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Unifying Concepts of Statistical and Spectral
Quantitative Ultrasound Techniques

Francgois Destrempes, Emilie Franceschini, Francois T. H. Yu, and Guy Cloutier*

Abstract—Quantitative ultrasound (QUS) techniques using ra-
diofrequency (RF) backscattered signals have been used for tissue
characterization of numerous organ systems. One approach is
to use the magnitude and frequency dependence of backscatter
echoes to quantify tissue structures. Another approach is to use
first-order statistical properties of the echo envelope as a signa-
ture of the tissue microstructure. We propose a unification of
these QUS concepts. For this purpose, a mixture of homodyned
K-distributions is introduced to model the echo envelope, together
with an estimation method and a physical interpretation of its
parameters based on the echo signal spectrum. In particular, the
total, coherent and diffuse signal powers related to the proposed
mixture model are expressed explicitly in terms of the structure
factor previously studied to describe the backscatter coefficient
(BSC). Then, this approach is illustrated in the context of red
blood cell (RBC) aggregation. It is experimentally shown that the
total, coherent and diffuse signal powers are determined by a
structural parameter of the spectral Structure Factor Size and
Attenuation Estimator. A two-way repeated measures ANOVA
test showed that attenuation (p-value of 0.077) and attenuation
compensation (p-value of 0.527) had no significant effect on the
diffuse to total power ratio. These results constitute a further step
in understanding the physical meaning of first-order statistics of
ultrasound images and their relations to QUS techniques. The
proposed unifying concepts should be applicable to other biolog-
ical tissues than blood considering that the structure factor can
theoretically model any spatial distribution of scatterers.

Index Terms—Quantitative ultrasound (QUS), tissue characteri-
zation, erythrocyte aggregation, homodyned K-distribution, struc-
ture factor size and attenuation estimator (SFSAE), backscatter
coefficient (BSC).
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I. INTRODUCTION

WO quantitative ultrasound (QUS) backscatter ap-
proaches for determining tissue microstructures from
radiofrequency (RF) echoes have received broad interest for
the past 30 years: 1) first-order statistical properties of the
echo envelope of RF signals; and 2) fitting the spectrum of
backscattered RF echoes to an estimated spectrum by an ap-
propriate theoretical scattering model. Whereas spectral QUS
approaches propose quantitative measures that are usually
closely related to tissue properties, they require estimating the
instrumentation spectrum through a reference measurement.
Statistical QUS approaches do not have this requirement, but
the relation between statistical parameters and tissue properties
needs further deepening. Thus, it is of interest to understand the
explicit relation between statistical echo envelope parameters
and spectral approaches. Notably, one would like to know how
much information is lost by considering the echo envelope
rather than RF signals, which contain the phase information.
The statistical approach based on the echo envelope has been
studied in the context of breast tumor classification [1]-[6], car-
diac tissue characterization [7]-[9], atherosclerotic plaque char-
acterization [10]-[12], liver fibrosis [ 13], and detection of land-
marks in fetal brain [14]. Under this approach, statistical pa-
rameters are used as features for tissue characterization. Among
statistical models for the echo envelope, the homodyned K-dis-
tribution [15], [16] has been used in statistical QUS in [4], [5],
[9]. Among other models that were also used in this context,
let us mention the Nakagami distribution [2]-[4], [6], [7], [14],
which is an approximation of the homodyned K-distribution
([17], Section 10.3.4), and the K-distribution [1], [8], which
is a special case of the homodyned K-distribution. The homo-
dyned K-distribution covers the case of dense or sparse scat-
terers, whether correlated or not, [16]. The Nakagami distribu-
tion considers the same scatterers' configurations [18], but the
two shape parameters of the homodyned K-distribution are in-
tertwined into a single Nakagami parameter [19]. The K-dis-
tribution assumes a vanishing coherent component, and hence,
does not cover the case of strongly organized scatterers [20].
Mixtures of distributions have also been studied in the context
of QUS based on the following statistical models: the Rayleigh
distribution [10], [13], which corresponds to the special case of
fully developed speckle and the gamma distribution [11], used
for interpolated B-mode data. See [17], [19] for additional echo
envelope distributions and references.
The most frequently used theoretical scattering model under
the spectral approach is the spherical Gaussian model developed
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by Lizzi et al. [21], [22] and describing the tissue as a random
inhomogeneous continuum with impedance fluctuations. The
spherical Gaussian model yields two tissue properties: the
average scatterer size and the acoustic concentration (i.e., the
product of the scatterer number density by the square of the
relative impedance difference between scatterers and the sur-
rounding medium). This approach has been used to assess the
response to therapy [23] and to differentiate between diseased
and healthy tissues or to detect cancer tumors, for the eye
[24], the prostate [25], the breast [26], [27], and cancerous
lymph nodes [28]. When using this classical scattering model,
scatterers are assumed to be independently and randomly dis-
tributed (i.e., to have a low scatterer concentration). However,
the assumption of randomly distributed scatterers may not hold
in concentrated media such as blood and tumors with densely
packed cells [29]-[31]. A model adapted to concentrated media
is the Structure Factor Model (SFM) used in blood characteriza-
tion [32], [33]. The SFM is based on the assumption that at high
scatterer concentrations, interference effects are mainly caused
by correlations between the spatial positions of individual
scatterers, i.e., caused by coherent scattering. The SFM sums
the contributions from individual cells and models the cellular
interaction by a statistical mechanics structure factor, which is
defined as the Fourier transform of the spatial distribution of
cells [32], [33]. Experiments on tissue-mimicking phantoms
[34] and on concentrated cell pellet biophantoms [35], [36]
showed that the SFM was more suitable than other classical
scattering models (such as the spherical Gaussian model) for
dealing with concentrated media.

In this paper, the first aim was to integrate the structure factor,
previously used to describe the backscatter coefficient (BSC),
into a physical interpretation of statistical parameters of an echo
envelope model. For this purpose, we considered the uncom-
pressed and unfiltered echo envelope of RF signals obtained
from ultrasound echography of biological tissues. Namely, the
echo envelope was viewed as the modulus of the complex ana-
lytic signal obtained from the RF signals based on Hilbert trans-
form. The echo envelope can also be viewed as the modulus of
the demodulated in-phase and quadrature (IQ) complex signal,
obtained after demodulation around the transducer's center fre-
quency. In the proposed approach, scatterers forming the under-
lying tissue were viewed as randomly positioned, thus forming a
random process. Hence, the amplitude of the echo envelope was
considered as a random variable and so was the demodulated 1Q
signal. A mixture of homodyned K-distributions (MHK) model
was used to describe the echo envelope in a region-of-interest
(ROI) of an ultrasound image, together with statistical parame-
ters of this model. MHK statistical parameters were then related
to first-order statistics of the echo envelope and of the IQ signal,
and physically interpreted by considering the structure factor in-
tervening in the BSC. This yielded explicit relations between
MHK statistical parameters, on one hand, and the SFM, on the
other hand. Note that IQ signals were considered in the proposed
theoretical framework only as a mean of bridging (mathemati-
cally) the gap between MHK statistical parameters and spectral
BSC parameters.

The second aim of this study was to test the proposed unifi-
cation of QUS concepts in the context of RBC aggregation. The

choice of this example was motivated by the fact that, unlike
the assumption made in [20], [37], scatterers' positions cannot
be assumed to be independent and uniformly distributed in the
scattering volume, due to their aggregation and their high cel-
lular number density, so that the structure factor intervenes. In
particular, the diffuse to total signal power ratio introduced later
was investigated as a statistical structural parameter related to
RBC aggregation, as it was shown to be not significantly af-
fected by attenuation. Finally, based on established relations be-
tween MHK statistical parameters and the structure factor, the
diffuse to total signal power ratio was related to a spectral pa-
rameter (the mean isotropic aggregate diameter) using an ap-
proximation of the SFM [38], [39].

II. MIXTURES OF HOMODYNED K-DISTRIBUTIONS

In this section, MHK are introduced to model the echo enve-
lope over a region in an ultrasound image.

A. Model

In the presence of a scattering medium filled with monodis-
perse scatterers, the homodyned K-distribution [15] was pro-
posed as a general model of the echo envelope [16]. The proba-
bility density function (PDF) of the homodyned K-distribution
can be expressed as [19]

Pak(Ale, 0% a) = / udo(ue) AJo(uA)
0

2 2\ T«
x<1+“2"> du (1)

where A is the echo envelope (i.e., the modulus of the complex
IQ signal), ¢ > 0, 6% > 0, a > 0, and Jy denotes the Bessel
function of the first kind of order 0. The parameter « is called the
scatterer clustering parameter, and £? and 202« are the coherent
and diffuse signal powers, respectively. The parameter p = %+
20%q is the total signal power!.

Given an ROI in an ultrasound image of soft tissues, various
scatterer kinds (differing in size, spatial distribution and acous-
tical contrast) might be present, and to each kind might corre-
spond one (or a few) homodyned K-distributions, depending on
the variability of the coherent component ¢, the mean intensity
u, or the clustering parameter «. Thus, to cover the general case,
we propose as model for the echo envelope A, finite mixtures
of homodyned K-distributions:

2
P(A) ~ ijPHK(A | €4, 0'?, a]‘).
Jj=1

2

Note that the special case of a single distribution is contained
in the proposed model, upon taking the proportions p; = 1 and

pj = 0forj # 1.
B. ROI Segmentation and Estimation of Parameters

To estimate parameters of the mixture model of homodyned
K-distributions in an ROI, pixels of the ROI were classified
into ¢ regions according to a segmentation algorithm based on

Note that in [16], the PDF of the homodyned K-distribution was expressed
in terms of the parameters £, 72 = o2« and « (denoted “s”, “2”, and “u” in
that reference).
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a Markov random field (MRF) model. This segmentation algo-
rithm is presented in Appendix A. Next, conditional to the ROI
segmentation, the amplitude of the echo envelope on each re-
gion j = 1,...,£ was modeled by a homodyned K-distribu-
tion Pux (A |€;,07, ;) as in (1). Homodyned K-distribution
parameters were estimated on each region with the method pre-
sented in [40].

Then, based on the MHK model, the following statistical pa-
rameters were considered (total and coherent signal powers):

¢
e? = ijef. 3)
j=1

In this study, the diffuse to total signal power ratio was also
considered:

¢
w= ij (6? + 2032-0,3-) ;

j=1

1/(k+1) = (p—)/u,

where x is the structure parameter £2 /(1 — £2) of [40].

In Appendix B, it is shown that the MHK model is identifi-
able; i.e., two such mixtures yielding the same PDF must have
the same parameters (up to permutation of the indices j in (2)).
The identifiability problem is important for the following rea-
sons. Firstly, the estimation of finite mixtures of distributions
belonging to a given family of distributions does not make sense
unless the model is identifiable, for otherwise there would not be
a unique solution. Secondly, in the context of ultrasound image
segmentation (as in [41]) and statistical tissue characterization
(as in [11]), the identifiability of a finite mixture model means
that the distributions corresponding to each biological tissue
layer appearing in an ROI can be retrieved from an estimation of
the mixture model in that ROI. From the identifiability property
of the proposed model, it follows that the expressions of statis-
tical parameters introduced in (3) and (4) are unambiguous.

4)

III. RELATION BETWEEN MHK STATISTICAL PARAMETERS
AND FIRST-ORDER STATISTICS OF THE ECHO ENVELOPE
AND OF THE DEMODULATED ANALYTIC SIGNAL

MHK statistical parameters introduced in Section II.B are re-
lated to two statistics of the echo envelope and of the IQ signal:
1) E[I], where E denotes averaging and [ is the intensity (i.e., the
square of the echo envelope amplitude); and 2) E|| Eloc, - [1Q] %],
where Ej.. . denotes local averaging along the axial direction
on an interval of length equal to the axial resolution length. Note
that the intensity corresponds to the squared modulus of the IQ
signal. To derive the relations below, discretization of a contin-
uous scattering model has been considered, as in [19].

A. Case of a Single Homodyned K-Distribution

In[16], it was proposed to view the IQ signal as a random walk
(in the complex plane) equivalent to a sum of random phasors,
with bias £ whose modulus squared is equal to the parameter £? of
the homodyned K-distribution modeling the corresponding echo
envelope. Now, as will be seen in Section IV.C, if scatterers are
not spatially organized independently and uniformly, then the in-
terpretation of scatterers as independent random phasors might
not hold. For this reason, we consider a continuous interpreta-
tion of the scattering medium [42], [43], rather than a discrete
one (i.e., based on finitely many scatterers). More precisely, this

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 2, FEBRUARY 2016

model can be viewed as a discretization of a continuous scat-
tering model, in which phasors are viewed as local fluctuations in
density and compressibility describing the continuous medium.
Under this interpretation, there are several more phasors than
scatterers, and they correspond to local fluctuations clustered
inside and outside scatterers.

So, we consider, as in [19], a stochastic process of the form

N
., 1 X
AN:E—’_Fl/Z Zaru (5)

n=1

where £is a vector in the complex plane and random complex
variables a,, (i.e., phasors corresponding to local fluctuations in
density and compressibility) are identically and independently
distributed, each phasor having a random amplitude indepen-
dent of its uniformly distributed phase. The quantity NV repre-
sents the average value of the variable number N of phasors
(within one resolution cell). Then, we model the 1Q signal on
an interval of a scan line of length equal to one resolution cell
as the limit process limz_, . A . Under this point of view, the
bias £'is interpreted as Eiqc, . [IQ]. The modulus A of this asymp-
totic process is then viewed as the echo envelope on this interval
of the scan line. As presented in [19], its PDF is a homodyned
K-distribution with parameters ¢ = |&], 0% = {|a,|?)/(2a),
and «, as follows from Jakeman and Tough generalization of
the Central Limit Theorem, assuming that N is distributed ac-
cording to a negative binomial distribution with variance equal
to JV2(1 /N + 1/a). The consideration of negative binomial
distributions is quite general since from [44], the distribution
on the number of points in an arbitrary (possibly inhomoge-
neous) Poisson process can be approximated by a mixture of
such distributions.

Then, assuming that the bias £ has squared modulus concen-
trated around its mean value (but with possibly varying phase)
as one varies the position of scan lines and the location of inter-
vals (of length one resolution cell), one obtains a homodyned
K-distribution with same parameters, with the interpretation
g2 = E||Eic.-1Q]?]. Moreover, the mean intensity E|[I]
under the homodyned K-distribution is equal to the parameter
p = €2+ 20%a ([19], Table 3).

B. Case of Mixtures of Homodyned K-Distributions

In the general case of MHK, one deduces from the previous
section, upon taking weighted sums of statistics corresponding
to each distribution, that the statistics p (the total signal power)
and €2 (the coherent signal power) of (3) correspond to E[I]
and E[|Eloc . (1Q)]?] on the ROL Therefore, the diffuse signal
power p — 2 corresponds to E[Var. »[IQ]], where Var de-
notes the variance of a complex variable. Indeed, the average
value of the intensity can be viewed as E[El,c -[|IQ]?]]. Alto-
gether, one obtains:

E[I] = M3 EHEIOC,Z[IQ]lz} = 525

E[Varoe [1Q]] = p — . (6)

Therefore, the ratio of the diffuse to total signal power admits
the following interpretation

E[Vari [1Ql/E[I] = 1/(x + 1). ()
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IV. PHYSICAL INTERPRETATION OF FIRST-ORDER STATISTICS
OF THE ECHO ENVELOPE AND OF THE DEMODULATED
ANALYTIC SIGNAL

The various statistics introduced in Section III are now in-
terpreted based on acoustical physics. We consider a single-el-
ement focused transducer operating in pulse-echo mode and a
scattering volume V located in the focal zone of the transducer.
Underlying hypotheses are: far field regime (the observation
distance—the transducer's focal length—is large compared to
the size of the volume occupied by scatterers), incident plane
wave in the focal zone, weak scattering and Born's approxi-
mation. To study statistics of the echo envelope and of the 1Q
signal, it is convenient to view the operator IZ of Section III as
an average over space and realizations of underlying tissues, per
unit volume.

A. Equations of the Echo Envelope and of the 1Q Signal

Let pg and x¢ be the density and compressibility of the sur-
rounding medium, and p and & be the density and compress-
ibility of the acoustic inhomogeneities. We consider the function

®

where r’ represents the position (2’,y', ') in the three-dimen-
sional space (with origin located at the center of the focal zone),
Yo(x') = (p(x') — po)/p(x') and . (r') = (k(r') — Ko) /Ko are
the fractional variations in medium density and compressibility,
respectively.

Having considered a single-element focused transducer, it is
convenient to define the modulated backscattered amplitude &,
as follows:

D, (ro, k) = k? / (A (ro, v, k)Y,

v

where ro = (g, Y0, 20) is the location of the center of the trans-
ducer surface, k¥ = w/cy is the wave number expressed in terms
ofthe angular frequency w and the speed of sound in the ambient
medium ¢y, and where Agr(ry,¥’, k) denotes the Rayleigh in-
tegral of the Green's function over the radiating transducer sur-
face. This notion is defined as

1 eik|r0+r57r'|
7 (10)

where r, denotes the vector from the transducer's surface center
to an arbitrary point of the surface.

Then, based on [45] and taking attenuation into consideration,
the RF backscattered signal at time ¢ can be expressed as

’7(r,) - ’7&(rl> - ’Yp(r,)a

(€))

ARI(r07r,7k) - dzrsa

|rg +rs — 1|

RF(I‘Q,If)
~ %ingo/ EAY2 ()T (w)U (w)®4(ro, k)e ™ dw, (11)

where i = v/—1, A(w) is the attenuation term of the scattering
medium, T'(w) is the acoustoelectric transfer function of the
transducer element, and U{w) is the component of the speed
of the radiating transducer surface at angular frequency w.
After application of a bandpass filter B{w) on the RF signal,
one obtains the analytic signal, which is related to the Hilbert
transform of the RF signal, by setting all negative frequency
components to 0 and multiplying the other ones by 2. Then,

demodulation around the center frequency f. = w./(2n) yields
the IQ signal expressed as:

IQ(rO,t)w/ H(w)®,(rg, k)e @welt gy (12)
0

where the function #(w) is defined as:

H(w) = ippcokAY? (w)B(w)T(w)U (w). (13)

Finally, the amplitude of the echo envelope is viewed as the
norm of the 1Q signal (or equivalently, the analytic signal).

B. Low Order Moments of the Echo Envelope and of the IQ
Signal

To compute average values per unit volume of ultrasound sig-
nals over space and realizations of underlying tissues, the single-
element transducer is assumed to move parallel to the (2, y)
plane to obtain several scan lines (a B-mode image), which cor-
respond to several scatterer realizations. The average over re-
alizations of scatterers corresponds to ensemble averaging (-).
For a fixed transducer position ry = (xq, ¥o, 20), we denote
(0, Yo, ) all points located on the scan line, where z is small
(within 7 times the resolution length for reported results) com-
pared to the focal length.

First of all, the average F[I] over space of the intensity is the
total signal power

(co/2) <// Q) (xo, £)|? db dxg dy0>

scattered per unit volume, where we have used the change of
variable z = (¢p/2)¢. Using Parseval's Theorem applied to the
variable ¢, we thus obtain

B =V reo [ G ( [ [ 1900, 002 daw o ) do

/2 Tey /'00 |H(w)[*D (20, k)BSC(k) dw, (15)
0

(14)

where V' is the volume of V, D(zy, k) is the diffraction com-
pensation coefficient and BSC(k) denotes the backscatter coef-
ficient. This important notion in QUS is defined as:

et sibner’ s3]
BSC(k) = =172 <‘/V,Y(rl)82@knom B >, (16)

where ng = (0,0,1) is the direction of the incident pressure
wave in the focal zone. Arguing as in [46], the diffraction com-
pensation coefficient D(zg, k) can be estimated as

167 / /

Secondly, we consider the average contribution of the 1Q
signal along the axial axis through a point (zq, %9, ) of the 3D
volume on a distance ¢, corresponding to the axial resolution:

z+€,/2 B
IQ(rg,t = 2Z/cy) dZ

Ar1((0,0, 20), (', ', 0), k) |* da’ dy'.

a7

Buoe10) = £,

z—

£,/2
:/o H(w)Ps(ro, k)

x sinc((k — ko), )e 2Wweltgy,  (18)
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TABLE I
STATISTICAL PARAMETERS OF THE ECHO ENVELOPE, THEIR RELATION WITH STATISTICS OF THE IQ SIGNAL,
AND THEIR PHYSICAL INTERPRETATION IN TERMS OF THE BSC (IF ANY)

Notion Notation | Statistical parameters | Statistics of the 1Q signal Physical interpretation
of the echo envelope
Echo envelope amplitude A 1 IQ]
Echo envelope intensity I=A% [1Q|?
Total signal power w Pk E[|IQ|?] meo [$° |H(w)|*D (=0, k) BSC (k) dw
. 2 e 2 2 meo J5° IH(w)[*D (20, k)
Coherent signal power € D=1 PiE; E[| B, - [1Q]]°] 0 sinc?((k — ke)0.) BSC(k) dw
i i 2 052, meo Jo© |H(w)[*D (20, k)
Diffuse signal power uw—e > —1Pi20; 0 E[Varic,-[1Q]] o (1- sine? ((k — ke)02)) BSC (k) dw
Diffuse to total signal 1 u—e2 E[Varyg ,[1Q]] J§° 1#H(2) 12D (20, k) (1—sine? ((k—ke)£2)) BSO(k) dw
power ratio r+1 Iz E[1Q]?] J§° 1H(w)[2D(20,k) BSC (k) dw

where sinc denotes the function sin(x)/x, having used (12) for
the second equality. One then obtains from Parseval's Theorem
the following approximation:

EHEIOC,Z[IQ”ﬂ = T
« / () 2D (20, K)sineX((k — ko)) BSC(R) dw.  (19)
Q

Equations (15) and (19) express direct relations between
the BSC and the statistics E[I| and E[|Eoc -[I1Q]|*] of the
echo envelope and of the IQ signal, respectively, under the
considered hypotheses, in terms of the instrumentation setting
(through factors T'(w)B(w)U (w) in (13) and D(zg, k) of (17)),
and tissue attenuation (from the factor .A%2(w) in (13)). Note
that the difference between (15) and (19) can be interpreted as
E[Vars. .[1Q]]. Note also that considering the ratio of these
two equations might reduce the effect of the instrumentation
and attenuation on each of them.

Thus, based on (6), the total and coherent signal powers of (3)
can be interpreted with (15) and (19), respectively. From there,
one obtains also the physical interpretation of the diffuse signal
power on the ROI as stated in Table I, and hence of the diffuse
to total signal power ratio.

C. Introduction of the Structure Factor

Let us now assume N, identical scatterers (spatially corre-
lated or not) within the scattering volume V, in addition to the
hypotheses considered so far. Then, the BSC can be expressed
in the following form under the SFM (see [38])

BSC(k) &~ may(k)S(k), (20)

where m is the number density of scatterers (N;)/V, op(k)
is the differential backscattering cross-section that depends on
acoustic and geometric properties of a single scatterer, and S (k)
is the structure factor that depends on the spatial organization of
scatterers. The latter quantity is defined as the ensemble average

1| & ’
— - 2ikng -r,
=5 3] )

2

where r,, is the position of the nth scatterer, and can be ex-
pressed with the so-called pair-correlation function (see [38]),
which is related to the distribution of distances between pairs of
scatterers.

Substituting (20) into (15) reveals that the mean intensity de-
pends not only on the number of scatterers, but also on their
spatial organization through the structure factor S(k). In fact,
one may not assume that E[I] is proportional to the number of
scatterers within the scattering volume, unless S(k) is a con-
stant, which implies that S(k) = 1 [47]. This latter condition
(i.e., S(k) = 1) means that scatterers are randomly distributed
according to a homogeneous Poisson process [48] (i.e., indepen-
dently and uniformly distributed), which implies that scatterers
are small and sparse compared to the scattering volume. From
this observation, it follows that the model [20], [37] expressing
the complex IQ signal as a sum of independent random pha-
sors, each phasor corresponding to one scatterer, does not hold
unless scatterers are distributed according to a homogeneous
Poisson process. On the other hand, (15) and (19) take into ac-
count a general model for the scatterers' spatial organization.

Thus, combining Sections II, IIT and IV, relations between
MHK statistical parameters and the structure factor intervening
in the BSC were reached under the considered hypotheses.

D. A Special Case: The SFSAE Model

Principles stated above are now developed in the context of
a BSC parametric spectral method considering aggregated cells
in a dense medium, such as aggregated red blood cells in blood.
In the context of ultrasound blood characterization based on
spectral methods, the inverse problem approach (i.e., fitting ap-
proach) has been performed using the Structure Factor Size and
Attenuation Estimator (SFSAE) model described in [38]. The
SFSAE model uses the second-order Taylor development of the
structure factor S
S(k) = W — %a2D2k:2, (22)
where W = limy,_,¢ S(k) is the so-called packing factor, a is
the RBC radius and D is the mean isotropic aggregate diameter
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(derived from the mean gyration radius) normalized by the RBC
diameter (equivalently, D is the mean isotropic aggregate radius
normalized by the RBC radius). From [39], W can be expressed
as a quadratic function of D, reducing the BSC parametrization
to one parameter. Therefore, combining (6), (15), (20) and (22),
the statistical parameter p of (3) can be expressed as a quadratic
function of D. A similar relation can be derived for the coherent
signal power €2, based on (6), (19), (20) and (22), and hence also
for the diffuse signal power u — 2.

Therefore, one concludes that there are relations of the form

p—et=b+D+dD?* p=b+eD+dD?,
1 u—aQNb'—i-c’D—i-d’DQ

(H—Fl): U b+cD+dD?’

(23)

where the six coefficients ¥, ¢, d’, b, ¢, and d are real num-
bers that do not depend on D, but only on the instrumentation,
scattering properties of one RBC, the hematocrit and ultrasound
(US) attenuation?. In this manner, the statistical MHK parameter
1/(x + 1) is related to the spectral SFSAE parameter D.

V. EXPERIMENTAL DATA: APPLICATION TO
BLOOD SCATTERING

Sequences of US images were obtained from experiments de-
scribed in Sections III-A and I1I-B.1 of [38]. These experiments
are briefly summarized in this section.

US measurements were performed in a Couette flow device
to produce a linear blood velocity gradient (i.c., shear rate) at
a given rotational speed. The system consisted of a rotating
inner cylinder surrounded by a fixed concentric cylinder with
respective diameters of 160 and 164 mm. A 60 ml porcine
blood sample (having a hematocrit of 40%) was sheared in the 2
mm annular space between both coaxial cylinders. A Vevo 770
high-frequency ultrasound system (Visualsonics Inc., Fujifilm,
Toronto, Canada) with an oscillating single-element 25-MHz
focused transducer (focal depth of 15 mm, aperture diameter
of 7.1 mm, axial resolution of 0.070 mm, lateral resolution of
0.140 mm) was used to collect RF backscatter signals from
blood. RF data were acquired at a sampling frequency of 250
MHz with 8 bit resolution. The probe was mounted in the side
wall of the fixed outer cylinder and was positioned to have its
focal zone at the center of the gap between both cylinders. To
ensure ultrasonic coupling, the hole within the outer stationary
cylinder (containing the probe) was filled with an agar gel based
mixture fitting the circular geometry in contact with blood.
The agar gel contained a specific concentration of 50 pm cel-
lulose scattering particles (S5504 Sigmacell, Sigma Chemical,
Saint-Louis, MO) to control the attenuation coefficient. Five
experiments were performed with five mixtures having Sigma
Cell (SC) concentrations varying from 0% to 1% (w/w). The
0% concentration constituted the non-attenuating gel and the
four other mixtures mimicked skin attenuation.

In this study, 0.25%, 0.5%, 0.75%, 1% SC were used to assess
the robustness of the QUS statistical characterization method
to attenuation. The BSC spectral characterization included an
attenuation compensation, as described in (1) of [38]. See also

2Note that parameter 1/(x -+ 1) is a function of 5 unknowns after normaliza-
tion of any of the 6 coefficients appearing in (23).

Section VI below for the parametrization of the BSC with the
SFSAE model.

Prior to each measurement, the blood was sheared at 200 s
during 30 s to disrupt RBC aggregates. The shear rate was then
reduced to residual values of 5, 10, 20, 30, and 50 s~* for 90
s until an equilibrium in the state of aggregation was reached.
For each shear rate, 5 B-mode images were successively con-
structed from acquired RF echoes each 16 s for a total period of
analysis of 80 s. For 180 vertical lines at the center of B-mode
images, echoes were selected within a rectangular window of
axial length 1 mm, which yielded an ROI of 2.8 x 1.0 mm?
(180 x 318 pixels?). This protocol was repeated five times with
the same blood and with each of the five agar-based attenuating
phantoms.

The attenuation model adopted in [38] and introduced in (11)
is based on the attenuation function given by

-1

A(k) — 6—4040!9/8468(0/271-) — 6—4a0f/8.68, (24)
where k is the wavenumber, ¢ is the mean speed of sound
in the intervening tissue layers, f is the frequency in MHz,
and oy is the attenuation coefficient (in dB/MHz). Note that,
in this equation, the factor 4 comes from consideration of
the attenuation factor for the power spectrum of the RF sig-
nals. In the case of the Couette experimental design, one has
00 = Qblood€blood T Qscesc, where aploea and age are
attenuation coefficients of blood and skin-mimicking phan-
toms, respectively. Variables eplooq and egc correspond to
thicknesses of corresponding tissue layers. Average values of
attenuation coefficients o004 and age are reported in Section
II1-B.3 and Table I, respectively, of [38].

VI. EXPERIMENTAL RESULTS

Concepts presented in Sections 11, III and IV are now illus-
trated in the context of RBC aggregation. Thus, 1) the mixture of
¢ < 3 homodyned K-distributions was evaluated to characterize
five RBC aggregation levels obtained in a Couette flow device
for five attenuation skin-mimicking phantoms. In particular, the
robustness of the diffuse to total signal power ratio 1/(x +1) of
the MHK model was tested. 2) The statistic F[| Eioc . [IQ]|?] was
compared with the MHK parameter €2 to investigate whether
this interpretation is empirically valid. 3) Lastly, the diffuse to
total signal power ratio was related to the SFSAE spectral pa-
rameter D describing erythrocyte clustering using a nonlinear
fitting model.

A. Mixtures of Homodyned K-Distributions

1) ROI Segmentation: In the acquired images, regions with
different levels of echogenicity were present and it was found
that data (gray levels of the echo envelope) within the rectan-
gular ROI could not be assumed to have a unimodal histogram.
See Fig. 1, third column, bottom example. Thus, for each image
of the sequences acquired as above, pixels of the rectangular
ROI were classified into three classes or less based on the seg-
mentation method of Appendix A. The number of classes cor-
responds to the number £ of homodyned K-distributions in the
estimated mixture model.

In Fig. 1, second column, the segmentation into three classes
or less of the ROl in the first frame corresponding to 0% SC (no
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Fig. 1. Examples of segmented ROI into three classes or less according to statistical properties of the amplitude of B-mode images. Left: B-mode images; second
column: segmentation into £ classes (corresponding to the number of homodyned K-distributions in the mixture model); right: histograms of the amplitude of
B-mode images. From top to bottom, shear rates are 50 s, 20 s~ and 5 s~*. These examples correspond to 0% SC (no attenuation). Statistical parameters of
each class could be retrieved uniquely from the PDF of the echo envelope amplitude in the ROI (identifiability of finite mixtures of homodyned K-distributions).

TABLE II
PROPORTIONS {p;) AND MEAN INTENSITIES (f;) OF EACH SEGMENTED
REGION IN FIRST FRAMES OF DATA ACQUIRED WITHOUT ATTENUATION,
ACCORDING TO FIVE SHEAR RATES. SEE FIG. 1 AND TABLE I

[ Shearrates s [ p1 [ w1 [[ p2 | w2 [ ps [ ws |
5 0.53 1.0 0.17 1.7 0.30 4.7
10 0.66 0.85 0.21 4.4 0.13 4.4
20 0.86 0.60 0.11 3.6 0.03 | 3.6
30 0.87 0.22 0.08 1.1 0.05 1.1
50 0.96 | 0.072 0.04 | 0.42 0 NA

attenuation) are presented for shear rates varying from 5 s~ to
50 s~1, using the proposed algorithm. Corresponding propor-
tions and mean intensities on each segmented class are reported
in Table II. The other levels of attenuation yielded similar re-
sults. As can be seen in this figure and this table, it cannot be as-
sumed that a single homodyned K-distribution suffices to model
the echo envelope in an ROI, even more so in the case of a low
shear rate (i.e., high aggregation level).

2) Statistical Parameters: Given the segmentation of the
ROI, the set of amplitudes (i.e., gray levels of the echo envelope)
on each non-empty class of pixels j = 1, 2, 3 was viewed as an
independent identically distributed (i.i.d.) sample of the ampli-
tude. Then, parameters of the homodyned K-distribution (g, 0'J2<
and «;) on each of these sets, for each image of the sequence,
were estimated with the method introduced in [40]. From there,
parameters p and £2 for each image were obtained as weighted
sums of corresponding parameters on each non-empty class, ac-
cording to (3), where £ stands for the number of non-empty

classes of pixels. Winsorized means [49] of parameters p, &>
and 1/(k + 1) = (p — €2)/p over the 5 images of a sequence?
were computed to yield estimated values of these parameters,
for each of the 25 sequences corresponding to 5 shear rates.
These values are reported in Table III. As can be seen, values
of i1, €% and 1/(k + 1) depend on shear rate. Moreover, z and
g2 also depend on the attenuation. However, 1/(x + 1) seems
to be less affected by attenuation.

To further verify this statement, the estimation of statistical
parameters was applied on the same data, but after attenua-
tion compensation, based on attenuation coefficients estimated
with the SFSAE method. Then, a two-way repeated measures
ANOVA test was performed to evaluate the effect of attenuation
(first factor) with or without attenuation compensation (second
factor) on the data for the five levels of aggregation. This test in-
dicated that attenuation (p-value of 0.077) and attenuation com-
pensation (p-value of 0.527) had no significant effect on the dif-
fuse to total power ratio. Statistical tests were performed using
SigmaStat (Systat Software, San Jose, CA).

B. Physical Interpretation of the Coherent Component

The statistics E[|Eiqc - [IQ]|*] were computed directly on the
demodulated signals and compared with the estimated values
of£? = Zj.:l pje; to assess if this interpretation of £, which

3Here, Winsorized means are computed over 5 values as (22> +z3+224) /5,
where 21, z2, . . ., 5 are the 5 values labeled in increasing order. This amounts
to replacing the lowest value 1 and highest value x5 by x5 and x4, respectively,
to avoid outliers.
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TABLE III
PARAMETERS 1, 2 AND 1/(k + 1) OBTAINED WITH THE HOMODYNED K-DISTRIBUTION MIXTURE MODEL FOR 5 LEVELS OF ATTENUATION (0%,

0.25%, 0.5%, 0.75%, AND 1% SC) AT 5 SHEAR RATES (5, 10, 20, 30 AND 50 s~1). THE PACKING FACTORS W AND DIAMETERS D OBTAINED
WITH THE SFSAE MODEL ARE ALSO INDICATED

495

SC (%) —1 -1 -1 -1 -1
attenuation coefficient (dB/MHz) QUS parameters 5s 10's 20s 30s 50s
W, €2 2.25, 1.80 1.54, 1.16 0.859, 0.542 0.295, 0.149 0.00849, 0.0255
0% (0.007 £ 0.0019 dB/MHz) 1/(k+ 1) 0.200 0.248 0.368 0.498 0.698
W, D 24.56, 10.11 9.14, 4.59 3.90, 2.68 1.39, 1.35 0.44, 0.82
u, €2 0.757, 0.569 0.472, 0.337 0.274, 0.177 0.0930, 0.0480 0.0274, 0.00935
0.25% (0.115 4 0.024 dB/MHz) 1/(k+ 1) 0.247 0.279 0.353 0.470 0.673
W, D 36.97, 10.87 10.14, 5.25 3.78, 3.28 1.14, 1.49 0.46, 0.89
I, g2 0.283, 0.215 0.157, 0.112 0.0800, 0.0550 0.0269, 0.0146 0.00838, 0.00339
0.5% (0.219 + 0.030 dB/MHz) 1/(k+ 1) 0.244 0.268 0.319 0.460 0.596
W, D 23.33, 9.05 9.35, 4.83 3.32, 2.85 1.34,1.25 0.53, 0.98
u, €2 0.133, 0.102 | 0.0743, 0.0566 | 0.0399, 0.0292 | 0.0132, 0.00730 | 0.00393, 0.00154
0.75% (0.320 4 0.035 dB/MHz) 1/(k+ 1) 0.219 0.246 0.269 0.443 0.602
W, D 26.83, 11.11 9.08, 4.84 3.07, 3.11 1.36, 1.59 0.38, 0.90
I, £2 0.167, 0.131 0.107, 0.0800 0.0530, 0.0387 0.0146, 0.00955 0.00460, 0.00171
1% (0.411 £ 0.040 dB/MHz) 1/(k+ 1) 0.210 0.250 0.279 0.350 0.627
W, D 23.01, 11.08 10.86, 5.07 3.57, 3.19 1.16, 1.62 0.35, 1.02
0% SC 0.25% SC 0.5% SC 0.75% SC 1% SC
§ § 333 0.25 1; 0.12 §
g g 2 om0 2 010 g
= =z = = 008 = 0.10]
Eﬁ 5 508 éﬂ 0.06) éb 0.08
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Fig. 2. Curves of 2 (blue line) and E[|Ejo., . [IQ]|?] (red line) as a function of the shear rate for five levels of attenuation. The parameter €2 can be interpreted
as the mean squared modulus of the local average IQ signal along the axial direction.

is related to (19), is valid. Fig. 2 shows a comparison between
these two statistics for various levels of attenuation and aggre-
gation. As can be seen, there is a close match between these two
statistics. In these tests, the local average Eiqoc . [IQ] was com-
puted over a distance of 0.070 mm, which corresponded to the
axial length of one resolution cell. The nominal center frequency
used for demodulation was computed as the first moment of the
power signal spectrum.

Since Eloc -[IQ] is a local average, the identity £? =
E[|Eioc.»[1Q]|?] suggests that > can be retrieved by summing
up local estimates. Hence, we have considered local sliding
windows of size 0.32 x 0.16 mm? (21 x 51 pixels?), corre-
sponding to 2.32 resolution length in each dimension [50],
with center position sweeping the ROI with a step of 7 pixels
in the axial direction. Moreover, each sliding window was
clipped with the specific segmented region (produced by the
proposed segmentation method) containing its center. Then,
parameters £,, and p,, of a single homodyned K-distribution
were estimated within each clipped sliding window w. From
there, a parametric image could be obtained by displaying at
each ROI pixel the statistical parameter (., — £2,)/E[tiw],
where w was centered at this pixel. See Fig. 3 for an illustration
of such parametric images. For the color bar, the few pixels in
the top image (less than 1%) with value greater than 1.5 were
displayed with a value of 1.5.

Furthermore, for each sequence of images, the Winsorized
mean over its frames of the average value E[(tt,, — £2)]/ E ]
(computed on each frame) was compared with (u — £2)/u. A
Wilcoxon signed rank test showed that there was no significant

shear rate of 50 s~ 1 (£=2)
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£ 04
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Fig. 3. Examples of diffuse signal power (g, — £2,) parametric images, as
estimated on clipped sliding windows w, after normalization by the total signal
power E[p.]. This example corresponds to 0% SC (no attenuation). A lower
average value indicates a higher level of red blood cell aggregation.

difference between these two statistics (p-value of 0.307). Thus,
proposed parametric images exemplified in Fig. 3 were closely
related to the diffuse to total signal power ratios.
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Fig. 4. QUS parameters for the data acquired without attenuation. Top left:
The spectral parameter D (red line), the mean isotropic aggregate diameter, as
a function of shear rates (s !). Other graphs: Comparison of the total signal
power g, the coherent signal power £2 and the diffuse to total signal power
ratio 1/(x 4 1) of the MHK model estimated from the echo envelope of RF
signals (blue line) with the corresponding rational or quadratic function of .D
(red line) for five shear rates (s~ *).

C. Relation Between the Diffuse to Total Signal Power Ratio
and the SFSAE Model

Assuming the SFSAE model for the BSC, the coefficients
appearing in (23) were estimated with a nonlinear fitting model
using Mathematica software (Wolfram Research, Champaign,
Il) based on values of 1/(x + 1), p, and D estimated on the
data acquired without attenuation (cf., first row of Table III),
viewed as a training set. The coefficients (in volts?) were equal
tob' = —0.0469, ¢’ = 0.143,d' = —0.00926,b = —0.284,¢c =
0.469, and d = —0.0209, assuming an uncertainty proportional
to the response (i.e., 1/(x + 1) or u) in the nonlinear fitting
model. The spectral QUS parameter D, and the statistical MHK
ones y, 2 and 1/(x + 1) are represented in Fig. 4, as well as
their expressions as a function of D. Good agreements can be
observed.

Next, for each level of attenuation corresponding to 0.25%,
0.5%, 0.75%, and 1% SC, viewed as a testing set, estimated
values of 1/(x + 1) were compared with values of (§' + ¢'D
+ d'D?)/(b + ¢D + dD?), where D was estimated with the
SFSAE model. These values are reported in Table I1I, second to
fifth rows. Resulting curves are represented in Fig. 5. Again, the
good agreement between statistical and spectral-based results
can be appreciated.

To further assess agreements between the diffuse to total
signal power ratio and its expression in terms of D, a two-sided
paired t-test showed that the choice of MHK or spectral method
had no significant effect (p-value of 0.079) on estimates.

VII. DISCUSSION

A. Mixtures of Homodyned K-Distributions

1) ROI Segmentation: When there was almost no aggre-
gation (corresponding to a shear rate of 50 s~!), B-mode im-
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Fig. 5. Comparison of the diffuse to total signal power ratio 1/(x + 1) of the
MHK model estimated from the echo envelope of RF signals (blue line) with
the function (o' 4+ ¢'D + d'D?)/(b + ¢D + dD?) (red line) of the isotropic
aggregate diameter D for five shear rates (s ') and two levels of attenuation
(expressed in % of SC).

ages presented a hypoechogenic aspect except for some small
echogenic spots (representing 4% of the ROI area in the image
ofthe top row of Fig. 1), which we think are due to small residual
RBC aggregates. These spots were successfully detected by the
proposed segmentation method. Moreover, considering aver-
ages Lpypo and Eyyper over the hypoechogenic and hypere-
chogenic segmented regions, respectively, ratios Erypo|(ttw —
&2)l/ Enypolptn] = 0.75 and Eugper [(tw — €3,)]/ Enyper [0] =
0.31 were obtained (top row of Fig. 3), where w represents
sliding windows as in Section VI.B, which is consistent with this
interpretation. For higher levels of aggregation (corresponding
to a shear rate ranging from 5 to 30 s~ !), B-mode images pre-
sented speckle spots with three different degrees of echogenicity
(second and third rows of Fig. 1). We think that this is due to the
polydispersity in aggregate sizes. Indeed, in these in vitro ex-
periments on porcine blood, the Couette flow device provided a
linear velocity profile and thus a constant shear rate, such that
the rheology condition to promote or inhibit RBC aggregation
was the same whatever the depth in the Couette annular space.
However, for each shear rate, the blood sample may contain sev-
eral sizes of aggregates mixed with disaggregated RBCs.

2) Statistical Parameters.: Although statistical parameters g
and £2 depend on attenuation (see Table III), it was shown that
the ratio 1/(k + 1) = (p — €%)/p was not affected by this
variable.

B. Physical Interpretation of the Coherent Component

Results of Section VI.B indicate that the coherent signal power
€2 can be interpreted as the mean squared modulus of the local
average [Q signal along the axial direction. The simpler interpre-
tation of 2 as the modulus squared of E[IQ] is not valid in the
context of the present study. Indeed, the statistic |F[IQ]|* was
computed directly on the data and turned out to represent less than
0.3% of the parameter £2. We think this is due to the fact that the
local statistic Elqc »[IQ] may be non-constant over the ROI so
that a global average E[IQ] & E[Ei,.[IQ]] results in a lot of
I1Q signal canceling due to destructive wave interference.

C. Relations Between the Total and Coherent Signal Powers
and the SFSAE Model

Based on [39], the SFSAE model can be expressed in terms
of a single spectral parameter D, the isotropic aggregate diam-
eter. The diffuse to total signal power ratio could be related ex-
plicitly to D, thus illustrating a relation between statistical and
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spectral approaches. In this model, the product D2a, where 2a
is the diameter of one RBC, is the aggregate diameter estimate.
A more recent BSC model, called the EMTSFM, was developed
by our team [51]. Contrary to the scattering theory SFSAE, the
EMTSFM provides a theoretical framework by considering ag-
gregates as effective scatterers, so that the aggregate radius and
the aggregate compactness intervene explicitly to parameterize
the BSC. However, at the moment, only the SFSAE is used to
assess RBC structural features in an inverse problem framework
because the SFSAE model produces better fits to experimental
BSC than the EMTSFM. The EMTSFM should consider incor-
porating polydispersity in aggregate sizes and compactnesses to
provide an optimal model for the inversion of experimental data
[52]. This is why we have only considered the simpler SFSAE
model in this study.

D. Frequency Range

Various recommendations for the frequency bandwidth have
been proposed for reliable BSC estimates, based in particular on
scatterers sizes. In the reported experimental tests, the spectral
approach used the frequency bandwidth between 8 and 30 MHz
[38], corresponding to a product ka below 0.34, where a is the
RBC radius. For the proposed statistical approach, we recom-
mend a same range as for the spectral approach; i.e., a range for
which BSC estimates are reliable in view of the interpretation
given by (15) and (19). In particular, the various attenuation and
diffraction compensation coefficients should be valid. Further-
more, if further hypotheses are made on the type of scattering
(diffusion, diffraction, or reflection) in modeling the BSC, the
corresponding range of ka should be assumed. Thus, it is un-
derstood that the instrumentation function B(w)T (w)U(w) in
(13) should be negligible outside the range in which the adopted
BSC model is valid (possibly larger range after refinement of the
model).

E. Relation With Previous Works

The pioneer work of [45], [53] related second-order statis-
tics of the echo envelope to the BSC. In [37], an interpretation
of the echo envelope intensity kurtosis based on the physics of
the echo signal was presented, but in the special case of sparse
monodisperse scatterers. In a more general setting, the backscat-
tered power was related to the variance of local RBC concen-
trations [43], based on [48]. More recently, the scale and shape
parameters of a generalized gamma distribution were proposed
to quantify structural changes during cell death [54]. The point
of view of considering the parameter 1/(x + 1) is akin to the
approach introduced in [55] that identifies and removes non-dif-
fuse echoes from the QUS analysis, as the assumption of diffuse
scattering is not necessarily valid.

VIII. CONCLUSION

The following contributions were made in this paper:

1) Mixtures of homodyned K-distributions were proposed as
a statistical model for the echo envelope of RF data of an
ultrasound image, together with an estimation method.

2) Adopting Jakeman and Tough discretization of a contin-
uous scattering model, in which the scattering medium was

interpreted as a collection of local fluctuations in acoustical
contrasts, MHK statistical parameters considered in point
(1) could be related to two statistics of the IQ signal: the
mean intensity and the mean squared modulus of the local
average 1Q signal along the axial direction.

3) Based on a physical model of ultrasound image formation,
direct relations between statistics of the IQ signal consid-
ered in point (2), on one hand, and the instrumentation set-
ting, tissue attenuation and the backscatter coefficient, on
the other hand, were established.

To illustrate these concepts, RF data from in vitro experiments
for various levels of RBC aggregation and skin-mimicking at-
tenuation were analyzed with the proposed mixture model. In
particular, it was shown that the diffuse to total signal power
ratio of the MHK model is robust to attenuation and might be a
useful quantity for measuring the level of red blood cell aggre-
gation in an in vivo context, where attenuation occurs due to the
presence of skin and other tissue layers. Furthermore, this MHK
echo envelope statistical parameter was shown to be related to a
spectral parameter, the SFSAE isotropic aggregate diameter D,
with the advantage of requiring no reference phantom or atten-
uation estimation.

Concerning parametric images obtained by sliding windows
[3], [6], one could also consider homodyned K-distribution pa-
rameters, such as the diffuse to total signal power ratio, as pro-
posed in Section VI.B, in addition to the Nakagami m-param-
eter previously studied. The proposed parametric images, which
are related to structural properties of underlying tissues (i.e., the
isotropic aggregate diameter D), could be a helpful diagnostic
tool for clinicians. It would be interesting to further study this
topic.

Although the RF signal contains the phase information
(which is in principle lost in the echo envelope), it appears that
the structural organization of the echo signal backscattered by
aggregated erythrocytes was nevertheless maintained in the
echo envelope in the reported tests. The same conclusion was
reached by [37] in the case of sparse scatterers of small sizes.
This observation should be assessed for other biological tissues.

Furthermore, although single-element transducers were con-
sidered in this work, we expect that the theoretical framework
can be adapted to linear-array transducers.

As a final remark, we expect the physical interpretation
introduced in the present study to hold for biological tissues
other than aggregated erythrocytes, under the hypothesis of
Born approximation, although this statement remains to be
validated. In the presence of specular reflections (e.g., due
to calcium in atherosclerotic plaques), such an interpretation
would have to be adjusted by modifying the BSC model
accordingly. Related to this issue, although in the current
work scatterers were modeled as forming a random process,
one could also consider structured organization of quasi or
pseudo-periodic alignment of scatterers, as in [16], [20], [56].
Also, note that in the framework of [35], the structure factor
model at the origin of the SFSAE was shown to be valid and
better than state-of-the-art modeling approaches in the case
of cancer cell pellets. This is also supporting the validity of
unifying concepts presented in this study for other biological
tissues than blood.
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APPENDIX A
SEGMENTATION ALGORITHM

The proposed segmentation method is based on a Markov
random field (MRF) model. For each pixel s of the ROI, the
discrete variable z, denotes the region class of the pixel, so
that z, € {1,2,...,£}, where ¢ is the maximal number of
distributions in the mixture, and A; denotes the amplitude of
the echo envelope at that pixel. The vector of variables z =
(z5) is viewed as a hidden discrete random field on the lat-
tice of pixels of the ROI. The vector of variables Ayrr =
(A,) is viewed as a continuous random field and is observable,
whereas z has to be estimated from the data. Conditional to each
class j = 1,2,...,£, a Nakagami distribution model [7] was
adopted, with parameters m; (the shape parameter) and §2; (the
scaling parameter). Assuming, as is commonly done in image
processing [57], that amplitudes are independent conditional to
the region labeling of pixels, one obtains the likelihood of the
MRF model in the form of a product of pixel-based likelihoods.
For the prior on the labeling z, a simple Potts model [57] was
adopted, based on vertical and horizontal neighbors of pixels.
Altogether, one obtains the joint distribution of the proposed
MRF model as the product of the likelihood and the prior.

In the reported tests, £ was set equal to 3. The parameters (m,
Q;),7=1,2,..., ¢, were estimated on the ROI by the Expecta-
tion-Maximization (EM) algorithm adapted to mixtures of Nak-
agami distributions in ([41], Table I). Ten random initializations
of the EM were used in our implementation, each one obtained
with the K-means algorithm. Then, knowing these parameters,
the Modes of Posterior Marginals (MPM) algorithm [58] was
applied to classify pixels in the ROI. Namely, for each pixel s,
the region label z, was chosen as the one that maximized the
posterior marginal P(z;|Avgr, (27 )rzs). Algorithmically, we
used the Gibbs sampler [57] to simulate the posterior distribu-
tion P(z| Aprr) based on the posterior marginals. One then ap-
proximated the mode arg max., P(zs|AMrF, (2r)rs) at each
pixel s as the most frequent label z, that occurred at s within
the Gibbs sampling of the posterior distribution. The MPM al-
gorithm was initialized with one random initialization of pixel
labels. The first 50 iterations of the Gibbs sampling were dis-
carded (the so-called burn-in period) and then, 50 more itera-
tions were used for the estimation of the MPM. To speed up the
MPM algorithm, the likelihoods P(A,|zs) were pre-computed
before the first iteration and stored in a lookup table based on a
discretization of A, into 1200 bins.

APPENDIX B
IDENTIFIABILITY OF FINITE MIXTURES OF
HOMODYNED K-DISTRIBUTIONS

The following result states the identifiability of finite mix-
tures of homodyned K-distributions. The idea of its proof is to
use Hankel transform in a variant of Teicher's approach [59].

Theorem 1: Assume that

£ 14
> piPux(Alej, 03, 05) = Y i Pax(Al&;, 57, &)
j=1 j=1

(25)
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forall A > 0, wherep; > 0(j = 1,...,£) and p; > 0(j
= 1,...,¢"). Assume also that (¢;,0;,a;) # (&j,04,a;)
for any j # j', and similarly for the other mixture. Then, £ = ¢
and up to permutation of indices, p; = p; and (5,03, a;) =
(éj,&f-,&j) fOI‘j = ]., e 4
Proof: We proceed in the following steps.
Step 1. Let (25) hold for all A > 0, with the assumptions of
Theorem 1. Reordering the distributions of each mixture if
necessary, we may assume that e; > €5 > --- > g4, as
wellas &y > €y > -+ > ép.
Step 2. To each probability density function P on A > 0
is associated the Hankel transform ¢(u), of order 0, of the
function P(A)/A; that is [ Jo(uA)P(A)dA. This de-
fines a linear operator M. For the homodyned K-distribu-
tion distribution, one obtains the Hankel transform
2N @

P(u) = Jo(ue) <1 + u2%> (26)
defined for any u > 0. This follows from (1) using the clo-
sure equation [~ Jo(vA)Jo(uA)AdA = MT—H, where
¢ denotes the Dirac delta distribution.

The function ¢(u) can be extended to an analytic func-
tion ¢(z) defined on the open subset

™ w
Uf{z. 4<a1g(z)<2}

of the complex plane €. Indeed, the function Jy(z¢) is an
entire function ([60], (9.1.10)). Moreover, the function 1 +
2?(0*/2) maps U into the open set V = {w : —(7/2) <
arg(w — 1) < w}; then, the branch of the logarithm de-
fined on V. C C \ i(—oc,0] can be applied to obtain
1+ 2%(a?/2)) 7"

The function (z) can be extended to a strip

27

U, = {w: |[R(w)] < 1/2 and S{w) > t}, (28)

where t > (2/0?). Then, based on the Taylor expansion
of (1 + 2 2(2/a%)) <, valid for large values of |z|, one
computes at z = zu, with u > 0:

b(iw) = Ip(ue) (-ﬁ‘?) h ;i % (u”;) - ,

(29)
where we have used ([60], (9.6.3)).
Step 3. By linearity of the operator M, we deduce from
steps 1 and 2 the identity

13 o
V(=) = D piwhi(2) = Y Bity(2) (30)
j=1 i=1
for all z € U U U/, taking ¢ sufficiently large.

Now, lete; = g9 = -+ = &,, with 1 < r < £ maximal
with this property (i.e., r = £ or &, > €,11). Consider z
=iwelUl.LetA={a;j+k:1<j<randk € N}and
let A1, As, ... be an enumeration of A in increasing order.
From (29), we can write ¥(iu) in the form

o0 —An
W) = hue) Yo (5 ) WG, o)

n=1
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where ¥'(iv) = 0 (ifr = £ or ¥(iiu) = contradiction. Thus, it must be that £ = £’ and the proof of
Eﬁ:r 11 p;w;(tu) (if r < £) and the ¢,'s are real coef- Theorem 1 is completed. [ ]
ficients. Here, we have dropped all coefficients ¢,, that
vanish (if any). Based on the asymptotic expansion ([60],
(9.7.1)) Iy(ue) ~ (e*=)/(v/2mue), valid for large values The authors are grateful to the anonymous reviewers for their
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