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Changes in biomechanical properties of biological soft tissues are often associated with
physiological dysfunctions. Since biological soft tissues are hydrated, viscoelasticity is
likely suitable to represent its solid-like behavior using elasticity and fluid-like behavior
using viscosity. Shear wave elastography is a non-invasive imaging technology invented
for clinical applications that has shown promise to characterize various tissue
viscoelasticity. It is based on measuring and analyzing velocities and attenuations of
propagated shear waves. In this review, principles and technical developments of shear
wave elastography for viscoelasticity characterization from organ to cellular levels are
presented, and different imaging modalities used to track shear wave propagation are
described. At a macroscopic scale, techniques for inducing shear waves using an
external mechanical vibration, an acoustic radiation pressure or a Lorentz force are
reviewed along with imaging approaches proposed to track shear wave propagation,
namely ultrasound, magnetic resonance, optical, and photoacoustic means. Then,
approaches for theoretical modeling and tracking of shear waves are detailed.
Following it, some examples of applications to characterize the viscoelasticity of
various organs are given. At a microscopic scale, a novel cellular shear wave
elastography method using an external vibration and optical microscopy is illustrated.
Finally, current limitations and future directions in shear wave elastography are
presented.

Keywords: viscoelasticity (linear), elastography, mechanical shear waves, ultrasound imaging, magnetic resonance
imaging, optical imaging, optical coherence tomography, photoacoustic imaging

INTRODUCTION

Changes in mechanical properties of biological soft tissues are often associated with physiological
dysfunctions. Viscoelasticity is an important mechanical biomarker to characterize structural changes
and/or constituents of tissues. However, the assessment of elasticity through imaging has been more
often exploited than viscosity, and an historical perspective of development has been to replace manual
palpation by physicians and to answer an ultimate and natural question: ‘is the region hard or soft?’The
elasticity, represented by the Young’s modulus E, is able to characterize tissue deformation by using a
linear relationship between stress σ and strain ε as E � σ/ε. The rationale behind the elasticity
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assessment of biological soft tissues is that Young’s moduli of
different types of human tissues differ by a few orders ofmagnitude
[1], and are affected by the presence of a pathology.

Since biological soft tissues are hydrated, they are not only
represented by their solid-like behavior using elasticity, but also
by their fluid-like behavior using viscosity. Viscosity represents
the hysteretic effect between stress and strain applied on a tissue.
It is becoming an important biomarker of pathological changes in
biological tissues. Mechanical test is the most basic method to
measure the viscosity of ex vivo soft tissues. To this end, a
constant strain is applied to a test specimen. The stress
relaxation with time is used to characterize the viscosity of the
tissue. Another way of mechanical test is dynamic mechanical
analysis. Periodic strain or stress is imposed on a specimen. The
dynamic responses in terms of different incentive frequencies are
associated with tissue viscoelasticity. Relevant works on
mechanical testing of biological soft tissues can be found in
[2–9]. Alternatively, imaging-based approaches are becoming
more popular for in vivo viscoelasticity assessment. These
approaches exploit tissue deformations in acoustic, magnetic or
optical fields to characterize viscoelasticity in a non-invasively
manner. Soft tissues can maintain their function during the
measurement avoiding destructive testing [10]. Based on a
clinical perspective, the in situ and localized assessment of tissue
viscoelasticity through imaging had major impacts on diagnosis
(e.g., cancers, liver fibrosis, musculoskeletal disorders,
cardiovascular diseases, etc. . .). Since biological tissues consist of
cells, extracellular matrices, and structural proteins, a recent field of
development has been to study sub-cellular biomechanical
properties associated with pathological processes through
imaging. This finding encouraged researchers to impel bio-
elasticity research further into a microscopic scale.

This review aims to provide a state-of-the-art summary of
developments made in the field of shear wave elastography,
which concerns elasticity and viscosity imaging through
mechanical shear wave analysis. This technology requires a
shear wave source, the tracking of shear wave propagation
through imaging, and the processing of the shear wave
propagation characteristics through physical models or image
processing algorithms. Shear waves can be generated by external
or internal vibrating sources. An external mechanical actuator in
physical contact with an organ or cell is a common way to induce
shear wave propagation from the surface to the core, whereas
acoustic radiation or Lorentz forces can be used as internal in situ
localized shear wave sources. The detection of the shear wave
propagation is usually performed using ultrasound (US), magnetic
resonance (MR), optical or photoacoustic imaging methods.
Elasticity and viscosity can be obtained from estimations of
shear storage and loss moduli, which require the determination
of the shear wave velocity and attenuation into the interrogated
medium. In the following sections, the generation and tracking of
shear waves are described. Determining elasticity and viscosity
maps through the solution of an inverse problem based on elastic
wave propagation equations and underlying assumptions are also
addressed throughout the text. Note that this review is not intended
to detail artifacts and confounders of shear wave imaging because
these are organ, tissue structure, and tissue pathology specific.

Nevertheless, such information is presented briefly in some
sections.

BIOMECHANICAL PRINCIPLES OF SHEAR
WAVE ELASTOGRAPHY
General Concepts in Shear Wave
Elastography
The major approach since the early steps of elastography imaging
has been to approximate the tissue as isotropic and purely elastic.
This situation has been widely described so the main constitutive
relations essential to shear wave elastography (SWE)
understanding are recalled here. The relationship between the
applied stress and the strain response of the solicited tissue is
given by Hook’s law:

Tij(r, t) � cijkl(r, t)Skl(r, t) (1)

where T and S are the stress and strain tensors, respectively, and
cijkl contain the elastic parameters of interest. Under the
assumption of small deformations, the strain tensor is given by:

Skl(r, t) � 1
2
(∇u + (∇u)T) (2)

where u is the 3-dimensional motion field in unit of (m) induced
by stressing the tissue. The time domain wave equation describing
the propagation of local displacements is obtained using
Newton’s second law:

ρ
z2u(r, t)

zt2
� ∇ · T(r, t) + f (r, t) (3)

where ρ is the material’s density in [kg/m3] and f [Nm−3] is the
source term. After Fourier transform into the frequency domain,
Eqs 1–3 are expressed as:

~Tij(r,ω) � cpijkl(r,ω)~Skl(r,ω) (4)

~Skl(r,ω) � 1
2
(∇~u + (∇~u)T) (5)

−ρω2~u(r,ω) � ∇ · ~T(r,ω) + ~f (r,ω) (6)

where ω � 2πf with f the frequency, and the tilde (∼) and star (*)
notations refer to complex numbers. Full development of Eq. 3
(available in Ref. [11]) leads to the governing equation of motion
propagation in elastic solids known as the Navier’s equation:

ρ
z2u
zt2

� μ∇2u + (λ + μ)∇(∇ · u) (7)

where μ is the shear modulus in (Pa) reflecting the amount of
energy the tissue can store as elastic deformation, and λ is the first
Lamé coefficient in (Pa) reflecting the tissue’s compressibility.
The Navier’s equation does not rely on rheological models and
conveys an approximation of the material’s natural properties
based on physical assumptions. The same development applied to
Eq. 6 leads to:

−ρω2~u � Gp∇2~u + (λp + Gp)∇(∇ · ~u) (8)

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6661922

Li et al. Shear Wave Viscoelasticity Imaging

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


where Gp � G′ + jG″ is the general notation of the complex
shear modulus in the frequency domain of Navier’s equation,
G′ is the shear storage modulus that reflects the amount of
mechanical energy stored as shear deformation in the solid,
and G″ is the shear loss modulus reflecting the amount of
mechanical energy dissipated due to shear viscosity.
Similarly, λp � λ′ + λ″ is the complex Lamé coefficient,
where λ′ and λ″ are the compression storage and loss
moduli, respectively, reflecting the amount of energy
stored and lost in the solid due to compression
deformation and compressional viscosity. In purely elastic
solids, the wave field does not dissipate and shows an
instantaneous response to load. In such cases, the loss
moduli equal zero, and Gp � G′ � μ and λp � λ. The
Young’s modulus E, characterizing the solid’s resistance to
deformation under loading, and the Poisson’s ratio ]
characterizing the tissue’s compressibility, are defined by:

E � μ(3λ + 2μ)
λ + μ

, (9)

and

] � λ

2(λ + μ) (10)

The motion field u propagates as compression and shear waves of
which velocities vc and vs are, respectively, given by (see Ref. [11]
for details):

vc �
�����
λ + 2μ

ρ

√
(11)

and

vs �
��
μ

ρ

√
(12)

The large difference between the two velocities observed in
biological tissues (typically vc is around 1,540 ms−1 and vs is found
around 1–10ms−1) suggests that λ is much greater than μ, thus
allowing for the following approximation often used to report SWE
measurements:

E ≈ 3μ (13)

This observation is directly linked to the tissue
incompressibility assumption, which causes λ to approach
infinity [12]. Additionally, λ was shown to vary slightly as
opposed to μ, which spans a few orders of magnitude in
biological tissues [13]. Consequently, the shear modulus or
the Young’s modulus is the mechanical parameter considered
in elastography reconstruction processes.

Another approach much less often used to reconstruct
material mechanical properties in SWE is to model the solid
as isotropic and viscoelastic instead of purely elastic. Here,
the response of the loaded tissue shows a delay with respect to
actuation and elastic waves attenuate due to energy
dissipation in the solid, which is specific to viscous
materials. Attenuation may be accounted for in the

time-domain Navier’s equation by introducing a damping
term, and linking it to viscosity using rheological models such
as the generalized Maxwell, standard linear solid, or Kelvin-
Voigt, which are further discussed in the next section. The
following Table 1 presents the stress-strain relationships
used to derive wave equations from Newton’s second law
for the three aforementioned rheological models [14].

A different option to integrate viscoelastic properties into the
description of the material is to formulate the problem in the
frequency domain, provided a harmonic actuation. In this case,
the complex shear modulus, as described in Eq. 8, has a non-zero
imaginary part accounting for shear wave dissipation due to the
material’s shear viscosity. Relating G″ values to actual viscosity
values depends on rheological modeling, as discussed in the next
section. For instance, in the case of a solid described by the
Kelvin-Voigt model, the complex shear modulus is given by
G(r)p � G(r)′ + jG(r)′ � μ(r) + jη(r)ω, where η(r) is the local
shear viscosity.

For G′ and G″ estimation, the displacement field ~u may be
used as the solution to the Navier’s equation in direct or iterative
inversion, or the shear wave velocity at frequency ω

2π may be
measured. Here, the complex wave number is noted as
k � k′ + jk″ � ω���

G*/ρ
√ , in analogy with the complex shear

modulus notation, and the dispersion relation is given
by k′ � ω

vp
, where vp is the phase velocity of the shear wave at

the frequency ω
2π. Considering a plane wave decomposition of the

wave field, the ith component has the
formUi(ri, t) � Ae−j(kiri−ωt) � Ae−j(k’i ri−ωt)−k’’i ri . The imaginary
number k″ is often noted α and is the shear wave attenuation
coefficient (m

−1
). Thus, a linear system of two equations may be

raised and independent experimental evaluations of vp and α from
the displacement field allows assessing G′ and G″. Also, the Young’s
modulus becomes complex-valued in viscoelastic models. However,
most viscoelasticity reconstruction processes stick to the evaluation
of G′ and G″. Finally, it is to be noted that the equivalence between
longitudinal and compression waves on one hand, and transverse
and shear waves on the other hand, is true for plane waves only.

To date, isotropic elastic and viscoelastic characterization
of soft matters have mostly been considered in shear wave
elastography, owing to the availability of various inversion
schemes. However, the anisotropic and poroelastic nature of
certain biological tissues, such as the brain, has long been
acknowledged. In poroelasticity, the medium is modeled as a
porous solid matrix crossed by flowing fluid, and thus
contains two separate phases, as opposed to more
common models containing one phase. Consequently, the
motion field measured in imaging protocols is not only due
to the solid tissue deformation but also to the pressure
gradient in fluid pores. Although poroelasticity was early
studied using quasi-static deformations [15],
implementation in shear wave elastography imaging
remains in its infancy. Oscillatory deformations in
poroelasticity have first been described by Biot [16, 17],
and later by [18]. Assuming a viscous fluid flow, fluid
saturation in pores, and a compressible linearly elastic
solid, poroelasticity equations of propagation are given by:
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∇ · μ∇u + ∇(λ + μ)(∇ · u) − (1 − β) ∇p � −ω2(ρ − βρf )u, (14)

ω2ρf (1 − β)
β

(∇ · u) + ∇2p � 0, (15)

β � ωϕ2
pρf κ

iϕ2
p + ωκ(ρa + ϕpρf ) , (16)

where µ is the shear modulus, λ the first Lamé’s parameter, u the
complex time harmonic displacement field, β the effective stress
coefficient (dimensionless), p the complex time harmonic
pressure field, ω the actuation frequency, ρ the bulk density, ρf
the pore fluid density, ϕp the material porosity, κ the hydraulic
conductivity, and ρa the apparent mass density.

Finally, anisotropy has been considered for biomechanical
modeling in the context of shear wave elastography. In such
cases, the material’s mechanical response (strain) is dependent on
the direction in which it is solicited (stress). Full derivation of
relevant mechanical parameters under different symmetry
assumptions is beyond the scope of this review, and the
interested reader is referred to the excellent pedagogical
development in [19]. Briefly, Hooke’s law describes the
relationship between applied stress and material strain:

σ ij � ∑3
k,l�1

Cijklϵij (17)

where σ and ϵ are the stress and strain tensors, respectively. In
isotropic materials, the tensor Cijkl is fully described by two
parameters, E and ]. In anisotropic materials, more constants
are needed to account for the direction dependance of ϵ. Themost
used anisotropic model is transverse isotropy, which is
particularly used to characterize fibrous tissues (e.g., muscles).
Transversely isotropic materials are organized in layers where in-
plane mechanical properties are isotropic, and out-of-plane ones
are anisotropic. In such cases, 5 parameters are necessary to
describe Cijkl. Two of them, μ13 and μ12, characterize the shear
motion along and perpendicular to the fiber axis, respectively.
The other three, E1, E2, and E3 characterize the compression
motion along, perpendicular in-plane, and perpendicular out-of-
plane to the fiber axis, respectively. Injection of the Hooke’s law
into Newton’s second equation allows to derive equations of shear
wave propagation along directions of dependency the same way
as to derive the Navier’s equation of elasticity. Other anisotropic
models exist, such as the orthotropic one which shows a lower
level of symmetry (three perpendicular planes) than the
transverse isotropy model. The orthotropic model has been

used to develop waveguide elastography, which describes the
propagation of the different polarizations of shear waves along
separate directions. The orthotropic tensor along with equations
of polarized wave propagation are described in detail in [20].

Characterization of Tissue Viscoelasticity
Most soft bio-tissues contain more than 70-w% of water, thus they
can be considered as fluid-like solids, which means these materials
have characteristics of both solids and fluids [1]. Elasticity refers to
the solid property that describes the ability of a material to return to
its original shape after a stress is removed [21]. The fluid property is
given by the viscosity (η) that describes the ability of a material to
resist to its deformation due to a tensile stress or shear stress [21].
Three categories of properties are often used to characterize the
viscoelasticity of a soft material: its compressibility, which is usually
measured by the bulk modulus (K) and the Poisson’s ratio (]); its
tension, which mainly refers to the Young’s modulus (E); and shear
properties, described by the second Lamé coefficient (µ) and the
complex shear modulus (G*).

The complex shear modulus (see Eq. 8 and accompanied
description) is self-sufficient to describe the viscoelasticity of
biological tissues. In general, the storage modulus G′ reflects the
shear elastic property while the loss modulus G″ reflects the viscous
response of the material. Alternatively, rheological models were
considered to relate experimental measurements to elastic and
viscous properties of tissues. Mathematically, the Kelvin-Voigt and
Maxwell models have been considered most frequently to describe
viscoelastic tissues [22–24], i.e., quantifying the shear elasticity and
viscosity. The two models are represented by a purely elastic spring
connected to a purely viscous dashpot in parallel (Kelvin-Voigt) or in
series (Maxwell), respectively. Amaterial with only elasticity is called a
purely elastic material (only a spring), while a material with only
viscosity (only a dashpot) is called aNewtonian fluid [25]. A soft tissue
or soft tissue-like material falls between these two extreme conditions
and can be called as a viscoelasticmaterial [26]. Othermaterial models
are used less frequently, while most of them are constructed with
different combinations of single/multiple spring(s) and dashpot(s) in
more complicated arrangements, such as the Zenermodel, generalized
Maxwell model, and generalized Kelvin-Voigt model [27–29].

Note that in the field of SWE, the complex shear modulus G*
may be sometimes confused with the storage modulus G′ and the
second Lamé coefficient µ (also known as the shear modulus).
Although the storage modulus reflects the tissue elasticity, they
are not rigorously the same. For sake of clarity, in this review, the
elasticity is denoted by |µ|, i.e. the real component of the second
Lamé coefficient. Therefore, for incompressible soft tissues (i.e.,
for a Poisson ratio close to 0.5) with a negligible viscous
component, it can be assumed that such a tissue is a purely
elastic material so thatG* solely represents the real shear elasticity
and so G* � G′ � |µ| [30, 31]. Otherwise, the calculation of
elasticity (as well as the viscosity) is rheological model dependent.

Mathematical relations between tissue excitation and response [32]
may be divided into two groups according to the temporal difference of
the excitation [30, 33]: namely quasi-staticmeasurements and dynamic
measurements [also termed shear wave (SW) measurements]. The
quasi-static measurement methods mainly analyze the stress-strain
behavior. On the other hand, SW measurement methods determine

TABLE 1 | Stress-strain relationships for three common rheological models
accounting for the viscoelastic behavior of soft tissues. Details about these
models are reported in the next section. T, S, c and η are the stress, strain,
elasticity and viscosity tensors respectively, E, E1, and E2 are Young’s moduli
specific to the Maxwell and standard linear solid models.

Model Stress-strain relationship

Kelvin-Voigt T � cS + η dS
dt

Maxwell η dT
dt + E T � Eη dS

dt

Standard linear solid (E1 + E2)T + η dS
dt � E1E2S + E1η dS

dt
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the complex shearmodulus by tracing and analyzing a propagated SW
in the specimen.

During the past years, studies in the field of SWE
measurements were often targeting absolute values of elasticity
|µ| and viscosity η. To do so, rheological models of the material
are needed to derive those parameters. For instance, when the
Kelvin-Voigt model or Maxwell model is considered, the complex
shear modulus can be written as follows [28, 34, 35]:

GKV � ∣∣∣∣μ∣∣∣∣ + jωSη, (18a)

GM � jωSη
∣∣∣∣μ∣∣∣∣∣∣∣∣μ∣∣∣∣ + jωSη

, (18b)

whereGKV representsG* of the Kelvin-Voigtmodel, andGM is that
for the Maxwell model, both satisfy G* � G′ + jG″. In Eq. 18, ωS is
the angular frequency of the SW. Alternatively, by solving the wave
equation in Eq. 8, a general solution of G′ and G″ without
considering a rheological model can be obtained, as in [28]:

G′ � ρω2
Sv

2
S ·

ω2
S − α2

Sv
2
S(ω2

S + α2
Sv

2
S)2 , (19)

G″ � 2ρω2
Sv

2
S ·

ωS · αS · vS(ω2
S + α2

Sv
2
S)2 . (20)

Here, as synergized with Eq. 18, one can see that both |µ| and η
are functions of vS, αS, and ωS. Since vS and αS can be
experimentally measured at certain ωS, |µ| and η, in a specified
rheological model, can be thereafter calculated.

In common practice, when the viscosity η is taken into account
for tissue characterization, it can be determined either directly using
both vS and αS with knowing the corresponding ωS, or alternatively
by evaluating the dispersion of vS with respect to ωS without
determining the value of αS, i.e., by knowing multiple pairs of vS
and ωS [27, 36, 37]. However, one should also notice that the
viscoelastic property of biological tissues are rather complex, depend
on the tissue type, and on the presence of a pathological condition, so
that there is not simply a best, or a most appropriate material model
for all tissues. Furthermore, pathological changes with time of a
tissue could also lead to a major change of its viscoelastic property,
thus a certainmaterial model may no longer be suitable for the tissue
when it becomes abnormal and progresses toward a more severe
pathological state. Meanwhile, the derivation of elasticity |µ|, and
viscosity η, are rather different among different material models.
That means, using different models with same measures (such as vS
and αS) would lead to different results [28], and hence would be
meaningless to clinical studies. Therefore, nowadays it is always
suggested that no rheological model is assumed, and instead of that,
directly access the shear storageG′ and lossG″moduli would be not
only more rigorous and appropriate, but also mathematically
convenient to describe tissue viscoelastic properties [28, 37].

ULTRASOUND SHEAR WAVE
ELASTOGRAPHY

Generation and Detection of Shear Waves
A shear wave, also called a transverse wave, is a moving
mechanical wave that consists of particle oscillations occurring

perpendicular to the direction of the energy transfer [38]. As
briefly introduced, SWs in ultrasound imaging can be generated
either from an external vibration source (such as a mechanical
vibrator/shaker) [39–42], or internally by an acoustic radiation
force (ARF) [13, 44–51], as illustrated in Figure 1. The control of
the SW amplitude and frequency of the ARF is considered in [13].
In terms of waveforms, the SW can also be generated as
continuous waves [39, 40, 42, 44–46] or impulse waves [41,
47–51], as can be seen in the examples of Figure 2. In
ultrasound imaging, the probe fires longitudinal pressures and
detects particle displacements along the axial direction, therefore
only SWs that propagate along the lateral direction of the
ultrasound beam, or SW components whose displacements
occurred on the axial direction, can be detected.

Many remarkable techniques were invented over the past
30 years based upon different combinations of external or
internal SW sources, and continuous or impulse SWs. In 1988,
Lerner et al. proposed a method to map the propagation of low
frequency SWs with a Doppler ultrasound displacement
detection technique to assess tissue stiffness [39]. Later in
1990, Yamakoshi et al. proposed a dynamic measurement
method to determine the SW speed vS using an external
mechanical vibration source [40], as seen in Figure 2A. The
parameter vS was determined by analyzing the wavelength of a
continuously propagated SW using the Doppler ultrasound
technique. Catheline et al. developed in 1999 an impulse SW
measurement method [41]. In this method, an ultrasonic probe
was located at one side of the specimen to capture the propagation
of the impulse SW generated by a mechanical vibrator located at
the other side of the specimen. A plane wave ultrasound system
was used, enabling a high frame rate in detection mode, then the
parameter vS was determined through the time-of-flight (TOF)
technique applied on successive images. See below for more
information on the TOF method. Since such a method used
an impulse SW, it is also called transient SW imaging, or transient
elastography (TE). Nowadays, the largely used clinical device
Fibroscan [52, 53] is based on TE. In 2004, a method using two
external SW sources to generate continuous SWs toward each
other with slightly different SW frequencies was proposed [42].
Due to the frequency difference, interfered SW patterns termed as
“crawling waves” moved with a much slower speed than the
expected vS, This allowed the observation of propagated crawling
waves with a conventional low frame rate B-mode imaging
system. Once the speed of the crawling wave is obtained, vS
could be derived.

FIGURE 1 | Shear wave generation sources: (A) an external vibration
source, and (B) am internal acoustic radiation force.
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In 1998, Sarvazyan et al. developed a SW measurement
method, termed shear wave elasticity imaging (SWEI), by
using a SW remotely generated by an ARF of a focused
ultrasound beam [13]. In this method, a transient SW pulse
was firstly produced at the focus of the ultrasound beam and
propagated along sideways. Then, imaging transducers were used
to trace the moving of SW fronts and viscoelastic parameters were
derived thereafter. The same year, Fatemi and Greenleaf
developed a method to produce an oscillatory ARF by mixing
two ultrasound beams with different frequencies [44]. A short
period of harmonic (continuous) or tone-burst SWs was
generated and propagated along sideways, which made the SW
narrow-band (while the SW generated by Sarvazyan’s method
was broadband) and then vS could be determined by finding the
phase difference of the SW at two apart locations [45]. By
repeating the measurement with continuous SWs at different
frequencies, or retrieving different frequency components of a
tone-burst SW, both G′ and η could be derived. This method is
termed as SW dispersion ultrasound vibrometry (SDUV). Later
in 2004, based on the combination of Catheline’s impulse SW
method [41] and the ARF technique [13], Bercoff et al. developed
an advanced SW measurement method known as supersonic
shear imaging (SSI) [47]. With this method, an ultra-high-speed
scanner is used, then multiple ARF impulses are triggered
consecutively and very quickly at different depths. Each
impulse produces a SW point-like source then all these SWs
are interfering constructively and result in two SW planes
propagating in opposite directions, as can be seen in
Figure 2B. A two-dimensional vS image is obtained with this
method. Moreover, since this technique is creating broadband
SWs, tissue viscosity can also be estimated through the vS
dispersion method (using the same principle as SDUV). In
2012, Song et al. developed a SW method, which also used
multiple lateral ARFs as in [48]; the method was termed as
comb-push ultrasound shear elastography (CUSE) [49]. It
firstly generates multiple ARF excitations at different spatial
locations to produce multiple impulse SWs by using the push
mode of the ultrasound probe, and then quickly switches to the
scanning mode of the probe to detect the SW propagation.

Therefore, vS could be measured through the TOF technique
by tracing the movement of the SW front from each SW source.
The use of the comb-push excitation provided multiple SW
sources in the specimen so that such method is effectively
compensating for the worse signal-to-noise ratio (SNR) due to
the SW attenuation at the location far away from a given SW
source.

Knowing that vS � λS × fS, one may like to measure vS through
the TOF technique, or instead to determine λS in the spatial
domain. For most biological tissues, vS travels at a few m/s, which
means it only takes a couple of ms for a SW to travel through the
entire field of view (FOV) of a common ultrasound probe.
Physically, a focused ultrasound system triggers transducer
elements sequentially from one edge to another to complete a
B-mode scan, as a result the frame rate is typically less than 100
frames/sec in such a system, which is not fast enough to measure
the TOF without a particular modification of the experimental
setup [42]. Therefore, measuring λS becomes the realistic option.
In this scenario, the spatial resolution is determined and limited
by λS. Although increasing fS is reducing λS, and so is improved
the resolution, one should also notice that a higher frequency
would cause a quick attenuation of the SW propagation. Thus,
empirically fS is usually adjusted to a few hundreds of Hz, which
leads the lateral resolution of elastography images to a sub-
centimeter level with using standard focused ultrasound
beamforming. On the other hand, a plane wave system can
trigger all transducer elements of the probe at the same time
to emit a plane compression wave, enabling it to have a very high
frame rate in B-mode (up to 10,000 frames/sec) [47]. Thus, in this
scenario, the TOF technique is applicable, and theoretically the
distance that a SW travels within two consecutive frames could be
as short as a few-tenth of mm. Since the distance is comparable to
the physical interval of two adjacent transducer elements in a
common ultrasound array probe, the lateral spatial resolution of
SWEwith using a plane wave system is approximately the same as
that of B-mode imaging [54]. It is also worth noting that, when
tissue boundaries/layers exist under the FOV, and a propagating
SW passes through those interfaces, physical phenomena such as
reflection, refraction, diffraction, and mode conversion could

FIGURE 2 | Examples of the generation of (A) continuous shear waves, adapted from [40] copyright 1990 IEEE, and (B) impulse shear waves, reproduced with
permission from [47] copyright 2004 IEEE.
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occur at the interfaces and cause artifacts. Although directional
filters are usually applied to mitigate those effects [55, 56],
practically it is still difficult to remove all the unwanted waves.
Therefore, the vSmeasured within approximately one λS from the
interfaces are usually considered unreliable, which to some extent
would downgrade the spatial resolution at those areas [57].

Viscoelasticity Reconstruction
As introduced earlier, ultrasound SWE contributed to the non-
invasive assessment of mechanical properties of soft tissues
[58–62]. One method largely used clinically is transient
elastography (TE) [63–67], which utilizes a dynamic
compression generated by the vibration of the transducer on
the skin to produce shear waves. No structural imaging is
provided with this method to guide the measure. Moreover, in
some patients with morbid obesity and ascites, the attenuation of
shear waves travelling from the surface of the body to the organ of
interest (typically the liver) may avoid reliable measurements [68,
69]. The acoustic radiation force impulse (ARFI) [60, 70] and
supersonic shear imaging (SSI) [47, 71, 72] methods use a
radiation pressure to locally induce shear waves within the
organ of interest. TE, ARFI and SSI are assessing tissue
elasticity (no viscosity) based on the measurement of the shear
wave speed [73]. The Young’s modulus is estimated and displayed
as an image using E � 3 |µ| � ρv2s . Alternatively, different
approaches have been developed to retrieve and display the
viscous component of a tissue [50, 51, 74, 75]. Such
approaches have not yet been validated on large clinical
cohorts, nor implemented on clinical scanners. Details on
technologies proposed to determine tissue viscoelasticity are
given next.

Most studies utilized a rheological model, which has been
introduced earlier, e.g., the Kelvin-Voigt model, to find the
viscosity after the reconstruction of elasticity [45, 76–78]. The
complex shear modulus G* � G′+ jG″ was also estimated using
different approaches, such as measuring the acoustic radiation
force-induced creep [74], solving the Navier’s wave equation
numerically [79], inverting analytically the solution of the
shear wave scattering from a mechanical inclusion [80–82],
and using a finite-element based method [83]. Note that a
torsional SW source was used in the latter method, as
originally proposed in [84].

Kazemirad et al. [50] developed a method for the quantitative
measurement of viscoelastic parameters G′ and G″ at various
frequencies, based on the assumption of a cylindrical shear wave
front produced by a radiation pressure, allowing to avoid wave
diffraction effects. Other studies have also used the same
geometrical assumption for quantitative viscoelastic
measurements [75, 85, 86]. Notice that the cylindrical wave
front assumption would not necessarily hold when considering
inhomogeneous media, such as a tissue embedding a tumor. A
recent method for estimating tissue viscosity without geometrical
assumption on the wave front was proposed by [51], which
utilized the shear wave velocity vS and attenuation αS
computed by the frequency shift method [87]. Recently, [88]
performed a study to characterize viscoelastic properties of oil-in-
gel viscoelastic phantoms and in vivo human livers. They found

that the shear wave dispersion and attenuation were linked
together and related to the tissue viscosity. As reviewed above,
the shear wave speed and attenuation are widely used for
reconstructing viscoelastic properties. Experimental methods to
obtain those shear wave properties are separately
described below.

Shear Wave Speed
One of the widely used methods implemented on clinical
scanners is the group velocity [89–92] that assumes the
tissue as elastic, homogeneous, isotropic, linear, and of
infinite dimension with respect to the wavelength. The
group velocity is estimated using time-of-flight (TOF)-based
algorithms for particle displacement or particle velocity
assessments in the time domain [72, 93]. TOF–based
algorithms are usually based on cross-correlation (CC) [94]
and time-to-peak (TTP) methods [90]. Basically, the CC
provides a moving average estimate of the shear wave speed
using all sample points, and performs multiple cross-
correlations along the direction of the wave propagation,
which may result in artifacts for periodic shear wave
patterns, whereas TTP estimates the velocity based on the
tracking of the movement of one point on the waveform
[90]. Although group velocity estimation methods are
considered robust [91], they are theoretically applicable to
strictly elastic materials thus requiring resorting to other
techniques for the evaluation of the viscous behavior [95].

The variation of the shear wave velocity with frequency refers
to the wave dispersion happening in a viscoelastic medium [45].
Some methods have used this phenomenon to evaluate
viscoelastic properties of tissues [45, 96]. Measuring shear
wave velocities at specific frequencies is known as phase
velocity estimation [45]. Beside the viscoelastic property of a
tissue, its finite thickness can also affect the dispersion due to
reflections during propagation, which may result in wave mode
conversion [97–99]. The phase velocity and the group velocity are
not equal in the presence of dispersion. It was shown that the
phase velocity has a lower value by a factor of 8–9% compared
with the group velocity in soft tissues [100].

One technique to measure the phase velocity is the phase
gradient approach, which estimates the velocity using the phase
difference evaluated at different spatial locations for specific
frequencies [45, 85, 96]. An alternative method to estimate the
shear wave phase velocity is performed by two-dimensional
Fourier transform (2D-F) analysis, which converts
spatiotemporal data to a wavenumber in the frequency
domain, and uses the peak magnitude distribution to estimate
the phase velocity [101, 102]. The dispersion either from the
phase gradient or 2D-F can be fitted to rheological models to
quantify viscoelastic parameters of the medium [45, 103]. The
attenuating nature of a tissue is the cause of the dispersion of the
phase velocity. The shear wave dispersion and attenuation can be
estimated by the computation of a power law coefficient, with the
assumption of a power law rheological model for the tissue
[100, 104].

Local phase velocity imaging (LPVI) [105, 106] is another
method that can produce a phase velocity map. The LPVI
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requires applying bandpass filters to obtain the maximal
frequency range for the phase velocity. Although this method
demonstrates good reconstructions of 2D shear wave phase
velocity, results are sensitive to the frequency range selected,
and they may change when using different transducers, focal
configurations, and focal depths [78].

Shear Wave Attenuation
The dependency of the wave amplitude with distance is attributed
to geometrical spreading of the wave energy and to viscoelastic
attenuation. Wave diffraction by geometrical spreading can be
reduced by using the method of [50] that is considering
cylindrical shear waves produced by a supersonic radiation
pressure source. Other methods including this assumption
were based on a 2-D Fourier transform and the computation
of the spectral width to assess the frequency dependent
attenuation [75, 107, 108]. A robust method assuming a
cylindrical wavefront and no rheological model is the
attenuation-measuring ultrasound shear wave elastography
(AMUSE) algorithm [107]. This method, however, does not
provide any attenuation map since the computation requires
all datasets within the selected region-of-interest. Since biological
tissues such as the kidney, muscles, and tendons are anisotropic,
and because the wave produced by a linear SW front may no
longer be cylindrical in those media; then, abovementioned
algorithms may lead to inaccurate results [96, 109–112].

Frequency-shift methods used for compression and seismic
wave analyses [113–115] inspired the field of shear wave
elastography to assess tissue viscosity. Frequency-shift methods
are not based on wave amplitude, so the dependency of these
methods to geometrical wave spreading is released [113]. Bernard
et al. developed such a frequency-shift method for shear wave
attenuation bymodel-fitting of the amplitude spectrum [87]. This
method made a few assumptions, which may not hold in all
viscoelastic media such as fatty liver. A two-point frequency-shift
method was later proposed by Kijanka and Urban to soften
assumptions made by Bernard et al.; in their report, they
considered a varying shape parameter of the gamma
distribution used to fit the shear wave amplitude spectrum
[116]. This technique used only two spatial points instead of
all points along the propagation path, as in [87], to estimate the
attenuation coefficient [116]. Using only two spatial points
reduces the computation time but may affect robustness in
cases of noisy shear wave displacement maps. Viscosity maps
based on the cylindrical wavefront assumption of [50] or
frequency-shift method of [87] can be found in [51].

Applications
A few examples of ultrasound shear wave viscoelasticity imaging
applications are presented next. The reader may refer to recent
review papers on this subject for other examples [117–119]. The
focus below is on the liver and breast as those organs were largely
investigated in clinical studies using SWE.

Liver
Liver fibrosis occurs when an abnormal large amount of liver
tissue becomes scarred. It can lead to cirrhosis, its long-term

sequel, and further evolve as hepatocellular carcinoma [120].
Liver fibrosis can be differentiated into 5 categories, from F0 for
a normal liver to F4 for cirrhosis; these categories have been
obtained by biopsy intervention, which is the gold standard for
liver classification. However, liver biopsy is invasive, could lead
to bleeding or worse outcomes, and even death [121], and
because a small amount of tissues is taken, it is not always
representative of the full liver due to sampling errors [118, 122].
Fibrosis is one pathology known to increase liver stiffness [69,
123–126] along with inflammation, edema, congestion and
extra hepatic cholestasis [64, 127, 128]. Shear wave
elastography was mainly used to classify fibrosis based on
liver elasticity using different cutoff values. This imaging
method is accurate to assess liver fibrosis of stage 2 and
higher [69, 123, 129–131], has a good repeatability [132], and
may allow to diminish the number of biopsy [133]. Yet the
impact of steatosis on liver stiffness is uncertain [88, 134–136].
To overcome this, some teams proposed investigating viscous
properties. If no clear consensus is reached yet, a few studies
showed promising results based on shear wave dispersion and
attenuation to assess steatosis stages [88, 137] or
necroinflammation [138, 139]. Shear wave elastography
presents some limitations for liver imaging, such as difficult
measurements in obese patients, and confounding impact of
factors such as inflammation, which can increase liver stiffness
or change the liver stiffness threshold for classification. In
addition to fibrosis assessment and classification, SWE was
also proven useful to follow patients with chronic liver
disease [65]. An example of a liver SWE image is given in
Figure 3.

Breast
Shear wave elastography is used to help identify breast cancers,
since it has been shown that malignant tissues appear stiffer than
its healthy counterpart [140–142]. X-ray mammography, MR
imaging and ultrasonography are used to detect tissue lesions or
to classify suspicious masses into different categories, typically
classification 0 for incomplete data to 6 for histologically proven
malignancy. Nonetheless, excluding the expensive MR imaging
method, these approaches have poor specificity and
mammography often find false negative results in dense
breasts [143]. Category 4, which corresponds to suspicion for
malignant tissues, has a degree of certainty varying from 2 to 95%
to assess malignancy proven by biopsy, and has a cancer detection
rate of 10–30% [144]. Shear wave elastography allowed
improving breast lesion characterization [145–148], and
reducing the number of unnecessary invasive biopsy due to
the improvement in specificity [148–150]. Elasticity parameters
such as the maximum or mean Young modulus E within the
lesion, and in surrounding tissues, are used to separate benign
from malignant masses. Recent works investigated viscosity
behavior using the shear viscosity [151], linear dispersion
slope [152], and storage and loss moduli [153] to differentiate
malignant from benign tissues. Ultrasound data on the viscous
behavior of breast lesions are scarce but may prove to be of
clinical value in the future. Some studies investigated the use of
SWE as a tool to monitor cancer treatment performance [154],
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with a decrease in malignant mass elasticity during treatment, or
for early prediction of therapy successes [155, 156], with a better
treatment response for softer tumors. Figure 4 gives examples of
Young’s modulus elasticity maps of breast lesions.

Other Applications
Although SWE has targeted mainly the liver and breast, other
organs and techniques have been developed. Prostate cancers
[158], thyroid cancer nodules [159], and blood clot
characterization [160] have been investigated, to name a few
examples, with the Young’s modulus as the descriptive
mechanical parameter. If the assumption of an isotropic
medium is generally accepted for most organs, it is not the case
for muscles and tendons. Anisotropic and transversely isotropic
models using shear waves have been recently investigated [24, 161,
162], some other teams explored viscoelastic properties using
different probe orientations [109, 163–165]. A non-exhaustive
list of SWE clinical applications can be found in Table 2.

MAGNETIC RESONANCE ELASTOGRAPHY

Magnetic resonance elastography (MRE) is another non-invasive
imaging technology for assessment of mechanical properties of soft
tissues. Since its first description by Muthupillai et al. in 1995 [166],
MRE has been integrated into clinical routines for liver disease
detection, and has shown great potential for other organs, notably

the brain, of which only MRE can assess the in-vivo viscoelastic
components without surgical intervention. Principles of MRE
investigation are similar to those of any SWE method (Figure 5).
A major feature of MRE resides in its ability to measure 3D
displacement fields by simply changing the axes of encoding
gradients, which is an advantage over other imaging devices
operating elastography. The main drawback may be found in the
longer scan times relative to ultrasound elastography for instance.
MRE has a poor temporal resolution and relies on a stroboscopic-like
recording arrangement to generate time resolved images, as opposed
to ultrasound SWE where burst measurements are performed at a
high acquisition rate. Typically, MRE data contain 4 to 8 images per
harmonic actuation cycle. Spatially, MRE is sometimes referred to as a
super resolution imaging modality as measured displacement
amplitudes are much smaller than the image pixel size (tens of
microns versus one to 3mm). We review in this section the main
three steps inMRE investigation, namelymotion generation strategies,
motion encoding techniques, and inversion methods. Finally,
applications to the liver and brain are discussed. These organs
were subjectively chosen as liver disease diagnosis is the only MRE
protocol clinically established, and non-invasive in-vivo brain
mechanics assessment is not enabled by any elastography
techniques other than MRE.

Generation of Acoustic Waves in MRE
In MRE, most applications involve the generation of time-
harmonic wave fields using external surface actuators. These

FIGURE 3 | Example of superimposing the shear wave elastogram on the corresponding B-scan in a 34-years-old man with histologic F1 fibrosis. The dynamic
range of Young moduli was set between 0 and 40 kPa during the clinical exam, which was sufficient to cover the range of values expected for the four stages of liver
fibrosis. Reproduced with permission from [69]. Copyright 2015, Elsevier.
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actuators must meet the requirements imposed by magnetic
resonance safety rules, in other words they must be made of
non-magnetic materials and be adaptable to fit into the
experimental or clinical magnet bore of the scanner. Design
of actuators has been shown to be application dependent; we

review in this section the main techniques to induce motion in
soft tissues in the context of MRE. Loudspeakers have been
widely used to transmit motion to tissues and may be divided
into pneumatic and rigid categories. In the pneumatic one, air
pulses are transmitted from the loudspeaker pulsing

FIGURE 4 | Examples of shear wave elastography images of breast tissues. (Top two panels): A 50-year-old woman with an abnormality in her left breast on
screening mammography is presented. Biopsy was made on the red region (high Young’s modulus), and concluded that the lesion was an invasive carcinoma (pT1a,
pN0). The first panel gives the SWE map superimposed on the B-mode image, whereas the bottom panel is the B-mode image. (Bottom two panels): A 48-year-old
woman who presented with an abnormality in her left breast on screening ultrasound is presented. Biopsy was made on the suspicious region, and concluded that
the lesion was a fibroadenoma (benign tumor). The blue color on the shear wave elastography image indicates a low Young’s modulus. The third panel gives the SWE
map superimposed on the B-mode image, whereas the bottom panel is the B-mode image. The range of Young’s moduli on the colorbar is from 0 to 180 kPa.
Reproduced with permission from [157]. Copyright 2015, Elsevier.
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membrane to the investigated tissue by means of a wave guide
(plastic tube). The tube is connected to an interface attached to
the surface of the tissue. Plastic pads with a soft membrane and
air cushions are the main examples of such interfaces. Main
advantages are versatility allowing for applications to various
organs [167–176], and the electricity-free transmission system
(pneumatic) requiring no electrical current inside the
magnetic resonance imaging (MRI) room. The main
drawback may reside in the limitation to simple mono-

frequency waveforms only. In the rigid category,
loudspeakers transmit motion to tissues via a rigid rod
attached to the membrane on one end, and to the patient
on the other end. This configuration is also versatile [177–184]
and handles arbitrary waveforms but requires the loudspeaker
to be inside the MRI room. Lorentz-coil actuators have also
been used to generate motion in various organs [185–192], and
rely on the coupling of the MRI magnetic field B0 with an
electrical current injected into the coil. These actuators must

TABLE 2 | An overview of main applications and viscoelastic properties in ultrasound SWE.

Generation of SW Viscoelastic parameters Rheological
modelMechanical

pushes
Focused acoustic

beams
Elasticity
(Young’s
modulus)

Viscosity Shear
modulus

Shear wave speed Shear
wave

dispersion

Shear
wave

attenuationTE ARFI SSI Group
velocity

Phase
velocity

Liver [61, 65] [69, 118] [69, 88] [125, 127] [139] [88, 126] [88] [88] [88] [88]
[69, 118] [126,

130]
[132, 138] [130, 132] [416] [118] [137] [138]

[125, 127] [61, 416] [61, 416] [126, 416] [135] [137] [138] [152]
[126, 137] [131,

135]
[135, 152] [133, 135] [129] [138] [152] [139]

[135, 416] [129] [134, 139] [128, 134] [152] [139]
[131, 133] [64, 65] [139]

[128]
[64]
[124]

Breast [140] [146] [152, 157] [140, 152] [151] [151] [140] [152] [152] [152] (power
law) [151][151] [147, 154] [146, 157] [146] [151]

[157] [145, 156] [147, 154] [147]
[142, 148] [145, 156] [142]
[149, 150] [142, 148] [148]
[155, 417] [149, 150] [418]

[418] [155, 417] [157]
Thyroid [419,

420]
[159, 424] [419, 421] [428] [420]

[159,
421]

[367, 425] [423, 424] [159]

[422,
423]

[426, 427] [367, 425] [422]

[428, 429] [426, 427] [429]
[430] [429, 430]

Muscle [163] [109, 164] [109, 164] [109] [163] [109]
[431, 432] [431, 432] [164,

431]
[109]

[432]
Tendon [434] [435] [435] [435] [434] [434]

[436] [436] [436]
[165] [165]

Blood
clot

[66] [81] [439] [439] [66] [438] [439] [66] [66] [66]
[438] [440] [440] [81] [81] [440] [81] [438]

[81]
Prostate [441] [442–445] [442, 443] [444] [441,

442]
[446, 447] [445, 446] [443,

444]
[447] [445,

446]
[447]
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be designed according to the targeted organ as they are placed
relative to B0. Piezoelectric drivers allow to deliver arbitrary
waveform pulses to tissues while avoiding the constraint of
positioning relative to B0. Significant displacement fields could
be obtained using this technique in various conditions (human
abdomen [193, 194], human brain [195, 196], human breast
[197], and mouse brain [198, 199]).

A major bottleneck in generating sufficiently high motion
deflection in tissues is the decrease of the motion amplitude with
increasing excitation frequencies. Using a wide range of
mechanical excitation finds its application in the analysis of
frequency dependent mechanical behavior of soft tissues [8,
178, 191, 198, 200–203]. The more frequencies, the more
valuable is the information. Centrifugal force based MRE
drivers have been proposed to circumvent this limitation at
high frequencies. The centrifugal force allows to maintain the
displacement amplitude high regardless of the frequency [204].
The “air-ball” actuator and “gravitational actuator” are the first
examples of the centrifugal force implementation. The “air-ball”
actuator [205] consists in a ball circulating in a circular chamber
under injection of compressed air. The revolution speed of the
ball is imposed by the pressured air of which the pressure
determines the actuator vibration frequency. The “gravitational
transducer” is made of a mass attached to an axis and rotating
around this axis. The rotation speed is driven by the rotating axis
connected to a motor [206]. All the aforementioned techniques
consist in shaking the surface of the probed tissue, which implies
that elastic waves propagate to the region of interest with
sufficient amplitude. This can be an issue if the imaged
domain is deep under the surface thus increasing the risk of
high attenuation. Producing a wave field in situ may be an
alternative way to ensure that a sufficient amount of
displacement remains in the region of interest. In that regard,

focused ultrasounds have been used to generate shear waves along
with an MR scanner for motion detection [207]. This technique
requires a heavy experimental setup compatible with the MR
environment and has not been, to date, more than a proof of
concept. Instead of using external devices to produce motion at
chosen locations, the concept of intrinsic actuation taking
advantage of natural internal vibrations has gained interest.
This method consists in encoding motion induced in organs
by the natural pulsation of the heart and arteries, and presents the
significant advantage of not requiring any additional equipment.
Tailored MRE protocols must be adopted to adapt to the low
frequency characteristics of natural pulsations (around 1 Hz). For
now, intrinsic actuation has been applied to the brain [208–211].

Acoustic Wave Detection
Whereas most magnetic resonance imaging protocols attempt
to reduce or compensate for motion, MR elastography seeks to
take advantage of small vibrations in the scanned tissue.
Numerous MRE specific pulse sequences [chronologically
sorted application of radiofrequency (RF)-pulses and
magnetic gradients to generate and manipulate the MR
signal] have been designed to acquire driven or natural
motion in biological tissues, while maintaining reasonable
scan times and image quality. We review, in this section, the
main concepts of MR elastography pulse sequences allowing for
detecting acoustic wave propagation. More specific details and
theory, along with fast acquisition strategies are available
elsewhere [19, 212]. Motion encoding principles in MRI were
first introduced by measuring sea-water velocity [213], and
further applied in the context of angiography to measure
blood flow [214]. The proof consisted in relying spin
velocities to the phase shift spins experienced when space
and time varying bipolar magnetic fields are applied. A
similar concept, leading to MRE, was developed in which
motion of spins around their position at rest is encoded in
the phase of the complex MR signal using magnetic-field
gradients, named motion encoding gradients (MEGs) [166].
The accumulated net phase of moving spins varies according to
their trajectory while a time dependent MEG is applied. This net
phase thus allows to track local motion of tissue eventually
providing the displacement maps required for retrieving
mechanical parameters. MRE sequences are generally based
on existing MR encoding outfitted with MEGs. Not only are
their setting key to be compatible with the characteristics of the
induced motion but so are other inherent MR imaging
parameters, leading to a broad variety of MRE sequences.

The timing of the chosen MR based-sequence rises a certain
amount of constraints regarding scan time, motion sensitivity,
and image quality. The MR sequence design and underlying
physics are beyond the scope of the present review, thus only
the main concepts relevant to overall MRE understanding is
briefly discussed. For in-depth details, see [19, 215]. When a
tissue is placed in the strong static magnetic field B0 of an MR
scanner, a net magnetization aligned with the magnetic field is
produced from the contribution of each uncoupled individual
nuclear spin (those of hydrogen nuclei in clinical scanners)
[215]. The key concept in MR signal generation consists in

FIGURE 5 | Workflow in MRE investigation. Small time harmonic
deformations are generated in the scanned tissue using an external actuator
or natural body pulsation. These small deformations are recorded by the MR
scanner using tailored acquisition sequences to produce time series
propagation images. The complex MR signal is then processed to extract the
motion field data, which is finally used as an entry to physical modeling
allowing for calculation of mechanical parameters.
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tipping the net magnetization of the desired portion of the
scanned tissue out of its resting state using some excitation
radiofrequency pulses tuned at the Larmor frequency of the
spins in the scanner [216]. Magnetization enters a precession
motion about the B0 axis under the effect of this RF-pulse.
Once excited, the magnetization is no longer aligned with B0

and tends to realign and reach its resting state back again. This
process called relaxation occurs at a certain time rate dictated
by the interactions between spins themselves and with their
environment. The time constant T1 characterizes the
exponential regrowth of the magnetization parallel to B0

(longitudinal component of the magnetization) due to spin-
lattice interactions. Time constants T2 and T2* characterize the
exponential decay of the transverse magnetization component
(perpendicular to the longitudinal one) due to spin-spin
interactions and magnetic field inhomogeneity (combined
with the spin-spin interaction), respectively.

Timewise, T2* < T2 < T1 and decay rates are given by R2* � 1/
T2* and R2 � 1/T2, where R2* > R2. The time evolution of the MR
signal immediately following the RF-pulse excitation is named
free induction decay (FID) and is governed by T2* effects.
Receive coils are used to monitor relaxation by measuring
the voltage induced by the precessing magnetization
according to Faraday’s law. Manipulation of the
magnetization allows to generate MR signal peaks at
adjustable delays after the application of the excitation RF-
pulse, i.e., during the FID, or later when the signal appears to
have vanished. MR sequences may be divided into two main
categories of mechanisms leading to different timing for data
acquisition. Spin echo (SE) sequences employ a second RF-pulse
called refocusing RF-pulse, occurring after the FID, and
allowing for compensation of T2* effects (magnetic field
inhomogeneity). Some of the MR signal can thus be
recovered after the FID. In this case, the limiting time
constant becomes T2 > T2*. Passed the exponential decay due
to T2 effects, the MR signal can no longer be recovered. The peak
of the recovered MR signal, the echo, occurs at the “echo time”
TE after the application of the RF-pulse excitation. Gradient
recalled echo (GRE) sequences, however, typically operate
within the FID (occurring immediately after the RF-pulse
excitation) and do not allow for magnetic field
inhomogeneity effects compensation. The operating window
in such sequences is thus limited by the T2* weighted decay, and
thus leads to much faster acquisition protocols. Magnetic field
gradients are used, instead of a second RF-pulse, to manipulate
the magnetization and generate a signal echo at TE. As
aforementioned, MRE sequences usually consist in
incorporating motion encoding gradients into an MR based-
sequence. This modification is consequently subjected to timing
limits of the base-sequence. The short timing of gradient echo
type sequences presents a narrower time slot for the MEGs to
operate than that of spin echo type sequences. The impact of
such inherent characteristics is discussed below.

The first descriptions of the motion encoding mechanism in
MRE were reported in Refs. [166, 217]. As aforementioned, a spin
moving in the presence of a magnetic-field gradientG experiences
a phase shift ϕ:

ϕ(τ) � c∫τ

0
G(t) · r(t)dt (21)

where c is the gyromagnetic ratio of the material [rad s−1 T−1]
and r is the time-dependent position vector of the spin. From
this equation appears that the phase shift depends on both the
spin trajectory r and the applied G. Consequently, a given
arbitrary spin motion results in different accumulated phases
depending on the magnetic gradient waveform. Hence, the
remaining definition of G sets the type of motion the
encoding process is sensitive to. Since the inherent function
of magnetic field gradients is to add a controlled space-
dependency to the static and homogeneous magnetic field B0,
even static spins experience a space dependent phase
accumulation while MEGs are switched on. In order to
cancel this unwanted phase accumulation, G can be set to
oscillate in time allowing the phase accumulated during the
first half of the gradient oscillation period to be compensated
during the second half. This technique is called zeroth moment
nulling [19]. Non-oscillating MEGs are called unbalanced
gradients and are thus rarely used in conventional MRE
sequences. Additionally, the effect of constant velocity and
constant acceleration background components in moving
spins may also need to be cancelled. This can be achieved by
applying first and second moment nulling, respectively [19].
Both consist in adjusting the MEGs oscillation profile so that the
accumulated phase in Eq. 21 goes to zero for unwanted spin
motion.

ManyMRE applications have resorted to full wave encoding
(MEGs tuned to the same frequency as that of the motion
oscillation) with zeroth [188, 197, 198, 218–221] and first
moment nulling [166, 172, 173, 175, 181, 203]. For all types
of oscillating gradients, the area under the curve of MEGs over
the operation time must equal zero for proper motion
encoding. Early in MRE, several examples of motion
encoding strategies were derived in the case of time-
harmonic excitation, leading to time-harmonic spin
trajectories and involving full-wave encoding [217]. Spin
trajectories r can then be written as:

r(t) � r0 + ξ0cos(k · r − ωt + θ), (22)

where r0 is the position vector of spins at rest, ξ0 is the spins
displacement amplitude, k the wave vector, r the position vector,
ω the oscillation frequency, and θ some initial phase offset.
Solving Eq. 21 using Eq. 22 and the MEG temporal profile
allows to quantify the encoding efficiency, which is defined as
the amount of phase shift in the signal per displacement unit.
Encoding efficiency formulas for common MEG waveforms are
available in Refs. [19, 212].

Full wave encoding scheme ensures a good motion sensitivity
but compels the minimum achievable value of the echo time
dependent on the driver actuation period. GRE sequence short
timing due to T2* effects is well suited to high actuation
frequencies (short time slot for MEGs to operate); however, it
limits the applicable number of MEG cycles [166, 188, 197, 220,
222, 223]. The optimal setting resides at the trade-off between the
SNR increase permitted by short TEs and the higher motion
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sensitivity permitted by multiple MEG cycles. A similar
conclusion can be drawn with regards to SE sequences,
which present a more flexible timing enabled by their
inherent longer echo and repetition times [215, 224].
Multiple MEG cycles can thus be incorporated into the
sequence while maintaining the echo intensity sufficiently
high. SE sequences are often implemented with fast readout
strategies, for instance echo planar imaging (EPI) necessitating
only one or few combinations of excitation- and refocusing-RF
pulses to generate a whole image, which allows to circumvent
the use of many long repetition times (TRs) [172, 175, 181, 203].

So far, single actuation frequency cases have been presented.
Full-wave encoding can also be used to extract a frequency of
interest from a multi-frequency oscillating wave field by selecting
proper MEG profile (frequency and number of cycles) [177, 222,
225]. This configuration presents little interest in cases where the
actuation frequency is chosen by the user. The only way of
performing multi-frequency acquisitions using full-wave
encoding is to repeat the encoding for each frequency
separately [188, 191, 198, 201, 219, 223, 226], which has an
impact on the acquisition time. However, multiple frequency
components can be simultaneously encoded in a single
acquisition using wide band MEGs, and manually selected
using a temporal Fourier transform [177, 178, 180, 182, 210,
227–230]. The main advantage of simultaneous multi-frequency
encoding is the time saving making them more suited to in vivo
studies compared with repeated single frequency acquisitions
over a given frequency range. The main drawback is the overall
lower motion amplitude at each frequency of the multi-frequency
actuation compared with the repeated acquisition scheme, due to
total energy deposition divided into the total number of
frequencies.

The wideband property of MEGs has been further extended
to fractional encoding where the frequency of the mechanical
oscillation is smaller than that of MEGs, and the mechanical
time period is larger or equal to the repetition time [186]. With
shorter MEG time periods, scan duration can be reduced and
higher SNR can be obtained by shortening the echo time
accordingly [190]. A major advantage of this approach is
found in measurement of low frequency induced motion,
such as heart pulsation driven actuation (around 1 Hz),
where full-wave encoding would lead to unpractical echo
times [208, 209, 211, 231]. Despite the lower motion
sensitivity in fractional encoding, this method has proven
successful using fast acquisition protocols (spoiled GRE and
GRE/SE equipped with EPI readout strategy) [169, 170, 179,
190–192, 201, 209, 232–234]. Besides multi-frequency
acquisitions, reduced TE and TR permitted by fractional
encoding have also been exploited in balanced steady state
free precession MRE [186, 235, 236], despite the original
development circumventing the use of MEGs [237]. Although
high phase-to-noise ratios were reported, this sequence type
presents significant timing constraints (actuation frequency
linked to TR), and non-linear phase accumulation between
consecutive TRs leading to additional signal post-processing
steps. It has consequently been used only sporadically [19,
190, 212].

Inverse Problem in MRE
The previous section reviewed some acquisition approaches to
measure motion induced in the tissue of interest. The last
essential step in elastography consists in relying these
displacements to mechanical parameters using physical
models. This section addresses the most reported inversion
schemes employed in MRE. More specific information about
processing times and modeling details can be found in Refs. [238,
239]. A major strength of magnetic resonance is the capacity of
encoding motion in the three directions of space, allowing for full
3D inversion of the Navier equation. This strength comes at the
cost of overall longer scan times for which alternatives have been
discussed above. Despite the availability of fast 3D MRE
sequences, all mechanical parameter reconstruction methods
do not make use of complete displacement data sets and take
advantage of physical assumptions allowing for processing of
reduced dimension displacement data. We propose to classify
inversion schemes into two categories. The direct approach
consists in formulating the inverse problem with the
mechanical parameters as unknowns. Experimentally obtained
displacement data are inserted into the equations of elasticity, and
quantities of interest are extracted through direct inversion. The
iterative approach consists in iteratively solving the forward
problem for displacements starting from an initial set of
guessed mechanical parameters. These mechanical parameters
are iteratively updated to minimize the difference between
experimental displacement data and computed displacement
solution. The final solution is the set of mechanical parameters
that makes that difference converge to a global minimum.

Direct Methods
The first reported inversion method in the context of MRE,
assuming isotropy, local homogeneity, no attenuation, and
incompressibility, consisted in estimating the local wavelength
of the measured wave field. This technique is termed LFE (local
frequency estimation). Briefly, pairs of filters centred on spatial
frequencies usually separated by one octave are applied to the
wave field. The ratio of displacements filtered by each filter of one
pair equals the local wavelength [240]. To ensure that local spatial
frequency is included in the bandwidth of the filter pair, the
process is repeated over a certain range of frequencies. From the
evaluated wavelength (inverse of spatial frequency), the
magnitude of the shear modulus |μ| is retrieved using∣∣∣∣μ∣∣∣∣ � ρv2s � ρ(λsf )2, where λs is the local wavelength and f is
the temporal actuation frequency. We recall here that ρ is the
tissue density, vs the shear wave speed, and that such assessment
assumes a purely elastic tissue (no viscosity). The original
publication describing LFE [225] employed log-normal
quadrature filters but other functions have been studied [241,
242]. This method has been widely used in all types of study [166,
169, 171, 174, 175, 221, 223], as it is fast and only requires a single
component of the displacement field. LFE has also proven a
certain robustness against noise as it does not directly compute
spatial derivative of the image, thus circumventing noise
enhancement. To date, LFE is the only reconstruction method
used and marketed for routine clinical practice. Although the LFE
in itself provides no insight into the viscous behavior of the
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investigated tissue, this method has been combined with an
attenuation model to estimate both G′ and G″, thus avoiding
calculation of 2nd or 3rd order derivatives [223]. Phase gradient
methods allow for simple estimation of the wave number k,
similarly to LFE, which is used to quantify elasticity only.
They have been sporadically used given their insensitivity to
wave attenuation and their dependency on planar waves [243].

Early in MRE were also reported direct methods assuming
viscoelastic materials, as described in General Concepts in Shear
Wave Elastography, and using the strong formulation of the
Helmholtz equation [198, 220, 244]. The underlying
assumptions of isotropy, local homogeneity, and
incompressibility are used to neglect the stiffness gradient
across the tissue, and to decouple motion components in the
equation system. From there, a single motion component can be
used to retrieve the complex-valued shear modulus (G* � G′ +
jG″). Planar assumption allows to consider the 2D curvature of
the wave field instead of its 3D, which further decreases the
required amount of data to solve the inverse problem. This
method has also been widely used [177, 178, 182, 219,
227–229, 243, 245] given its simplicity and low computational
cost but strongly depends on data filtering and evaluation of
second derivatives [244, 246]. Using this scheme, stiffness
reconstruction was shown to be altered by the neglected first
Lamé parameter (Eq. 8) [247]. Applying the Helmholtz
decomposition to the wave field allows to separate divergence-
free (shear) from irrotational (compressional) components.
Taking the curl of the Helmholtz equation increases the
differentiation order but physically isolates the shear
component of interest. This approach has become prominent
when the Helmholtz equation is employed to retrieve storage and
loss moduli [172, 187, 189, 190, 198, 199, 232, 247, 248]. To
improve resolution and stabilize the direct inversion of the mono-
frequency Helmholtz equation, a multi-frequency approach
named MDEV (multi-frequency dual elasto visco inversion)
was introduced [200]. A multi-frequency wave field is built
upon data sets of individual different frequencies, ignoring the
dispersion of mechanical parameters with respect to frequency,
reducing the risk of nodes due to standing waves and stabilizing
the equation system by adding equations with same unknown.
Various studies have resorted to inversion schemes based on this
method [8, 193, 194]. As an alternative to the 2nd order derivative
assessment required by MDEV, a phase-gradient based method
termed k-MDEV was proposed. It consists in evaluating the
complex wave number k of a plane wave (see General
Concepts in Shear Wave Elastography), which can then be
related to both phase velocity for elastic modulus estimation
and attenuation for viscous behavior quantification [194].

A finite-element (FE) based inversion method was recently
proposed, also assuming local homogeneity, for storage and loss
moduli assessment. It takes advantage of the weak form of the
equations of motion to reduce the differentiation order, and
exploits divergence-free test functions to lower the impact of
the compression field [249]. So far, most of the discussed
approaches have in common the assumption of local
homogeneity, neglecting the gradient of mechanical
parameters across the tissue, and incompressibility, invoked to

neglect terms involving the divergence of displacements (unless
the curl operator is applied). The local homogeneity assumption
was shown to alter the reconstructed mechanical parameters in
regions where the latter are not constant [218], that is in most
clinical cases and notably tumorous tissues. Direct methods, still
employing the strong form of the Navier equation and neglecting
the divergence of the wave field, were proposed to consider
heterogeneity using single [250] and multifrequency
(HMDI–heterogeneous multifrequency direct inversion) [251]
approaches. To address the compression aspect in nearly
incompressible materials, which was shown to lead to artefacts
and inaccuracies [252, 253] when disregarded [253] or processed
using displacement formulation only [254, 255], direct FE
formulations of the inverse problem have been proposed using
curl-based [256] and mixed displacement-pressure [253, 256,
257] schemes.

Iterative Methods
Overall, iterative methods make less restrictive assumptions on
tissue mechanical properties than direct ones relying on the
algebraic strong formulation of the elasticity equations, and
have been reported to solve for more unknowns than FE-based
direct methods by adjusting the number of parameters to update
in the minimization process. From a computational standpoint,
solving forward problems, that is, mapping data information
(i.e., displacement field) from source information (i.e., elasticity
distribution) is a smoothing process. On the contrary, inverse
problem consisting in mapping source information
(i.e., elasticity distribution) from data information (i.e.,
displacement field) is a noise-enhancing process [258].
Consequently, iterative approaches tend to be more robust
against noise than direct ones. Following FE discretization
approaches, similar to direct FE ones, iterative schemes have
been developed [259–261]. Near incompressibility is often
assumed and requires to modify the formulation of elasticity
equations in order to solve for pressure in addition to
displacements (aforementioned mixed “pressure-
displacement” formulation), and material heterogeneity is
mostly considered [257, 262]. In MRE, the subzone
technique has gained significant interest amongst iterative
processes [263]. It consists in dividing the imaged domain
into overlapping subdomains termed subzones, and solving
iteratively the forward problem for displacements in each
subdomain parallelly [197]. Once the solution in each
subzone has converged, subzones are randomly redistributed
over the domain and the iterative solution calculation is
performed again. Retrieved mechanical parameter
distributions, corresponding to each subzone distribution, are
finally averaged to form the final solution. This reconstruction
method has been applied to phantoms, brain [176, 203, 264,
265] and breast [266, 267] data, and has proven its capacity to
reconstruct multiple variables at various actuation frequencies
using elastic and viscoelastic physical models (compressible
elastic [268], compressible viscoelastic [269], and nearly
incompressible viscoelastic [176, 184, 203, 231, 264–266, 268,
270–272]). Additionally, poroelastic models have been
introduced for accurate consideration of the biphasic nature
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of entangled solid-liquid structures in biological tissues [168,
184, 211, 270, 271, 273]).

Applications
Liver
MRE can be applied to virtually any organ provided sufficient
displacement data quality and suitable inversion scheme. We
mainly restrict our discussion to liver applications due to the
clinical availability of the technique, and to brain of which in-vivo
mechanical properties have yet only been non-invasively
accessible using this elastography method. MRE in clinics has
so far been restricted to liver scanning for fibrosis, and diagnosis
of chronic liver diseases using purely elastic models, i.e., assessing
the shear modulus only and ignoring the tissue’s viscous
behavior. Under these assumptions, meta-analyses over the
past few years on liver MRE have highlighted the high
performance of the method in distinguishing liver fibrosis
stages in non-alcoholic fatty liver disease, and cirrhosis
considering the stiffness increase under this condition [274,
275]. Viscoelastic parameters in human liver diseases have also
been early investigated using multi-frequency MRE to assess the
frequency dispersion of storage and loss moduli (G′ and G″) in
healthy and fibrotic patients [180]. Results showed an increase in
both G′ and G″ in fibrotic with respect to healthy livers.
Evaluation of the elastic modulus and viscosity using a
standard linear solid model in healthy and fibrotic human
livers led to a similar conclusion, where both elasticity and
viscosity increased in pathological liver tissues [178]. This
trend was also reported in [276], and in a performance study
of MRE in the detection of fibrotic livers [277]. Overall, stiffness
only or both stiffness and viscosity increases have been observed
against the fibrotic stage. Interestingly, a case of liver steatosis in
rats where only viscosity varied while stiffness remained
unchanged has been reported in [278]. Despite these findings,
the storage modulus was found to correlate much better with
stages of liver fibrosis than viscosity [279]. Additionally,
measurement of wave damping for viscosity characterisation is
influenced by reflections off boundaries and renders its
measurement troublesome. To date, stiffness variations for
estimation of liver fibrosis severity has been mostly investigated.

Brain
MRE has also been proven successful and robust in the brain
[280]. Its high water content and the observed shear wave
attenuation in MRE acquisitions suggest that restriction to
purely elastic models may lack of accuracy. The healthy
brain’s viscoelastic behavior has been highlighted by evaluating
the dispersion of reconstructed mechanical parameters at varying
frequencies in humans [8] and rats [198]. Both storage and loss
moduli tended to increase with frequency. Additionally, cerebral
viscoelasticity was shown to follow a frequency power law, where
all reconstructed parameters vary independently [203]. These
reconstructions suggested that the falx cerebri’s viscous behavior
is singular in comparison with other brain regions. Along similar
lines in healthy brain characterization, viscoelasticity changes due
to physiological aging have been considered [227, 229, 281]. From
these studies appear that the brain softens but sees its relative

viscous-to-elastic behavior unchanged over time. Such
investigations along with MRE of neurological diseases have
underlined the high potential of this technique in detecting
neurodegenerative pathologies [282]. Non-invasive
differentiation of natural structures of the brain based on their
mechanical response to stimulus imparts MRE a significant
advantage. For instance, the cerebellum has been shown to be
softer and tends to be less viscous than the cerebrum [189].

High resolution mapping of stiffness and dispersion effects
have suggested that cortical white matter is stiffer and more
viscous than grey matter [191]. MRE has also been used to
quantify the viscoelastic changes of altered brains. Notably,
Alzheimer’s disease was shown to reduce the brain’s stiffness
(elasticity only) [181]. Glioblastoma has been shown to take lower
stiffness and viscosity values using multi-frequency MRE in
humans [201], and mono-frequency MRE in a rat model
[283]. A similar softening trend was observed in multiple
sclerosis [182, 228, 284], where viscoelasticity was assessed
using a global parameter. On the other hand, normal pressure
hydrocephalus appears to trigger the opposite effect [175, 211].
Recent research on brain viscoelasticity has opened new avenues
in the understanding of connexions between cerebral functions
and tissue mechanical behavior. For instance, joint investigation
of hippocampus viscoelasticity (shear stiffness and damping
ratio), and relational memory has allowed to correlate
hippocampal viscoelastic variations to performance in
completion of spatial reconstruction tasks [285]. Viscoelasticity
was characterised using an adjusted damping ratio that indicates
the dominant tissue behavior between elasticity and viscosity.
Results showed that better relational memory performance
correlated with a rather elastic mechanical behavior of the
hippocampus. This constituted the first observation of the kind.

The same principle was applied to assess the correlation
between cardiovascular health through aerobic fitness
exercises, relational memory performance through spatial
reconstruction tasks, and hippocampal viscoelasticity using
MRE. The study showed that better memory performance was
associated with higher values of the adjusted damping ratio,
which was itself associated with better aerobic fitness
performance [286]. Light fitness exercise has also been shown
to have a potential impact on hippocampal viscoelasticity and
associated cerebral functions in multi-sclerosis patients [287].
These investigations laid the first stone for the characterisation of
relationships between physical and cerebral functional behaviors,
and brain viscoelasticity [288–291].

Brain Anisotropy and Poroelasticity
Finally, most advanced improvements in viscoelasticity
characterisation embed tissue anisotropy, which is particularly
relevant in the brain given its fibrous structure. As a deviation
from brain applications: the first use of anisotropy in MRE was
proposed for breast tumor detection through the evaluation of an
assumed symmetrical stiffness tensor [292]. Results suggested
that carcinoma have an anisotropic structure revealing a
preferred orientation, certainly due to vascularisation, and
suggesting transverse isotropy. Breast cancer was then also
characterized assuming a transversely isotropic model leading
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to a 5-parameter reconstruction [247]. Again, results showed a
preferred orientation in the tumor structure. Transversely
isotropic mechanical property recovery was experimentally
validated in fibrous tissues using MRE and diffusion tensor
imaging (DTI) [293]. In-vivo brain anisotropic stiffness
assessment in humans assuming separately orthotropy and
transverse isotropy suggested that white matter exhibits a
transverse isotropy structure [20]. Shear wave speed analysis
was performed from prior knowledge of fiber orientation
using DTI. Two shear wave modes were then observed, a
faster longitudinal mode relatively to a slower transverse
mode. The transverse anisotropy of white matter was later
nuanced in favor of a mild only anisotropy in a study on ex-
vivo porcine brain, where a purely transverse shear wave mode
was generated and used to estimate three isotropic parameters in
the absence of longitudinal modes [294]. Human brain
anisotropy was also highlighted using variations in
reconstructed stiffness distribution depending on actuation
direction [176]. This constitutes a direct measurement of the

anisotropy impact in isotropic models. Such observation was
quantified using a finite element formulation of a heterogeneous,
nearly incompressible, and transverse isotropic model providing
benchmark displacement fields for inversion testing [265].

In addition to the significant research effort in evaluating and
understanding cerebral viscoelasticity, the high water content of
the brain has motivated to consider it as poroelastic, i.e., made of
two, solid and liquid, entangled phases. The impact of
poroelasticity versus viscoelasticity on reconstruction has been
shown to be relevant at low frequencies (a few Hertz) using the
forward problem formulation in the harmonic regime, and the
aforementioned subzone iterative scheme [184]. At higher
frequencies, viscoelasticity seems to remain a more suitable
model than poroelasticity. Overall, poroelasticity and low
frequency intrinsic actuation thus constitute an interesting and
original package in MRE investigation. This setup circumventing
resorting to pulsing equipment has been used in a few studies, and
holds promise for more accurate detection of brain pathologies
[208, 211]. Another approach to highlight brain poroelasticity

FIGURE 6 | (A)MRE of the liver. Anatomic images, displacement and shear stiffness maps of healthy and stage 4 fibrotic livers. Reproduced with permission from
[296]. Copyright 2007 AGA Institute. (B) MRE of the breast. Anatomic image and shear stiffness map of a biopsy-proven invasive ductal carcinoma. Reproduced with
permission from [297]. Copyright 2020 Elsevier. (C) MRE of the heart. Shear wave amplitude maps of a healthy heart versus hearts with diastolic dysfunction.
Reproduced with permission from [234]. Copyright 2014 RSNA. (D)Mean shear stiffness of the cerebrum in young and older adults. Reproduced with permission
from [281]. Copyright 2018, Elsevier.
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was to solve for both shear and bulk moduli using the algebraic
inversion technique, which resulted in a bulk modulus much
lower than expected, confirming the poroelastic nature of the
brain (compressible solid matrix and incompressible fluid
channels) [209]. More recently was proposed an improvement
in MR poroelastography acquisition processes allowing to
separate solid and fluid contributions to the shear motion field
using an inversion recovery sequence adapted toMRE, along with
a tailored MR signal modeling [295].

To conclude, Figure 6 illustrates typical wave maps and
elastograms from MRE acquisitions in the liver, breast, heart,
and brain. Table 3 presents an overview of main components
constituting MRE investigations, from motion generation
techniques to inversion categories described in previous
paragraphs.

OPTICAL SHEAR WAVE ELASTOGRAPHY

Elastography based on ultrasonography or MRI has found
popular clinical applications facilitated by the implementation
of those imaging technologies on clinical systems. These tools can
provide images over centimeter to whole-body depth ranges.

However, many applications require millimeter-scale spatial
resolution images, which can only be made possible using
optical means. For example, on the cellular scale, the
measurement of mechanical properties requires higher
resolutions to focus on the understanding of how cells
respond to physical forces. Thus, the use of optical
elastography provides an opportunity for microscale imaging
and for numerous applications in fundamental research [298].

Within the last 2 decades, developments in this new area of
imaging led to multiple scientific advancements at the interface
between optics and mechanics, which included biomedical
applications in ophthalmology, oncology, and cell mechanics.
The following subsections discuss recent developments in cellular
and optical elastography, and their applications across biomedical
and life sciences.

Cellular Shear Wave Elastography
Tissue elasticity at a microscopic scale is determined by the cell
and the extracellular matrix elasticity. Main components of a cell
are the membrane, cytoplasm, and cytoskeleton. The latter
structure contributes to the cell mechanical stability and
characteristics, and to its morphology. An imbalance in the
mechanical homeostasis and defect in the cellular

TABLE 3 | An overview of main applications and technical developments in MRE.

Sequence type Moment nulling Encoding Actuation Inversion

SE GRE 0th 1st Fractional/
multifrequency

Full
wave

Loudspeaker
(pulsed
air and
solid
rod)

Electro-
magnetic

Piezoelectric Intrinsic Direct Iterative

Brain [8, 172,
175–177,
181–184,
191, 195,
198, 201,
203, 209,

219,
227–229]

[184,
208,
210,
211,
223]

[8, 177,
182, 184,
198, 203,
208, 210,
211, 219,
227–229]

[8,
172,
175,
176,
181,
183,
191,
195,
201,
209,
223]

[8, 177, 182,
184, 191, 195,
201, 209, 210,

227–229]

[172,
175,
176,
181,
183,
184,
198,
203,
219,
223]

[172, 175–177,
181–184, 209,
223, 227–229]

[191] [8, 195, 198,
201, 203, 219]

[208–211] [8, 172,
175, 177,
181, 182,
191, 195,
198, 201,
209, 210,
219, 223,
227–229]

[176,
183,
184,
203,
208,
211]

Muscle [174] [174] [174] [174] [174]
Liver [8, 171,

178, 180,
190, 194]

[188,
190,
448]

[8, 178,
180,

188, 190]

[8,
171,
194,
448]

[8, 178, 180,
190, 194, 448]

[171,
188]

[171, 178,
180, 448]

[188, 190] [8, 194] [8, 171,
178, 180,
188, 190,
194, 448]

Prostate [248] [192] [192] [248] [192] [248] [192] [248] [192,
248]

Kidney [173] [173] [173] [173] [173]
Heart [170,

179,
233,
234]

[179,
233, 234]

[170] [170, 179,
233, 234]

[170, 179,
233, 234]

[170,
179]

Breast [185] [197] [185,
197]

[185,
197]

[185] [197] [185] [197]

Spleen [193, 194] [193,
194]

[193, 194] [193, 194] [193,
194]

Phantom [168, 221] [166] [221] [166] [166,
221]

[168] [166] [221] [166,
221]

[168]
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mechanotransduction can contribute to various human diseases.
Therefore, cellular viscoelasticity can be viewed as a biomarker for
determining the cellular state [299]. Determining mechanical
properties of a cell during different stages of the disease
progression could help to develop novel treatments by
considering the role of mechanical factors into genetic and
drug therapies [300]. As recently reviewed [301], there are
several techniques for measuring cell mechanical properties,
most of them requiring a mechanical stress (e.g., micropipette
aspiration and atomic force microscopy). However, in this review,
the focus is on rheological properties assessed using a mechanical
stress based on acoustical shear wave propagation.

Grasland-Mongrain et al. [302] developed a novel method
called optical microelastography, also labeled as “cell quake
elastography”. This technique uses a high frequency shear
wave excitation and an optical microscope to assess cell
elasticity. High frequency shear waves inside the cell are

produced by a vibrating micropipette at a wavelength
comparable to the cell’s size. The wave propagation is
captured optically by a high frame rate camera coupled to the
microscope. The sampling rate of the camera is selected to avoid
shear wave frequency aliasing with sufficient samples per
wavelength to allow efficient speckle tracking. The spatial
resolution of captured images should also be sufficient to track
the shear wave speed from displacement maps (knowing the time
elapsed between images). The proof-of-concept in [302] was
made by using an ultrasound speckle tracking method adapted
to optical images for obtaining displacement maps [303]. A
passive elastography algorithm was used as a reconstruction
method to obtain shear modulus images [304]. The passive
elastography method was inspired by the seismology field
[210], so the name “cell quake elastography” for this method.
The main advantage of this technology compared with other cell
elasticity methods is the time resolution of a few microseconds to

FIGURE 7 | (A) Experimental set up for optical microelastography, (B) intracellular displacement map through time, (C) elasticity map of the cell into the zona
pellucida, cytoplasm, and nucleus. Adapted with permission from [302]. Copyright 2018, National Academy of Sciences.
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produce elasticity maps with a good spatial resolution, which may
allow studying dynamic cellular processes.

First experiments were performed onmouse oocytes, making a
shear wave inside the cell by a 15 kHz vibrating micropipette, and
capturing the traveling wave optically at a 200,000 acquisition
frame rate [302]. The sensitivity and spatial resolution of the
technique allowed to distinguish the shear modulus of different
regions/zones of a cell (Figure 7). The technique was recently
applied on mouse macrophage-like RAW 264.7 cell clusters,
Abelson leukemia virus-transformed cell line derived from
mice, using a 18 kHz stimulation and a 100,000 frames per
second image capturing rate. Shear wave displacement maps at
10 µs intervals are given in Figure 8. Future developments should
aim at assessing the viscous component of single cells, likely using
finite-elements modeling (FEM) reconstruction methods.

Optical Coherence Elastography Imaging
Optical coherence elastography (OCE) is a technique that can
non-invasively assess tissue mechanical properties by measuring
the localized deformation, strain or shear wave propagation
properties inside a sample [305]. In OCE, a stimulation
technique is utilized to load the tissue and its response is
recorded with an OCT based detection method [306–308].
The high resolution structural images of OCE (1–10 μm in-
vivo) provides it an advantage over the ultrasound or MRI
modality [309], that stretches its potential for micron and
submicron imaging of elastic properties of biological tissues.
Microstructures of biological tissues can be quantified based
on optical scattering properties of the tissue under
investigation. OCE holds great potential for diagnosis of many
clinical conditions and pathologies, particularly for detection and
monitoring of cancers [310], cardiovascular diseases [311], and
eye diseases [312].

While optical contrast signals are detected based on
differences in two or multiple optical scattering events, the
mechanical contrast requires only one scattering event to
obtain an OCT signal. Thus, structural inclusions that cannot
be detected by OCT can be revealed by OCE if a mechanical
contrast exists for the inclusion. The first few studies in OCE
development focused on static mechanical contact loading
(i.e., no shear wave involved) [313, 314]. Later, the emergence

of phase resolved OCT, which is detecting the interferometric
phase information from complex OCT signals, enabled the
assessment of tissue deformation with a high accuracy for
tissue elasticity reconstruction [315–318]. A shear wave
stimulus was involved in studies of [316] and [318].

The latest developments include OCE resolution to improve
over the range from several microns to hundreds of microns [308,
319, 320]. The lowest range of OCE spatial resolution is similar to
the cell quake elastography imaging method described earlier. In
comparison, the spatial resolution of ultrasound or MRI elasticity
imaging methods remain at a macroscopic level with a typical
resolution of hundreds of micrometers to several millimeters,
respectively [54, 191]. OCE is a great alternative to traditional
elastography methods in terms of spatial resolution, acquisition
speed, sub nanometer mechanical displacement sensitivity, but at
the cost of a lower penetration depth into the probed tissue than
ultrasound or MRI [308]. Additionally, shear wave OCE as a 3D
imaging modality may enable its clinical applications in many
areas, such as ophthalmology and cardiology using intravascular
devices [321–323]. Shear wave based OCE has shown potential
for measuring local elasticity changes of mouse brains [324, 325].
Details on these methods are given next.

Systems and Methods
An OCE system has two main components: a loading system that
can deform the biological tissue, and an OCT imaging system for
detection. Shear wave methods in OCE are relatively in the very
early stages of development. Shear waves-based OCE utilize an
excitation from a noncontact air-puff or air-coupled ultrasonic
probe [326–328], or piezo-transducers (PZT) [320]. In addition,
an OCT mechanism is then employed to detect the displacement
field of generated shear waves. By monitoring the shear wave
propagation in the sample, elasticity, shear wave speed, or the
shear modulus can be quantified. Shear wave visualization was
performed in tissue mimicking phantoms with phase sensitive
optical coherence elastography [329]. Razani et al. [318] were one
of the first to measure the shear wave speed and its associated
properties with OCT phase maps. They utilized an external
acoustic radiation force mechanism for excitation and a swept-
source OCT system to acquire phase images. The central
wavelength of the laser was 1,310 nm and the bandwidth was

FIGURE 8 | Preliminary results on displacements of the shear wave propagation within adhesive cell clusters of macrophages RAW 264.7.
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∼110 nm. The system could register a lateral resolution of 13 μm
in gelatin mixed with titanium dioxide phantoms. Images could
be acquired at a depth of 3 mm. Song et al. [320] used a
piezoelectric point loading to generate shear waves within
samples. More recently, Zhu et al. [330, 331] developed a
PZT-based system to induce longitudinal shear waves and they
visualized the signals using OCT for the quantified mapping of
shear moduli. A brief detail of their technique is presented next.

The OCE system included an OCT imaging unit and a PZT
excitation unit, as shown in Figure 9A. Elastic waves were
induced by a ring PZT actuator driven by a PZT amplifier.
The vibrating mechanism of the PZT system could excite
three types of waves in the sample under investigation: 1)
Rayleigh waves, 2) compressional waves travelling from the
top surface to the deep region, and 3) transverse and
longitudinal shear waves traveling through the interior of the
sample, as shown in Figure 9B. Rayleigh waves propagate at the
surface of the sample. Compressional waves propagate parallel to
the oscillation direction of the vibrator. Transverse shear waves
propagate perpendicular to the displacement direction.

Additionally, in the near field of the planar vibration source,
which contained multiple sub-sources, a longitudinal shear wave
much slower than the compressional wave also propagate along
the displacement direction. This longitudinal shear wave is
present due to the sum contributions of diffracted transverse
shear waves [331]. These longitudinal shear waves could be
visualized with the attached OCT imaging unit. The OCT
system was based on a swept source at a central wavelength of
1,310 nm, and a wavelength tuning range of 141 nm. Axial and
lateral resolutions of the employed OCT unit were 7.6 and
17.7 μm, respectively. The PZT unit utilized for excitation was
driven by a function generator producing a sine wave cycle with a
frequency of 1 kHz. The displacement observed in the near field
was close to 10 μm.

As introduced above, noncontact shear wave imaging optical
coherence tomography (SWI-OCT) system has been developed
using a focused air-puff device for localized tissue deformation
[333]. The non-contact mechanical excitation in a sample could
be performed with a PZT transducer that was specially designed
to launch an US beam through air that was focused onto the

FIGURE 9 | (A) Schematic of the OCE system. The system employs a swept source OCT unit and a PZT excitation unit. The PZT unit induces displacements within
the sample, and the OCT unit detects the signals and visualizes the longitudinal shear wave propagation. Reproduced with permission from [330]. Copyright 2017, AIP
Publishing. (B) A representation of waves generated by the PZT unit: transverse shear waves, longitudinal shear waves, compressional waves, and Rayleigh waves.
Reproduced with permission from [331]. Copyright 2017, AIP Publishing. (C) Schematic of the acoustic micro-tapping phase sensitive OCT imaging system
developed by Ambrozinski et al. Reproduced with permission from [332]. Copyright 2016, Nature Research.
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air-medium interface. The reflection of the beam at this interface
could produce significant acoustic radiation force toward the
sample medium. This induced a transient displacement at the
surface, including shear waves. The large difference in acoustic
impedances of air and soft tissues could increase the efficiency of
the acoustic energy conversion even to the extent of one hundred
percent. Ambrozinski et al. [332] developed a non-invasive
system that needed transient displacements to be only about
1 μm, and the acoustic pressure only a few kPa, which was within
safety limits for clinical applications. This acoustic micro-tapping
method had enabled 4D imaging of tissue stiffness by employing a
focused air-coupled US to induce mechanical deformations at the
boundary of a tissue [332]. A schematic representation of their
system is shown in Figure 9C. In here, the cornea surface was
aligned at the transducer focus and the US radiation push was
sent through with a repetition period of 3 ms. The driving signal
was having a bandwidth range of 0.95–1.05 MHz. The measured
pressure amplitude at the transducer focus was about 7 kPa.

Wang et al. performed a quantitative biomechanical
characterization of cardiac muscles and corneas using a
noncontact SWI-OCT system [334, 335]. Shear waves had a
frequency range of 0–2.5 kHz. This method employed a multi-
wave imaging technique, where shear wave measurements in the
tissue enabled mapping of the mechanical contrast in
elastograms, and the OCT unit enabled improving the imaging
resolution from a millimeter scale to a micron scale [334]. The
systemwas capable of simultaneously providing structural images
with depth wise maps of the tissue stiffness [335]. Recently, a
confocal air-coupled US probe could also be co-focused with a
phase-sensitive OCT system to generate elastic waves up to a
4 kHz frequency for quantitative elastography [336]. These
noncontact excitation methods have found wide applications
in ophthalmology and dermatology [337–339].

Spatial resolution in dynamic shear wave based OCE is
governed by temporal and spatial characteristics of mechanical
waves rather than optical waves. Hence, the mechanical
resolution in dynamic OCE is different from the usual optical
resolution of OCT systems [57]. Spatial resolution ideally should
match the spatial resolution of the detection system, however,
propagating mechanical waves undergo mode conversions at
tissue interfaces causing artifacts in the elasticity image. The
geometry of the tissue interface and its elasticity contrast can
produce complex propagating fields near the tissue boundary
affecting both the spatial resolution and contrast of the final
reconstructed image [57].

Recent dynamic OCE systems provided elasticity information
from local group velocity measurements [321, 330, 339], however,
the complex geometry of bounded tissues like the cornea may not
reflect a simple relationship between group velocity and elasticity
[338]. Dynamic OCE has been successfully utilized in elasticity
mapping of the cornea using noncontact excitation methods
based on air-puffs and acoustic micro tapping [332, 333,
340–342]. Inversion of moduli from experimental data,
especially in the case of bounded and anisotropic tissues such
as cornea, is a challenging and complicated process in dynamic
elastography. Recently, a nearly-incompressible transverse
isotropic (NITI) model addressed this challenge and

characterized corneal biomechanics while accounting for
corneal microstructure and anisotropy, and presented a more
accurate model for cornea shear moduli computation [337].
Viscosity assessment in shear wave OCE is in its early phase
of development. Proposed methods used shear wave frequency
dispersion [343–346], storage and loss moduli using a rheological
model [347], and the elastic wave attenuation [345].

A trade-off in OCE is its reduced depth of field while evolving
for higher resolution measurements due to the requirement of
higher numerical aperture for such systems. On the other hand,
the ability to measure and record depth scans with a single
spectral acquisition can be used as an advantageous feature to
enable phase-sensitive displacement measurements. Of course,
the tissue penetration attained with OCE, although sufficient for
numerous applications, is not comparable to ultrasound or MRI
elastography methods. Song et al. implemented a beam-steering
US as a wave source for shear wave optical coherence
elastography of retinal and choroidal tissues within a porcine
eyes ball ex vivo. Shear wave propagation imaged on a porcine
retina by their system is shown in Figure 10 [323].

Photoacoustic Elastography
Photoacoustic elastography (PAE) research is rapidly growing
due to its potential and promising features of clinical interest
[348–350]. PAE can exhibit a mechanical contrast in biological
tissues while also providing high spatial resolution images and an
excellent penetration depth compared to commercially available
optical imaging modalities [351]. It has the promise to provide
great scalability, ranging from cellular levels to entire body with
multiple resolution levels. Recent studies have demonstrated
recovery of mechanical properties of biological tissues using
PAE [352–355]. Several studies demonstrated computation of
elastic properties of soft tissues [354, 356–359]. Nevertheless,
clinical translation of PAE is still far way for research studies to
accomplish, the development of the PAE technology has shown
the potential to be used in life threatening diseases, such as breast
and prostate cancers, and brain tumors [350, 360]. Photoacoustic
elastography can be used for mapping elastic properties of
diseased tissues with highly vascularized structures, such as
carcinoma and glioblastoma [351]. Most PAE studies have
focused on qualitative imaging and quantitative PAE is still a
challenge. Moreover, PAE using propagating shear waves still
need to be clearly addressed. A recent study by Wang et al. did
develop a PA viscoelasticity technique for quantitative imaging of
liver cirrhosis based on a PA shear wave model [359]. This
viscoelasticity imaging model was inspired by the acoustic
radiation force impulse (ARFI) technique (see Ultrasound
Shear Wave Elastography). In this model, a laser beam was
focused into a tissue that resulted in the tissue thermal
expansion and a PA pressure field was generated. The pressure
field induced a localized ultrasound impulse similar to ARFI, and
subsequently a tissue displacement field could be observed. The
study assumed that these forward propagating PA waves could be
modeled using shear wave equations.

As a summary of methods addressed in this review, Table 4
compares photoacoustic elastography with other elastography
modalities in term of performance.
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CHALLENGES AND PERSPECTIVES

Ultrasound Shear Wave Elastography
Many notable ultrasound elastography methods have been
translated into clinical applications, and adopted by clinicians
for diagnosis of several organs, as introduced in Applications. A
limitation lay in the depth of SW penetration due to attenuation,
especially for the diagnosis of liver fibrosis and steatosis, which
could result in unsuccessful measurements with large patients or
patients with ascites [31]. Note that SW attenuation is a concern
for any shear wave elastography method. Consequently,
measurements on superficial regions showed a higher success
rate, such as the diagnosis of breast lesions and tumors. Another
limitation lies in the assumption often used in shear wave
elastography; notably considering the tissue as isotropic and
homogeneous. Certain tissues such as muscles or tendons do
not respect the isotropy hypothesis and are rather considered as
anisotropic or transverse isotropic media. To answer this
problem, teams have developed stiffness tensors for assessing
shear wave propagation and for evaluating mechanical properties

in several directions [161, 361], even in three dimensions [162].
Bones, brains, or lungs are parts of the body that can be
considered porous and for which the assumption of
homogeneity is limited. Poroelasticity based on the estimation
of the temporal response of tissues to compression [15, 362–364]
is a technique derived from strain elastography. Although a little
off topic because it does not use shear waves, its development in
the characterization of tumors is promising [364, 365]. Other
applications, such as the characterization of muscles, Achilles
tendons, the cardiovascular system, and lymph nodes [110,
366–368], have shown good results that reflected the
difference between normal and abnormal tissues.

At present, the measurement of the tissue elasticity has
dominated the field, and technologies, such as the transient
elastography, SSI, ARFI, and comb push ARFs are available on
clinical scanners [67, 110, 144, 369–376]. In fact, most
manufacturers have today a shear wave elastography package
for clinical use, and the spatial resolution of those elastography
systems are as good as ultrasound B-mode imaging. However for
measurements on more complex tissues, such as anisotropic,

FIGURE 10 | Images of shear wave propagation in a porcine retina generated with a single acoustic radiation force ultrasound push. The images are taken
snapshots at (A) 0.2, (B) 0.25, (C) 0.3, and (D) 0.35 ms after the push. Lateral scale: 0.5 mm/div; axial (depth) scale: 0.25 mm/div. Reproduced with permission from
[323]. Copyright 2015, OSA Publishing.

TABLE 4 | Overview and comparison of various elastography technologies.

Modality\features Manual palpation USE MRE OCE PAE

Interrogating
mechanism

External assessment
by hand

Acoustic waves Acoustic waves Usually optical or
acoustic waves

Optical waves (near infrared
laser)

Detection Sense of touch Acoustic waves Magnetic field gradients Optical waves (near
infrared)

Acoustic waves

Tissue property Mechanical strain Acoustic
impedance

Tissue nuclear property Optical absorption Optical absorption/acoustic
impedance

Spatial resolution Not deterministic ∼500 μm ∼1 mm (clinical 3T machine) - 500 μm
(preclinical 7T machine)

∼ μm ∼50 μm

Imaging depth Not deterministic ∼ cm(s) (whole
body)

∼ cm(s) (whole body) ∼1 mm ∼ cm(s)

USE, ultrasound elastography; MRE, magnetic resonance elastography; OCE, optical coherence elastography; PAE, photoacoustic elastography.
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layered, or near close to interface results should be taken with
caution. The characterization of human tissue viscoelasticity
without using a rheological model, and studies on viscosity,
anisotropy, porosity, and nonlinearity, are important topics in
development [23, 51, 377–383]. While those innovations have not
yet received clinical approval, further validation with robustness
and reproducibility results should allow manufacturers to
consider these biomarkers. New applications of SW ultrasound
elastography are also in developments. Studies pointed out that
the measurement of the elastic property could be used to monitor
thermal ablation [374, 384, 385].

Magnetic Resonance Shear Wave
Elastography
Magnetic resonance elastography has been proven successful and
robust in a broad range of applications, from clinical diagnosis of
liver diseases [386] to brain [280], and breast [387] pathologies.
However, generalization of MRE in clinics is impacted by the scan
time required for the acquisition of complete data sets necessary
for accurate reconstruction. Clinical sequences currently acquire
one component of the motion field at one frequency, and rely on a
1D direct inversion assuming isotropy, incompressibility, local
homogeneity, and pure elasticity. This package is fast and
guaranties results. Mechanical solicitation of the tissue under
multi-frequency loads may be a first step into the characterization
of tissue viscoelastic responses by providing valuable information
on the frequency dependent biomechanics in pathological cases
[201]. Motion encoding may also reach a limit at high frequencies
in the case of oscillating gradients due to peripheral nerve
stimulation [388]. The actuation regime also determines the
physics to consider for inferring mechanical parameters from
experimental datasets [184]. An elegant avenue circumventing
the use of external actuators is intrinsic actuation from low
frequency heart beats along with poroelastic modeling of the
tissue [211]. Along the same lines, natural vibrations in the brain
have been exploited using the novel passive elastography
technique based on time reversal concepts to quantify the
vibration wavelengths, assumed to be related to brain stiffness
[210]. A potential solution to shear wave attenuation in soft
viscoelastic tissues may be to place motion sources closer to the
region of interest. This may be achieved using ultrasound
transducers generating an acoustic radiation force impulse

(ARFI) along with MRE acquisition [207, 389]. Alternatively, a
promising approach that may prove feasible with clinical MRI
scanner is Lorentz force elastography for in situ actuation at
different frequencies [390, 391]. An elasticity reconstruction
obtained using a Lorentz force and a clinical MRI scanner is
displayed in Figure 11, in the case of a gel phantom.

On a similar note, localized motion generation using ARFI has
been employed with MRE to measure elasticity changes during
high intensity focused ultrasound ablations in ex-vivo porcine
muscle samples [392]. Such monitoring requires sufficient
displacement amplitude [393]. Assessment of stiffness changes
due to ablation or percutaneous procedures has been performed
both during [394, 395], and separately before and after ablation
[396], all cases reporting a stiffness increase after the intervention.

On the acquisition side, significant amount of effort has been
put into MR sequence developments to reduce scan time while
preserving 3D motion encoding and signal amplitude. Although
equipping an MR sequence with bipolar magnetic field gradients
prevails, recent implementations took advantage of MR sequence
inherent gradients to encode motion, thus keeping the timing
shorter than conventional use of MEG [397]. As in any MRI scan,
artefacts may occur due to patient motion. Sequence dependent
artefacts include and are not restricted to signal loss in GRE
sequences due to irregular geometries, and associated magnetic
field inhomogeneity and distortion in echo-planar sequences.
Specific to MRE, phase wrapping occurs when motion cannot be
encoded in the [-π, π] range leading to phase jumps within this
range. Three solutions appear and consist in either decreasing the
gradient sensitivity, decreasing the motion generator strength, or
using a phase unwrapping algorithm. Whilst a weakness of MRE
may be viewed as a lack of universal protocol applicable to any
organ, its strength resides in the capacity of providing usable data
in multiple cases owing to various hardware and MR sequences,
and in the availability of physical models to process produced
experimental data for stiffness estimation. This technology is still
mainly used in the context of clinical research, and additional
validations might be required for robust viscosity, porosity, and
anisotropy assessments.

Optical Shear Wave Elastography
Cellular Shear Wave Elastography
Although the optical microelastography technique has an
unprecedented high temporal resolution with the capability of

FIGURE 11 | Preliminary results of Lorentz force MRE in gel phantoms. (A) Phase map due to the propagation of displacements induced by a Lorentz force. (B)
Young’s modulus map of a heterogeneous phantom constructed from the Lorentz force induced motion.
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producing elasticity images, its spatial resolution is not as good as
other rheology methods, such as atomic force microscopy. The
spatial resolution of this technique is currently limited to 10 μm,
approximately, but it could be improved to resolutions close to
optical microscopy (≈1 µm) by utilizing a higher stimulus
frequency and by improvements in the reconstruction process.
This technique is currently limited to elasticity measurements but
viscosity might become available through FEM modeling, or by
considering shear wave attenuation [50].

More improvements need to be done beyond solving
limitations mentioned above. The mechanical behavior of the
cell should be further investigated in a range of frequencies. One
remaining difficulty is the absence of good standard rheology
method to validate the microelastography technique at
frequencies in the kHz range. This makes it difficult to
compare results from different techniques on a similar cell
type. Other reasons for the lack of concordance of results,
obtained with different cell elasticity technologies, were
recently addressed [398] and apply to the reported
microelastography method. Recent developments might allow
using mechanically stable microgel bead to compare different cell
elasticity methods [399], which may reduce variability when
performing such comparisons at different (non-overlapping)
frequencies.

Also, tomake these techniquesmore applicable and practical for
biologists, and to promote using cell mechanics as a biomarker,
improvements are required for the technique to be automatic, high
throughput while being robust, accurate, and sensitive with high
time and space resolutions. This might be done by coupling the
optical microelastography technique with other methods, such as
microfluidics with a high throughput [400, 401].

Optical Coherence Elastography
Higher resolution OCEmay face computational challenges due to
the fact that the speckle decorrelation length scales with the
speckle size [402, 403]. This would reduce the maximum
displacement that can be measured between frames. Many
studies have made progress to further demonstrate substantial
improvements in resolution [404, 405]. High resolution OCE
systems can be used to assess mechanical properties of cells and a
few preliminary studies have showed this potential [404, 406].
These are relatively new developments and the hope remains that
OCE would be able to characterize cell aggregates [305], with
penetration depth going up to several hundred microns, whilst
maintaining a sub-cellular scale resolution.

There has been several studies on elastogram image
reconstruction in OCE by inverse problem approaches [407].
Sridhar et al. [408] used an inverse problem approach to
understand how stromal tissues affect the broad spectrum of the
viscoelastic response [409], by minimizing the mean squared error
between computed and measured displacements. Different
methods to constrain the optimization algorithm has been
summarized by [410], in the context of ultrasound strain
elastography. Basic principles are also applicable to OCE.
However, one challenge that often prevails in these scenarios is
the optimization of the regularization parameter for efficient
reconstruction, especially in the context of in vivo experiments.

Another area of interest representing some challenges is the
quantitative assessment of tissue viscoelastic properties with
OCE. This research is still in its early years acknowledging the
fact that the viscosity is not accounted for in the simple approach
[411], but hopefully with the development of new models, OCE
would be able to convert elastic wave speed and attenuation into
quantitative values for clinical diagnosis based on tissue
viscoelasticity.

Despite several advancements, very few studies have been
done in the area of validation of performance. This would
require phantoms that are developed for optics rather than
mechanics [305]. Rigorous assessment of sensitivity and
specificity for diagnostic applications would be required for
translating the method to the clinics.

Photoacoustic Elastography
Photoacoustic elastography imaging is relatively a new development
and it still needs to overcome many challenges. The PA signal
contrast detected by ultrasound transducers is low due to lower
variation in the tissue elasticity distribution in comparison to the
optical absorption coefficient. This can potentially be overcome by
additionally employing an ultrasound modulation of the laser pulse
to provide external mechanical simulation of the tissue [412]. In
addition, elasticity can also be estimated from the resonance
frequency of the tissue material observed in the measurement of
PA signal strength against the operating frequency of the external
(ultrasound) mechanical stimulation [412, 413]. Another challenge
is the development of quantitative PAE imaging systems, as the first
few studies in the field reported only qualitative assessment of elastic
properties. However, Hai et al. were the first to develop a
quantitative PAE system [414]. It would also be interesting to
detect the contrast in the PA signal due to elastic property
variation separately from that of other parameters (including the
optical absorption coefficient). Grasland-Mongrain et al. generated
shear waves in soft tissues in ablative and thermoelastic regimes
with a 532 nm Nd:YAG laser [415]. However, it remained a
challenge to keep the laser beam energy within safety limits for
use in biomedical applications. This can potentially be overcome by
use of other types of laser or by emission of the high energy laser
beam onto a protective absorbing layer, such as a black sheet, that
can cover the tissue externally. In conclusion, PAE is still in the
beginning phase of its development compared to ultrasound, MRI
or OCT elastography, and there definitely remains scope for many
promising improvements to increase its potential for various
imaging applications.
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GLOSSARY

US ultrasound

MR magnetic resonance

SW shear wave

ARF acoustic radiation force

ARFI acoustic radiation force imaging

SMURF spatially modulated ultrasound radiation force

SSI supersonic shear imaging

TOF time-of-flight

TTP time-to-peak

2D-F two-dimensional Fourier transform

LPVI local phase velocity imaging

AMUSE attenuation-measuring ultrasound shear wave elastography

E Young’s modulus

K Bulk modulus

ν Poisson’s ratio

|µ| real shear modulus

G* magnetic field gradient complex shear modulus

G9 shear storage modulus

G99 shear loss modulus

T Stress tensor

S Deformation tensor

λ First Lamé’s coefficient

ω angular frequency

vs shear wave speed

αs shear wave attenuation

η shear viscosity

B0 static magnetic field in MRI

T1 longitudinal magnetisation regrowth time constant

T2 transverse magnetisation decay time constant due to spin-spin interaction

MRI magnetic resonance imaging

RF radiofrequency

MEGs motion encoding gradients

MRE magnetic resonance elastography

FID free induction decay

EPI echo planar imaging

SE spin echo

GRE gradient recalled echo

LFE local frequency estimation

MDEV multi-frequency dual-elasto-visco inversion

HMDI heterogeneous multifrequency direct inversion

FE finite element

T2* transverse magnetisation decay time constant due to spin-spin
interaction and magnetic field inhomogeneity

TE echo time

TR repetition time

ϕp material porosity

p complex time harmonic pressure field

ρf pore fluid density

κ hydraulic conductivity

ρa apparent mass density

P0 tissue initial pressure

β thermal expansion coefficient

νL speed of sound

CP specific heat capacity at constant pressure

є strain

єA complex strain amplitude

δ phase delay

μa intrinsic absorption coefficient

ϕ spatial resolution of optical fluence
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