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Abstract--A pattern recognition system was used to classify Doppler blood flow signals for the determination 
of lower fimb arterial stenoses. The diagnostic features were extracted from time-frequency representations 
of Doppler signals. Three techniques were tested to estimate time-frequency representations: the short-time 
Fourier transform, the autoregressive (AR) modeling, and the Bessel distribution. A boundary tracking 
algorithm was proposed to extract the frequency contour of the Doppler time-frequency representations. 
Based on the characteristics of the Doppler frequency contour, shape descriptors from an autoregressive 
analysis were proposed as diagnostic features. Simple algorithms were proposed to normalize these autore- 
gressive shape descriptors. Amplitude distribution of the Doppler time-frequency representation was also 
found useful for stenosis classification. A total of 379 arterial segments from the aorta to the popliteal 
artery were classified by the pattern recognition system into three categories of diameter reduction (0- 
19%, 20-49%, and 50-99%). The short-time Fourier transform provided an overall accuracy of 80% 
(kappa = 0.38); AR modeling, 81% (kappa = 0.42); and the Bessel distribution, 82% (kappa = 0.43). 
All these results are better than those based on visual interpretation (accuracy = 76%, kappa = 0.29) 
performed by a trained technologist. The AR modeling and the Bessel distribution improved the perfor- 
mance of the pattern recognition system in comparison with the short-time Fourier transform. It is likely 
that with further improvement, the pattern recognition approach will be a useful clinical tool to quantify 
stenoses and to follow the disease progression with more reliability and less bias than visual interpretation 
as done currently in clinical practice. 
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INTRODUCTION 

Ultrasonic duplex scanning has been proposed as a 
noninvasive alternative to angiography for the assess- 
ment of lower limb arterial stenoses (Jager et al. 1985; 
Kohler et al. 1987, 1990; Moneta et al. 1992; Ranke 
et al. 1992). Presently, the assessment of the degree 
of arterial diameter reduction is mainly performed by 
visual interpretation of the Doppler spectrogram based 
on the evaluation of the spectral waveform contour, 
the peak systolic frequency, the diastolic frequency, 
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and the presence of spectral broadening during systole. 
The visual interpretation approach, although very use- 
ful in clinical practice, is difficult to use to objectively 
classify in quantitative terms the varying degrees of 
stenosis. Using computer analysis of Doppler blood 
flow signals, Allard et al. ( 1991 ) proposed a computer- 
based pattern recognition approach to classify the de- 
grees of diameter reducing stenoses of the lower limb 
arteries. The diagnostic features were extracted from 
379 Doppler spectrograms and classified into three cat- 
egories of stenoses (0-19%, 20-49%, and 50-99% 
diameter reduction). Comparing with results based on 
angiography, their results showed that the pattern rec- 
ognition approach was better than the visual interpreta- 
tion approach. 
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Time-frequency representation of the Doppler blood 
flow signal 

The Doppler blood flow signal has been shown 
to be a nonstationary random Gaussian signal (Bascom 
et al. 1993; Guo et al. 1993a). The spectrogram is 
a time-frequency representation (TFR) computed by 
using the short-time Fourier transform based on the 
assumption that the signal to be analyzed is stationary 
during a short time interval. The short-time Fourier 
transform has the advantages of having non-negative 
amplitude values and fast computation, but it has the 
main shortcoming of the tradeoff between time and 
frequency resolutions. Another TFR technique, based 
on autoregressive (AR) modeling, has been shown to 
be superior to the short-time Fourier transform due to 
its high frequency resolution (Guo et al. 1993b; Vait- 
kus et al. 1988). Recently new TFR techniques such 
as the Choi-Williams distribution (Choi and Williams 
1989), the reduced interference distributions (Jeong 
and Williams 1992), and the Bessel distribution (Guo 
et al. 1994a) were developed to analyze nonstationary 
signals. These distributions describe how the frequency 
content of a signal is changing in time by mapping the 
signal into a joint time-frequency domain, instead of 
sectioning it into stationary intervals before computing 
the power spectra. A previous study based on simulated 
lower limb arterial Doppler blood flow signals showed 
that the Bessel distribution and AR modeling are better 
techniques for the computation of the Doppler TFR 
than the short-time Fourier transform (Guo et al. 
1994b). In this study, we report the results to classify 
clinical Doppler blood flow signals based on these two 
new techniques compared with those obtained by using 
the spectrogram. 

Feature extraction 
An important problem related to Doppler blood 

flow signal analysis is to estimate the frequency con- 
tour of the Doppler TFR. Different computer-based 
algorithms have been proposed to extract this fre- 
quency contour (Allard et al. 1991; Cloutier et al. 
1990; Mo et al. 1988). However, these algorithms 
work on the individual spectrum and need to find an 
optimal threshold to separate the Doppler signal from 
background noise. In the present study, image pro- 
cessing techniques were used to extract the frequency 
contour by representing it as a closed curve. 

Another problem in using pattern recognition to 
classify lower limb arterial stenoses relates to the fre- 
quency-dependent features associated with blood flow 
velocities in the arteries. The blood flow velocity varies 
significantly from the aorta to the popliteal artery, and 
these variations require the design of a specific classi- 

tier for each arterial segment in order to optimize the 
performance of the pattern recognition system. By us- 
ing this approach, the total population size must be 
subdivided into smaller subgroups, thus inevitably re- 
ducing the statistical reliability of the pattern recogni- 
tion system. In Allard's work (1991),  frequency scal- 
ing factors were applied to compensate for velocity 
variations by normalizing the frequency features as a 
function of maximal blood flow velocity of normal 
segments in order to design a single classifier for all 
the arterial segments investigated. However, due to 
variations in the individual patient's blood pressure, 
age, and vascular compliance, it may be difficult to 
obtain the frequency scaling factors with sufficient ac- 
curacy. It has been noticed that, although different arte- 
rial segments have different blood flow velocities, the 
morphological shapes of the frequency contours of the 
Doppler TFRs are very similar for a given degree of 
stenosis (Jager et al. 1985). In the present study, shape 
descriptors were used as features for the pattern recog- 
nition system. Since shape descriptors are independent 
of the shape size, normalization with respect to blood 
flow velocities of different arterial segments and differ- 
ent patients is not required. 

In summary, this paper describes a pattern recog- 
nition system based on the shape descriptors and am- 
plitude distribution features extracted from the TFRs 
of Doppler blood flow signals for objective classifica- 
tion of lower limb arterial stenoses. The classifier was 
designed to categorize arterial stenoses into three 
classes: 0-19%, 20-49%, and 50-99% diameter reduc- 
tion. All arterial segments studied from aorta to 
popliteal artery were classified using a single classifier. 
The results were compared blindly with those of an- 
giography. 

MATERIALS AND METHODS 

Patient population and data acquisition 
The database used in this study is the same as 

that used by Allard et al. (1991) .  Subjects were 
recruited among patients referred to the Montreal 
Hotel-Dieu Hospital for the conventional biplane 
contrast arteriographic examination of the lower 
limb arteries. For arteriographic studies, each angio- 
graphic film was read by an experienced angioradiol- 
ogist and the view showing the most severe lesion 
was used to estimate the percentage of the diameter- 
reducing lesion. On the basis of caliper measure- 
ments of  the normal and residual arterial diameter 
of  each segment, the severity of the disease was 
classified into 5 classes (normal, 1-19%, 20-49%, 
50-99% diameter reduction, and occlusion).  The 37 



Doppler blood flow signal analysis • Z. Guo et al. 337 

Table 1. Doppler spectrogram classification. 

Angiographic category Doppler criteria 

Normal Tri- or biphasic waveform 
Systolic window present 
No spectral broadening 
Peak systolic velocity and waveform 

within normal range 
Spectral broadening present 
30-50% increase in peak systolic 

velocity 
Reverse flow component present 
50-100% increase in peak systolic 

velocity 
Reverse flow component absent 
Extensive spectral broadening 
No flow detected in vessel 

1 - 19% diameter 
reduction 

20-49% diameter 
reduction 

50-99% diameter 
reduction 

Occluded 

Note: Permission to reprint this table, from Taylor et al. 1988, p. 
332, was obtained from Raven Press. 

patients included in the Doppler  study are those 
whose arteriographic examination was performed 
within 3 months (32 less than 2 months and 5 be- 
tween 2 and 3 months) .  Doppler  studies were per- 
formed with an ATL Ultramark 8 duplex scanner 
which combines real-t ime B-mode imaging and 
pulsed Doppler  blood flow recording system. The B- 
mode image was used to identify the vessel of  inter- 
est, to place the pulsed Doppler  sample volume in 
the center-stream of the vessel, and to maintain a 
standard angle of  incidence of 60 degrees between 
the Doppler  beam and blood vessel axis. The arterial 
segments examined in each limb were: the distal 
aorta, the common and external iliac arteries, the 
common and profunda femoral  arteries, the superfi- 
cial femoral  artery, and the popliteal artery above the 
knee. A mechanical ly oscillating probe, operating at 
5 MHz, was used for all Doppler  recordings. Ac- 
cording to the manufacturer ' s  specifications, the 
sample volume used for all recordings had a length 
of 1.5 mm in the direction of the axial beam, which 
is much smaller than the diameter  of  the arterial 
segments studied. Doppler  signals f rom all segments 
were recorded at midcourse of  the segment if normal 
or at the site of  most  severe disease. The latter was 
identified by the technologist as the site having maxi-  
mal flow velocity. In order to standardize the re- 
cordings, the patients were asked to rest supine at 
least 30 min in a controlled temperature environment  
(21-23°C) .  The criteria proposed by Jager et al. 
(1985)  and presented in Table 1 (Taylor  et al. 1988) 
were used to grade arterial stenoses into the above 
5 classes by visual interpretation of a technologist. 
The Doppler  spectrograms of normal and three dif- 
ferent degrees of  stenoses are shown in Fig. 1. 

The two quadrature Doppler blood flow signals 
were recorded for a period of approximately 20 s on 
a four-channel audio type recorder (TASCAM 22-4) 
for off-line analysis. The ECG signal was also re- 
corded on a FM channel and used to detect the begin- 
ning of each cardiac cycle. Voice comments  indicat- 
ing the patient 's  name and the sites analyzed were 
recorded on the fourth channel of  the recorder. The 
high-pass filter used to remove the wall motion was 
set at 100 Hz. During tape playback, ECG and Dopp- 
ler signals were digitized with a 12-bit A/D converter 
(DT-2828 board) at sampling rates of  2 kHz and 20 
kHz, respectively. Before digitization, Doppler blood 
flow signals were low-pass filtered at 9 kHz with 
eighth-order Butterworth filters ( - 4 8  dB/oc tave)  to 
prevent frequency aliasing. The cut-off frequency of 
9 kHz was always greater than half of the Pulse Repe- 
tition Frequency (PRF)  used by the Doppler system. 
During Doppler signal acquisition, an algorithm for 
QRS-complex detection was used to locate the begin- 
ning of each cardiac cycle and synchronize the analy- 
sis of  the Doppler signals. The mean heart rate was 
also computed and used to reject all beats with an 
interval differing by more than 10% from the mean 
heart rate duration. 

Time-frequency representation (TFR) of Doppler 
blood flow signals 

In the present study, Doppler TFRs based on the 
short-time Fourier transform, AR modeling, and the 
Bessel distribution (BD)  were computed. Doppler 
signals were analyzed in a period of 700 ms after the 
QRS-complex of the ECG for each cardiac cycle. To 
compute Doppler TFRs, a time increment of 5 ms 
was used and each spectrum had 256 samples. Conse- 
quently, the Doppler TFR was a matrix with the di- 
mension of 140 X 256. For each arterial segment, an 
average TFR was obtained by averaging 5 individual 
TFRs from a series of cardiac cycles in synchroniza- 
tion with the QRS-complex.  As pointed out by Guo 
et al. (1994b) ,  t ime-frequency representations are 
sensitive to the values of  parameters (such as window 
length) used for computation. In the present study, 
those values of  parameters optimized in the work of 
Guo et al. (1994b) for Doppler signal analysis were 
used. 

The spectrogram. The basic approach to compute 
the spectrogram is to find the power density of the 
signal at time n by analyzing a small segment of the 
signal around n. Specifically, the signal is multiplied 
by a window function w(n)  centered at time n, and 
the Fourier transform of the windowed signal is calcu- 
lated by 



338 Ultrasound in Medicine and Biology Volume 20, Number 4, 1994 

(a) (b) 

L a s e -  

, V v' e l f  
e S e -  

(c) (d) 

Fig. 1. Examples of Doppler Fourier spectrograms for different arteriographic categories of arterial stenoses: (a) 
normal, (b) <20% diameter reduction, (c) 20-49% diameter reduction, (d) 50-99% diameter reduction. 

X , ( k )  ARx(n, k) 

N .2~k 6Zp(n) 
= ~, x m + n  w m -  e-J--N -m (1)  = 

m=0 
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where k is the frequency and N is the window length. 
The spectrogram of  the Doppler signal x ( n )  is then 
computed by 

SPECx(n, k) = IX.(k)l 2 (2)  

An 8 ms Hanning window was used in the computation 
of the Doppler spectrogram. 

The autoregressive modeling. It has been shown 
that the quadrature Doppler signal can be modeled by a 
complex time-varying AR process (Guo et al. 1993b). 
Here we recall the equation used to compute the TFR 
of the time-varying AR modeling as 

(3) 

where p is the model order, a (m, n) are complex time- 
varying coefficients, and 6~(n) is the variance of the 
modeling error. The complex coefficients a ( m ,  n) 
were computed by using the Yule-Walker equations 
together with the Levinson-Durbin algorithm (Kay 
and Marple 1981 ). In the present study, a 14 ms rectan- 
gular window was used to generate Doppler TFRs, and 
the "Akaike 's  information criterion" (AIC) (Kay and 
Marple 1981 ) was used to determine the model order 
p for every spectrum. 

The Bessel distribution. The Bessel distribution 
(BD) is a member of Cohen's class of time-frequency 
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distribution with a Bessel function kernel. The 
alias-free BD can be expressed as (Guo et al. 
1994a) 

(4) 

+~ -j2rrk~" 

BDx(n, k ) =  2 ~ w~c(r)e N 
7 - = - - 0 0  

x(n + /~ + r ) x * ( n  + #)]  
0 .3.0 ~:REQL~,'r. -~'~ (a) 

where a is a parameter to determine a tradeoff between 
auto-term resolution and cross-term reduction. In the 
present study, window wN(r)  was a 4 ms sine-cosine 
window and a had a value of 14.5. Examples of aver- 
age Doppler TFRs computed by using the short-time 
Fourier transform, AR modeling, and the BD are pre- 
sented in Fig. 2. 

Frequency contour extraction 
As mentioned previously, a critical problem with 

Doppler blood flow signal analysis is to extract the 
frequency contour of the Doppler TFR. The algorithms 
proposed in the literature are based on estimating the 
maximum and minimum frequencies of each individ- 
ual spectrum (Allard et al. 1991; Cloutier et al. 1990; 
Mo et al. 1988). One limitation with this approach is 
how to determine properly the background noise level 
since the algorithms try to separate spectral segments 
containing blood flow signal from those containing 
noise. By using image processing techniques, Allard 
et al. (1992) showed better results to extract the fre- 
quency contour. In the present study, the Doppler TFRs 
were converted into 256 gray-level images and the 
Laplacian edge detector was used to extract the edges 
of images. As the Laplacian edge detector tends to 
produce false edges due to noise, the images were first 
smoothed by preprocessing. A mean filter of size 3 × 
3 was first applied for smoothing the Doppler speckle 
and background noise. A median filter of size 3 × 3 
was then applied for further improvement. The median 
filter has the property of preserving edges and sup- 
pressing residual noise of local fluctuations. Using a 
threshold of 5% of maximal gray level, a binary image 
was generated from the smoothed image. The edge 
image was obtained by performing Laplacian edge de- 
tection on the binary image. 

The Laplacian edge detector normally produces 
"thick" edges. In the present study, the outer boundary 
of the edge was used to represent the frequency con- 

AR 

~.0 

BD 

FFT 

.0 

~- r~,-- - (c) 

Fig. 2. Doppler TFRs of an arterial segment having a 0- 
19% diameter reduction: (a) short-time Fourier transform, 
(b) time-varying AR modeling, and (c) Bessel distribution. 

tour. Using a priori knowledge that the Doppler fre- 
quency contour is a closed curve, only one closed con- 
tour for each TFR was obtained, and in this way the 
residual background noise peaks were eliminated. The 
contour extraction algorithm is described as follows. 
In Fig. 3, a 3 × 3 window shows the current contour 
point Pc and its 8 neighbors P0-PT. The contour 
tracking was started by identifying the first contour 
point as the first no-zero point found on the Laplacian 
edge image by searching from zero frequency at the 
QRS timing reference of the ECG, and initializing a 



340 Ultrasound in Medicine and Biology Volume 20, Number 4, 1994 

direction code which keeps the interior of the contour 
to the left of  the tracking direction. The directional 
codes from 0-7 were used to specify the direction in 
which a step must be taken to go from the current 
contour point to the next. Then, we began the iterative 
process of finding the next contour point, given the 
current point Pc and the tracking direction. Working 
in the 3 X 3 window centered on the current contour 
point, the next contour point was taken from three 
candidate points, the neighbor specified by the direc- 
tional code and the neighbors on each side of it. For 
example, the candidates of the next contour point are 
P7, Po, and PI if current directional code is 0, and P0, 
P~, and P2 if current directional code is 1. The next 
contour point was the first no-zero point of these three 
candidates evaluated in a counterclockwise direction. 
When the next contour point was found, recoding the 
directional code as the direction from current to next 
contour points was performed. This iterative process 
was continued until a closed contour was generated. 

Diagnostic feature extraction and selection 
A total of 15 raw diagnostic features were ex- 

tracted from the average Doppler TFRs of each arterial 
segment. The frequency contour was used as a mask 
on the original Doppler TFRs and all features were 
extracted on and within this contour. The 15 features 
are described next. 

Ratio of  spectral envelope areas. Cannon et al. 
(1982) demonstrated the diagnostic value of the spec- 
tral envelope area (SEA) for determining the stenosis 
of the aortic valve. SEA is defined as the area between 
the minimum and maximum frequency curves and di- 
rectly reflects the spectral broadening of the Doppler 
TFR. Because of large interindividual variability of 
blood flow velocities from the aorta to the popliteal 
artery, a standard threshold value of SEA cannot be 
defined with sufficient accuracy for a specific degree 
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6 

Fig. 3. A 3 x 3 window illustrating the current pixel Pc and 
the 8 directional codes used to extract the frequency contour 

of Doppler TFR (see text for details). 

82 = ~ S  I 

Fig. 4. Illustrating the definition of area ratios RI and R2 
by using the frequency contour of the TFR in Fig. 2c. 

of stenosis. In the present study, an area ratio R1, as 
defined in Fig. 4, was used as a feature to estimate the 
spectral broadening. Furthermore, according to Jager 
et al. (1985), the loss of reverse blood flow could 
indicate the presence of hemodynamically significant 
stenosis, and thus an area ratio R2 (shown in Fig. 4) 
was used to reflect this phenomenon. Since they are 
area ratios, R1 and R2 are independent to the variabil- 
ity of blood velocity of different arterial segments and 
patients. 

AR shape descriptors. As mentioned previously, 
the assessment of lower limb arterial stenoses by using 
ultrasonic duplex scanning is mainly performed by vi- 
sual interpretation of the Doppler time-varying spectra 
(Doppler TFR).  Visual interpretation is mostly based 
on the shape of the TFR. This observation motivates 
the use of shape descriptors as diagnostic features, The 
shape descriptors of a closed contour should be invari- 
ant to changes of its size, position, and orientation. 
That is, two closed contours have the same shape de- 
scriptors if one can be obtained from another by scal- 
ing, translation, and rotation in the image plane (Kas- 
hyap and Chellappa 1981 ). Different degrees of steno- 
sis have different frequency contours as shown in Fig. 
1. Those criteria described in Table 1 are applicable 
to all the segments from the aorta to the popliteal artery 
(Jager et al. 1985), except that they have different 
peak systolic frequency (peak systolic blood flow ve- 
locity). For different arterial segments, the frequency 
contours should have similar shape descriptors if they 
belong to the same class of stenosis. Therefore, the 
shape descriptors of the Doppler TFR frequency con- 
tour can be used as features for the classification of 
varying degrees of stenoses, and no compensation for 
velocity variation with respect to segment and patient 
is required. In the following paragraph, the procedure 
to compute the shape descriptors will be presented. 
The frequency contour will be first represented by a 
one-dimensional sequence, and then algorithms to nor- 



x(n)  = r (n ) / r ,  0 <- n <- 511 (6) 

1 

Fig. 5. Time sequence representation of a closed contour. 

malize this sequence with respect to size and position 
of the corresponding frequency contour and to the 
starting point of the sequence will be proposed. 

There are several basic methods of closed contour 
representation in the literature such as Cartesian coor- 
dinates (Persoon and Fu 1977) or relative angular bend 
(Oliviero and Scarpetta 1981) as functions of arc 
length. In the present study, the method proposed by 
Kashyap and Chellappa ( 1981 ) was used to represent 
the frequency contour by a 1-D sequence { r (n)}  of 
radial distances measured from the centroid to each 
point of the contour. As shown in Fig. 5, let the contour 
points be Ao-AN_~, the centroid of the contour be O, 
and OA, = r (n) ,  the required sequence is { r (0 ) ,  r( 1 ), 
. . . .  r( N - 1 ) }. Since the contour is closed, 

r( N + n) = r( n ) V integer n, (5)  

and r(n)  is a periodic sequence with the period N. In 
the present study, all contours were represented by 
512 equidistant points generated through the Fourier 
transform of the original sequence, and then taking 
the inverse Fourier transform with appropriate zero- 
padding in the frequency domain. This number of sam- 
pies were considered sufficient to provide the needed 
resolution in our application. Figure 6 shows the fre- 
quency contour and the corresponding sequence 
{ r(n)  } of the Doppler TFR shown in Fig. 2c. 

Since the duration between the QRS-complex and 
the peak systole varies among patients, the frequency 
contour is position-dependent in the image plane. 
However, the sequence {r (n)}  is already invariant 
with respect to the position of the corresponding con- 
tour since the centroid of the contour is used as refer- 
ence. Thus, we only need to normalize { r (n)}  with 
respect to the shape, size and orientation. The normal- 
ization of the size can be obtained by dividing each 
element of the sequence by the mean value of that 
sequence. Specifically, 

where 

N 

I-q 

1 511 

r-= ~ r(n) .  (7)  
512 n = 0  

The resulting sequence {x(n)  } is a size invariant ver- 
sion of sequence { r(n)  }. 

Now regarding orientation, our frequency con- 
tours actually do not have any orientation problem in 
the image domain. However, the 1-D sequence could 
be generated from any starting point on the contour. 
The normalization of { x (n ) }  with respect to its start- 
ing point should be addressed. In fact, normalizing the 
sequence {x(n)}  with respect to shape orientation is 
equivalent to normalizing it with respect to its starting 
point. There are many algorithms for this purpose (e.g., 
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Fig. 6. The Doppler frequency contour and the time sequence 
of the Doppler TFR shown in Fig. 2c. The starting point is 

marked by X on the frequency contour. 
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x(n) ~ x(n) 

Fig. 7. Normalization of the time sequence with respect to 
the starting point. 

Persoon and Fu 1977; Wallace and Wintz 1980). In the 
present study, a straightforward method was proposed. 
Because the sequence { x ( n )  } is known to be periodic, 
another period of  {x(n)}  was appended and a new 
sequence {y(n)}  was taken as the section between 
two maximum radial distance points in two connective 
periods of {x(n)  }, as shown in Fig. 7. The sequence 
{y(n)  } is thus invariant to shape, size, and position, 
as well as to its starting point. 

To obtain the shape descriptors, the sequence 
{y(n)  } was modeled as an AR process, 

P 

y ( n )  = ~ a iy (n  - i) + e (n )  (8)  
i=1 

where p is the model order, a~ are the AR coefficients, 
and e (n )  is the modeling error which is a zero mean 
white Gaussian process. In the present study, the AR 
model order was arbitrarily selected as 7. The variance 
cr 2 of the error and the AR coefficients a l - a 7  were 
called AR shape descriptors used as diagnostic features 
for classifying the stenoses. 

Amplitude distribution features. According to the 
work of  Cloutier et al. ( 1991 ), the amplitude distribu- 
tion of  the Doppler TFR contains important informa- 
tion to classify the stenosis. Five features related to 
the amplitude distribution or gray level distribution of 
the Doppler TFR were used in the present study. 

The normalized second-order central moments 
rhl, r/02, and 7720 (Gonzalez and Wintz 1977) of the 
Doppler TFR were first used as features to describe its 
amplitude distribution. These features reflect how gray 
levels of the Doppler TFR are distributed around its 
center of gravity. Let the Doppler TFR be described 
by TFR(n,  k). Then, 

~pq : ~pq] ~O (9)  

where 

T = P + q +  1, p + q = 2 , 3 , - . .  
2 

~pq = X X (n - ff)P(k - k)qTFR(n,  k) 
n k 

(lO) 

and (n, k) is the center of gravity of the Doppler TFR. 
Another way to describe the image amplitude dis- 

tribution is the one-dimensional gray level histogram. 
The mean and variance of the Doppler TFR gray level 
histogram were used as another two features: 

255 

gmean = ~ ip(i)  (11) 
i=0  

255 

gvar = ~ (i - gmean)2p(i )  (12) 
i=0  

where p ( i )  is the gray level histogram of the image. 
All 15 features were considered to have discrimi- 

nant power. In the present study, the best discriminant 
feature pattern was considered to be the pattern produc- 
ing the best classification accuracy. It was selected by 
evaluating all diagnostic patterns composed of a num- 
ber of features varying between 2 and a value equal 
to a ratio N~/5, where N~ is the minimum number of 
samples among classes. This ratio was recommended 
in the past to minimize the risk of  overestimating the 
real performance of the classifier (Jain 1987). 

Classifier design and evaluation 
A Bayes classifier developed by Durand et al. 

(1988) was used in this study. From the statistical 
point of view, this classifier represents the optimum 
measure of performance with known feature distribu- 
tion. The conventional biplane contrast angiographic 
studies were used as the "gold standard" to evaluate 
the performance of the classifier. 

The Bayes classifier is represented in the term of 
a set of discriminant functions g i ( X ) ,  i = 1 . . . . .  k, 
where k is the number of classes. The classifier assigns 
a feature vector X to class w~ if gi (X) > g~(X) for all 
j * i. By assuming that the feature vectors X within 
the ith class P(X/w~)  have a multivariate Gaussian 
distribution with mean vector/z~ and covariance matrix 
C~, the discriminant functions for the Bayes classifier 
are 

g , ( X )  = - ½ ( x  - ~ , ) ' c ; ' ( x  - ~,,) 

l loglC~ I + l o g P ( w i )  (13) 

where P(wi  ) is the a priori probability of class wi. 
In the present study, unknown data were classified 
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Table 2. Duplex scanning (visual interpretation) compared 
with angiography for lower limb arterial disease 

classification. 

Duplex classification 

Angiography 0 - 1 9 %  2 0 - 4 9 %  5 0 - 9 9 %  Total 

0 - 1 9 %  265 21 2 288 
2 0 - 4 9 %  43 7 5 55 
5 0 - 9 9 %  13 5 18 36 

Total 321 33 25 379 
Accuracy = 76% Kappa = 0.29 

Note: Permission to reprint this table was obtained from Ultra- 
sound Med. Biol. 

by a pattern recognition system based on the Bayes 
classifier into three classes (0-19%, 20-49%, and 50-  
99% diameter reduction) according to the following 
binary decision rule: 

DECIDE greater versus less than 50% stenosis 

IF less than 50% stenosis, THEN DECIDE 

greater versus less than 20% stenosis. 

The leave-one-out method (Toussaint 1974) was 
used to evaluate the performance of the classifier. By 
using this method, the training set consisting of the 
complete patient population minus one is used to de- 
sign the classifier, and the remaining patient is then 
classified. The procedure is repeated by extracting one 
patient at a time until all patients have been classified 
individually. The kappa statistic (Cohen 1960) was 
computed to measure the agreement between the pat- 
tern recognition system and angiography. If the 
agreement is greater or equal to chance, the kappa 
value will be greater or equal to zero, with a maximum 
value of + 1 for a perfect agreement. Similarly, if the 
agreement is less than chance agreement, the kappa 
value will be negative. 

RESULTS 

Complete examinations by ultrasonic duplex 
scanning and arteriography were performed on 37 pa- 
tients with ages between 21 to 79 years (58 +__ 15). 
There were 379 segments available for computer anal- 
ysis (Allard et al. 1991). Based on the evaluations 
of arteriography, 288 (76%) had a 0-19% diameter 
reduction stenosis, 55 (15%) had a 20--49% stenosis, 
and 36 (9%) had a 50-99% stenosis. Among the latter, 
23 were associated with the presence of severe disease 
(50-100% stenosis) in other adjacent (proximal and/ 
or distal) segments. 

The results by visual interpretation of the Doppler 
spectral waveforms are first shown in Table 2 as a 

two-way contingency table in order to compare with 
the pattern recognition results. An accuracy of 76% 
was obtained with a kappa value of 0.29 between the 
Doppler technologist and the angioradiologist. Of  the 
288 segments in the 0-19% class, 92% (265/288) 
were correctly classified. Of the 55 segments in the 
20-49% class, 13% (7/55)  were correctly classified. 
Of 36 segments in the 50-99% class, 50% (18/36)  
were correctly classified. 

The best results obtained by the pattern recogni- 
tion system with three different TFR techniques are 
presented in Tables 3, 4, and 5, respectively. The most 
discriminant features used at each binary decision 
branch by the pattern recognition system are also listed. 
Since the minimum number of segments was 36 in the 
50-99% class, no feature pattern size greater than 7 
was tested in order to satisfy a sample size to feature 
size ratio greater than 5. As shown in Table 3, when 
the short-time Fourier transform was used to compute 
the Doppler TFR, the overall accuracy was 80% and 
the kappa value was 0.38. Of the 288 segments in the 
0-19% class, 96% (276/288)  were correctly classified. 
Of the 55 segments in the 20-49% class, 16% (9/55)  
were correctly classified. Of 36 segments in the 50-  
99% class, 53% (19/36)  were correctly classified. 
When AR modeling was used to compute the Doppler 
TFR, the results from Table 4 show an overall accuracy 
of 81% and a kappa value of 0.42. Among the segments 
tested, 94% (272/288) were correctly classified as the 
0-19% class, 16% (9/55)  were correctly classified as 
the 20-49% class, and 67% (24/36)  were correctly 
classified as the 50-99% class. As shown in Table 
5, when Bessel distribution was used to compute the 
Doppler TFR, an overall accuracy of 82% and kappa 
value of 0.43 were obtained. Overall, 97% (280/288) 
of segments were correctly classified as the 0-19% 
class, 15% (8/55)  of segments were correctly classi- 

Table 3. Pattern recognition of Doppler signals compared 
with angiography for lower limb arterial disease 

classification. FFF was used to compute Doppler TFRs. 

Pattern recognition (FFT) 

Angiography 0 - 1 9 %  2 0 - 4 9 %  5 0 - 9 9 %  Total 

0-19% 276 8 4 288 
20 -49% 42 9 4 55 
5 0 - 9 9 %  14 3 19 36 

Total 332 20 27 379 
Accuracy = 80% Kappa = 0.38 

Most discriminant features at the first binary decision branch: ~r 2, 
a2, a3, gvar, r/02, q20. Most discriminant features at the second binary 
decision branch: ~r 2, a3, gmean, rht. 
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Table 4. Pattern recognition of Doppler signals compared 
with angiography for lower limb arterial disease 

classification. AR modeling was used to 
compute Doppler TFRs. 

Pattern recognition (AR) 

Angiography 0-19% 20-49% 50-99% Total 

0-19% 272 8 8 288 
20-49% 43 9 3 55 
50-99% 11 1 24 36 

Total 326 18 35 379 
Accuracy = 81% Kappa = 0.42 

Most discriminant features at the first binary decision branch: R1, 
a2, gmean, gvar. Most discriminant features at the second binary 
decision branch: R1, cr 2, al, a2, 7/20. 

fled as the 20-49% class, and 61% (22/36)  of seg- 
ments were correctly classified as the 50--99% class. 

Comparing the results presented in Tables 2, 3, 
4, and 5, it is obvious that the pattem recognition sys- 
tem is better than the visual interpretation approach to 
classify the lower limb arterial stenoses. The new TFR 
techniques (the AR modeling and the Bessel distribu- 
tion) improved the classification results. The results in 
Table 3 are similar with those of Allard et al. ( 1991 ) 
(accuracy of 81%, kappa value of 0.35). This indicates 
that the diagnostic features proposed in the present 
study are as good as those normalized with respect to 
blood flow velocity. 

DISCUSSION 

Angiography has been, for a long time, the defini- 
tive test for lower limb arterial stenoses determination. 
However, this approach provides anatomic rather than 
hemodynamic information and has important limita- 
tions. Interpretation is subjected to interobserver vari- 
ability (Jager et al. 1985). Furthermore, due to the 
invasive nature and relatively high cost, it is not suit- 
able for screening purposes and disease follow-up. As 
an alternative, ultrasonic duplex scanning is a good 
noninvasive tool. Jager et al. (1985) showed that the 
agreement between duplex scanning and angiography 
was as good as the agreement between two radiologists 
reading the same angiograms. Although color-flow du- 
plex scanning has several advantages over the conven- 
tional duplex technique to localize turbulent flow, it 
soil remains necessary to perform Doppler spectral 
analysis to grade arterial stenosis. In clinical practice, 
the Doppler spectra are very complex and not as clear 
as those typical patterns shown in Fig. 1. Visual inter- 
pretation of spectral patterns as currently done with 
the duplex scanner is not sufficient. Thus, the use of 

a pattern recognition system to classify Doppler blood 
flow signals for the determination of lower limb arterial 
stenoses is logical. It is possible to quantify complex 
Doppler spectral patterns and eliminate visual interpre- 
tation bias so as to increase the diagnostic accuracy. 

It is well recognized that selecting optimal Dopp- 
ler blood flow signals is a crucial step prior to signal 
processing and waveform classification. The technolo- 
gist performing the duplex scanning is of primary im- 
portance and needs to be well trained to perform the 
scanning competently. A firm understanding of equip- 
ment controls, anatomy, and physiology of blood flow 
is essential for an accurate scanning technique. Interob- 
server and intraobserver variability in the measurement 
of Doppler signal has also been noticed. It is thus of 
importance to standardize the examination technique 
for all patients to obtain reliable Doppler signals for 
stenosis classification. 

The technique used to compute the Doppler TFR 
also plays an important role in Doppler blood flow 
signal analysis. For historical reasons, the short-time 
Fourier transform has been the major technique for 
this purpose. It has for a long time been argued that 
this technique cannot provide sufficient information to 
reflect the nonstationary variations of the blood flow 
in the cardiovascular system. Furthermore, due to the 
random nature of the Doppler blood flow signal and 
the statistical variation of the technique itself, it was 
expected that the short-time Fourier transform could 
smear mild disease in the Doppler TFR. It has been 
shown (Vaitkus et al. 1988) that other techniques for 
spectral analysis, such as AR and ARMA modeling, 
offer the potential for achieving significant improve- 
ment in the display of the Doppler spectral waveform 
when compared to the short-time Fourier transform 
approach. In a previous study, using computer-simu- 
lated lower limb arterial Doppler blood flow signals, 

Table 5. Pattern recognition of Doppler signals compared 
against angiography for lower limb arterial disease 

classification. The Bessel distribution was used 
to compute Doppler TFRs. 

Pattern recognition (BD) 

Angiography 0-19% 20-49% 50-99% Total 

0-19% 280 1 7 288 
20-49% 42 8 5 55 
50-99% 14 0 22 36 

Total 336 9 34 379 
Accuracy = 82% Kappa = 0.43 

Most discriminant features at the first binary decision branch: R1, 
cr 2, a2, gvar, ~702. Most discriminant features at the second binary 
decision branch: R1, R2, a3. 



Doppler blood flow signal analysis • Z. GtJo et al. 345 

we compared five methods to compute the Doppler 
TFR and found that the Bessel distribution and the 
AR modeling are better than the short-time Fourier 
transform (Guo et al. 1994b). The clinical application 
in the present study confirmed this conclusion. For 
instance, we have shown by kappa statistics that both 
the Bessel distribution and the AR modeling improve 
the assessment of arterial stenoses, although the im- 
provements are not very significantly due to the possi- 
ble reasons discussed later. The results obtained by 
Bessel distribution are similar with those obtained by 
AR modeling. 

It should be noticed that the classification of a 
particular segment into a class of stenosis is based on 
an imperfect "gold standard": angiography. In classi- 
fying lower limb arteries into five classes, Jager et 
al. (1985) reported that the agreement between two 
angioradiologists reading independently the same films 
was only 70%. Therefore, the limitation of angiogra- 
phy presents a significant problem in the evaluation 
of the proposed approach. Another reason that could 
explain the limited performance of our approach is the 
presence of multiple stenoses in some of the patients. 
As previously mentioned, among 36 segments within 
50-99% stenosis, there were 23 associated with the 
presence of severe disease (50-100%) in proximal 
and/or  distal segments. We have noticed that the pres- 
ence of disease adjacent to the segment of interest 
could change the pattern of Doppler TFR of that seg- 
ment, which resulted in misclassification of stenosis. 
An additional analysis has been done by Allard et al. 
(1994) to investigate the limitations of duplex scan- 
ning for diagnosing lower limb arterial stenoses in the 
presence of adjacent segment disease. It was found 
that the presence of multiple stenoses decreases sig- 
nificantly the accuracy of the duplex scanning for the 
detection and quantification of lower limb arterial ste- 
noses. To gain more understanding of the amplitude 
distribution of Doppler TFR and the effect of multiple 
stenoses, a flow loop model has been recently set up 
in our laboratory to perform basic experimental mea- 
surements. 

The algorithm proposed to extract the frequency 
contour was proven robust. It overcame the possible 
erratic frequency contour sometimes observed when 
extracted from individual spectrum and facilitated the 
representation of the shape sequence. The motivation 
to use shape descriptors as diagnostic features is based 
on the importance of shape to the human visual system 
during interpretation of the Doppler spectral wave- 
form. In the present application, we believe that AR 
shape descriptors are better than other shape descrip- 
tors, such as Fourier descriptors (Persoon and Fu 

1977 ). This is because a fixed number of AR descrip- 
tors can represent all contours in a shape class (a class 
of stenosis). The differences between shapes in the 
same class manifest themselves as different sample 
sequences of the modeling error. The frequency con- 
tours of same degree of stenosis have small variations 
among arterial segments, but their AR descriptors are 
relatively stable. 

We also tried to classify stenoses by using only 
AR shape descriptors as well as two area ratios (R1 and 
R2) of Doppler TFRs computed by using the Bessel 
distribution. An accuracy of 79% and a kappa value 
of 0.37 were obtained which were better than those 
reported in Table 2 by using visual interpretation but 
not as good as those reported in Table 5 by using all 
features. This demonstrated that the amplitude distribu- 
tion of Doppler TFR also contains important diagnostic 
features. Work done by Cloutier et al. (1991) sug- 
gested the importance of amplitude distribution of 
Doppler spectra for the classification of stenoses. How- 
ever, these amplitude-related features cannot be ex- 
tracted from visual interpretation. This again suggests 
to use computer analysis and pattern recognition sys- 
tem to improve stenosis classification. 

CONCLUSION 

Two new techniques for Doppler TFR estimation, 
the AR modeling and the Bessel distribution, were 
tested using clinical Doppler blood flow signals for 
lower limb arterial stenoses classification. Results 
showed that these two techniques are better than the 
conventional short-time Fourier transform. An algo- 
rithm based on image processing techniques was pro- 
posed to extract the frequency contour from Doppler 
TFRs. This algorithm was shown to be robust. AR 
shape descriptors were proposed as diagnostic features. 
Simple algorithms to normalize the shape descriptors 
were implemented and confirmed valuable in this clini- 
cal application. Advanced investigations in under- 
standing amplitude features and multiple stenoses will 
be carried out in the near future. It is likely that with 
continued improvement, the pattern recognition ap- 
proach will be feasible to detect stenoses and to follow 
the disease progression with more reliability and less 
bias than visual interpretation. 
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