [17, 13] are erroneous. We show that the matrix “P” of [17, eq. (9)] (denoted
here by P∗ to avoid confusion with the linear transformation P of (2.9)) is not contracting for
the norm defined by [17, eq. (10)], for any nonuniform image. Indeed, let i0 be a point where
∇ITi0 = (Ix,i0 , Iy,i0) �= (0, 0). We consider the displacement field u defined by u2 i−1 = Iy,i0
and u2 i = −Ix,i0 if i ∈ Ni0 (the set of four neighbors of i0), and u2 i−1 = u2 i = 0 otherwise.
The norm defined in [17, eq. (10)], denoted by ‖.‖∗ here to avoid any confusion, reads as

‖u‖∗ = max1≤i≤N (u22 i−1 + u22 i)
1
2 . In that case, we obtain ‖u‖∗ = (I2x,i0 + I2y,i0)

1
2 . Moreover,

we find that P∗(u)2 i0−1 = Iy,i0 and P∗(u)2 i0 = −Ix,i0 . Therefore, ‖P∗(u)‖∗ ≥ (I2x,i0 + I2y,i0)
1
2 ,

so that ‖P∗(u)‖∗ ≥ ‖u‖∗. Thus, P∗ is not contracting, due to this counterexample. We think
that the error occurred in [17, formula (13)]: a factor ci should be added in the second member
to take into account that the sum in the first term includes all the neighbors of i. Thus, in
the inequality [17, formula (15)], one should use the factor

√
2 instead of 1, which makes that

proof break down.
In [13, eq. (20)], the Laplacian corresponding to the Neumann boundary conditions (which

usually correspond to the HS problem) is denoted by L2. The matrix N2 is defined by the
relation N2(u) = L2(u) + u (cf. [13, eq. (22)]).2 Since that Laplacian operator vanishes on
uniform displacement fields, any such displacement field is an eigenvector of the matrix N2 for
the eigenvalue 1. Therefore, the assertion after [13, eq. (23)] that the spectral radius ρ(N2) of
the matrix N2 (i.e., the maximal modulus of the eigenvalues of N2) is less than 1 is erroneous.
Incidentally, in [13, formula (22)], a factor 1

2 is missing to get a correct expression of the
average. In [13, formulas (38) and (40)], the authors also assert that ρ

(
Id−F−1Diag(Sij)

)
< 1.

But, at every point, the determinant of the 2× 2 matrix Sij is null.3 Then, the matrices Sij

are singular, and so is F−1Diag(Sij). Thus, 1 is an eigenvalue of Id − F−1Diag(Sij), and so
the assertion is flawed. Thus, the two main intermediate results of [13] are both erroneous.

Acknowledgment. The authors are grateful to the anonymous reviewers for their com-
ments that helped improve the presentation and the content of this work.
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