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Supporting Information Text

Note 1: Advantages of NLI over other reconstruction techniques

In the first description of optical micro-elastography (1, 2), the “passive elastography” scheme was employed to recover shear
stiffness distributions µs using a single motion component along with a purely elastic mechanical model (no damping) assuming
local homogeneity, as detailed elsewhere (3–5). However, biological tissues are known to be better described as heterogeneous
viscoelastic or poroelastic materials (6). Passive elastography relies on an undamped formulation of the Helmholtz wave
equation, where the symmetry with respect to time is invoked to evaluate the time-reversed wave field from spatiotemporal
correlations of the measured displacements across the image. The diameters of resulting focal spots relate to the approximate
wavelengths λ of the elastic field according to the Rayleigh criterion. Although elegant and time efficient, this time-reversal
approach is no longer valid in viscoelastic, i.e., damped materials, where the material-driven attenuation of mechanical
oscillations breaks the time reciprocity. Additionally, the elastic approximation µs = ρ (λf)2, where f is the actuation frequency
and ρ is the material’s density, requires the measured elastic field be shear waves. This shear wave assumption is significantly
challenged in micron and sub-micron scale confined cellular domains which restricts the reconstruction to wave parameters (λ
or speed c), instead of material bio-mechanical properties, as suggested in (7). Finally, guidelines for the pre-selection of the
motion component to use in the inversion procedure are rarely discussed.

The direct inversion of the algebraic wave equation has attracted a wide interest for the evaluation of the complex-valued
viscoelastic shear modulus despite the required evaluation of second- to third-order displacement derivatives (8, 9). Other
schemes relating measurements of wave propagation velocity and attenuation on one hand to the complex shear modulus on
the other hand have also been investigated (10–12). Although reasonably simple to implement and computationally affordable,
these techniques operate directly on the measured displacement field, rendering the reconstruction process prone to high
sensitivity to noise. Moreover, restrictive assumptions on the wave front geometry (plane, cylindrical, spherical), wave type
(pure shear versus general elastic), and tissue nature, such as local homogeneity, weaken the interpretability of final mechanical
parameter estimates. The inherent heterogeneity of biological tissues and the proven pathology-driven structural changes
highlight the importance of a heterogeneous mechanical parameter support (8). To date, contributions to the field of optical
micro-elastography have focused on wave tracking (13) and high frequency elastic wave behaviour in gel phantoms (7), but no
work has been reported on alternative characterization procedures to image the viscoelasticity in live cells.

Here, the overlapping subzone NLI approach (14) was used to recover complex-valued shear modulus distributions. Among
the many options available in the literature, this choice was motivated by three criteria. First, heterogeneous property
descriptions are supported as opposed to most direct strategies where property gradients are neglected to stabilize local
inversions (9, 11, 15–17). Second, the low compressibility found in most biological tissues (18) is handled by the introduction of
both an additional equation and a pressure term as in (19). This approach is distinguished from the more common isolation of
the elastic field’s compression component through extensive spatial filtering or formal extraction of the shear component, at the
cost of high-order differentiation of the noisy displacement data. Finally, complex elastic fields of relatively large wavelengths (on
the order of the domain scale), similarly to that generated under the available actuation frequency in optical micro-elastography,
cannot be associated to simple shear waves and have been shown to depend on mechanical properties and domain geometry,
thus requiring explicit integration of boundary condition information in the reconstruction process (7). In NLI, the generalized
boundary value problem does not assume the presence of bulk shear waves. Numerical simulations of the boundary value
problem are computed iteratively using successive sets of material property updates until the simulated displacements match
the measured displacements in a least-squared sense. Boundary conditions are thus supplied to the forward finite element
algorithm under the form of displacement values extracted from the actual measured data. Fig. S1 shows micro-elastography
reconstructions from previous (using the same data set as (1)) and presented works. The attenuation-free shear stiffness map
from previous work has been converted back to speed values, i.e., c =

√
µs/ρ, due to the violation of the shear wave assumption

(7). For comparison, the transparency map in previous work has been removed and anatomical and property images are
displayed side-by-side instead of superimposed. The shear stiffness computed with NLI is defined by µs = 2 |µr+iµi|2

µr+|µr+iµi| , where
µr and µi are the reconstructed storage and loss moduli, respectively. The presented micro-elastography pipeline results in
more detailed property maps where individual regions (nucleolus, nucleus, cytoplasm, perivitelline space, and zona pellucida)
are clearly outlined and distinguishable.
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Fig. S1. Micro-elastography reconstructions from previous (1) and presented works. c is the speed of the elastic wave satisfying the wave propagation equation, and µs

is the shear stiffness of the oocyte.
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Note 2: Full-field displacement approximation

The rationale for full-field displacement data approximation from in-plane measurements is described in this section. GV-stage
oocytes have been commonly described as symmetrical cells. This characteristic, combined with an in-plane actuation at the
central symmetry level of the oocyte, allows to infer the motion component variations in the vicinity of this central slice. A 3D
oocyte displacement model was built to demonstrate the assumptions underlying the approximation of full-field displacements.
Fig S2 shows the variations of motion component amplitudes |u|, |v|, and |w| averaged in (x, y) planes along the z axis in the
upper-half (z = 0 µm to z = 45 µm) of a simulated 3D oocyte domain. The slice located at z = 0 µm is the plane of symmetry
of the oocyte model and motion components u, v, and w are oriented along the x, y, and z axes, respectively.
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Fig. S2. Variations along the z axis of motion component amplitude average values.

In Fig. S2.a, components |u| and |v| are non-zero at every slice location along the z axis, whereas |w| is zero in the central
plane and progressively increases. This indicates the following motion variations:

w = 0 if z = 0,
w ̸= 0 if z ̸= 0,
u ̸= 0 ∀z,
v ̸= 0 ∀z.

[1]

In Fig. S2.b,
∣∣ ∂u

∂z

∣∣ and
∣∣ ∂v

∂z

∣∣ are zero or small in the central plane and its vicinity, respectively, and grow at increased
distances from z = 0 µm. On the contrary,

∣∣ ∂w
∂z

∣∣ is non-zero at z = 0 µm and progressively decreases. This indicates the
following motion variations:

uz0 ≈ uz0+δz, [2]
vz0 ≈ vz0+δz, [3]
wz0 ̸= wz0+δz, [4]

where z0 = 0 µm. These observations support the effort for displacement recovery in the neighborhood of the measured central
plane. In particular, the incompressibility of biological tissues (18) enables the approximation of the out-of-plane component
w through ∇ · u = 0 (local incompressibility), which represents an alternative to the more common approach of invoking
plane-strain when tomographic data are measured.
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Note 3: Experiment-based full and partial convergence rates from two representative oocytes

Two typical convergence profiles were observed in the presented work and are shown in Fig. S3 through two representative
oocytes. The storage modulus reconstructions performed on the 21 treated oocytes all converged to a stable distribution
(µr curves for the representative oocytes 1 and 2 in Fig. S3). Out of the 21 corresponding loss modulus reconstructions, 13
converged to a stable distribution (plateau in the convergence profile of the representative oocyte 1 for µi) and 8 continued
to progress towards lower values (slope in the convergence profile of the representative oocyte 2 for µi). In general, the loss
modulus is responsible for subtle variations in the shape of the induced wave field and is more difficult to identify, especially
when the wavelength is long, than the storage modulus, which is most responsible for this wavelength. This explains the overall
higher sensitivity of the algorithm to storage than loss modulus contrasts.

The partial convergence observed here suggests that the algorithm has identified a relative distribution of loss modulus
values and pursues the reconstruction by promoting property updates that lead to a global scaling with additional iterations.
This is shown in Figs. 3.e and 3.f in the article, where the map of the partially-converged loss modulus is consistent with its
fully-converged counterpart but shows lower magnitude values and spatial variations of lower definition.

This characteristics might be indicative of a natural biological variability where the elastic wave attenuating behavior of
some oocytes might be slightly lower than in others, and which would translate into attenuation effects even harder to detect
in the measured wave field. Although the oocytes in question would remain fully viscoelastic in terms of the elastic versus
viscous contribution, slightly lower loss modulus values in this already low and narrow range (within a few hundreds of Pascals)
might have hindered the generation of a quantitative property update.
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Fig. S3. Full and partial convergence rates from two representative oocytes.
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Note 4: Reconstructions from true full-field displacements

The proposed method introduces an important advance in the field of optical micro-elastography. However, future work involving
metaphase-II stage oocytes and early fertilized embryos in the context of in-vitro fertilization will require the measurement of
actual true volume data to leverage the full potential of the proposed pipeline, and extend its applicability to cells of arbitrary
shapes. Fig. S4 shows maps of relative reconstruction errors when the true 14.4-kHz full-field displacements simulated in
the oocyte model, with the shear modulus distributions µ1 and µ2 described in the article, are used for inversion. Storage
modulus reconstructions with reasonable to numerical precision accuracy could be recovered from both µ1 and µ2 displacement
data, the loss modulus reconstructed from µ2 displacement data also presented a reasonable accuracy, and the loss modulus
reconstructed from µ1 displacement data showed the highest error levels, which was expected due to the long wavelength of the
induced vibrations.
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Fig. S4. Maps of the NLI reconstruction errors using simulated true 3D full-field displacements.
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Note 5: Selection of the zone size and inter-slice distance

The division of the total region of interest into a collection of subzones randomly distributed permits to handle the reconstruction
and its computational cost, irrespective of the mechanical property’s potential spatial variations, which cannot always be
anticipated. Nevertheless, constraints are placed on the size of those subzones relatively to the wavelength of the measured
wave field, which is governed by the mechanical properties of the scanned tissue and the actuation frequency. Once the subzone
size is fixed, no constraint is placed on the storage and loss modulus relative spatial variations, i.e., the algorithm identifies the
property updates freely.

Previous works have demonstrated that the subzone size plays an important role in the reconstruction process and that
mechanical contrasts in the imaged material could be recovered from the collected motion fields with subzone size to wavelength
ratios of various extents (20–23). In particular, experimental conditions involving different wavelengths were investigated and
allowed establishing guidelines to resolve property distributions in the material. However, these guidelines were established
using true 3D-displacement data acquired with magnetic resonance elastography.

In our work, 2D displacements were estimated from optical microscopy images and expanded to an approximated 3D data
set using an oocyte geometry-based 3D mechanical motion model. This step introduced an additional parameter to optimize
(the inter-slice distance), which, together with the subzone size, were found to be competing reconstruction variables in the
present situation where elastic fields of long wavelengths were induced. Consequently, guidelines adapted to our experimental
conditions were proposed by studying these two parameters and their joint impact on the recovered property maps.

In practice, inversion configurations allowing stable reconstructions while minimizing the computational needs are preferred.
A stability study was conducted in this respect to identify a suitable subzone size - inter-slice distance combination. Five
inter-slice distances ranging from δz1 = 0.25 µm to δz5 = 1.25 µm were used to assess the impact of the local approximation
discretization, which remains valid in the vicinity of the central plane, along with three subzone isotropic sizes, zs1 = 20 µm,
zs2 = 30 µm, and zs3 = 40 µm. Zone sizes smaller than 20 µm would cover less than 25 % of the wavelength, which would
further challenge the reconstruction, and sizes greater than 40 µm would be inconsistent with the advantages of the subzone
decomposition.

Fig. S5.a shows reconstructions of the storage modulus with the five inter-slice distances and three zone sizes. Fig. S5.b
shows the corresponding reconstructions of the loss modulus. The property images indicate that the computation of the inverse
problem performed better with a larger discretization of the local divergence-free approximation, as the smallest inter-slice
distance (δz1 = 0.25 µm) resulted in the poorest contrast quality between inner structures of the representative oocyte. The
different scales observed in the estimated properties, alongside zone size variations, are consistent with reconstruction behaviours
reported in low frequency and intrinsic MR elastography, where the low-frequency, long-wavelength condition precludes absolute
property recovery (23). The right panels of Fig. S5.a and S5.b display the convergence rates of the iterative reconstructions
indicated by the average value of the property across the entire domain.

In this context of optical micro-elastography, the selection of the optimal inter-slice distance and zone-size was addressed by
evaluating the relative variations of the recovered properties with respect to each parameter using finite-difference derivatives,
i.e.,

∣∣ ∂θ
∂zs

∣∣/σθ and
∣∣ ∂θ

∂δz

∣∣/σθ, where θ represents the storage (µr) or loss (µi) modulus. Fig. S6 shows these relative variations
for each combination of inter-slice distance and subzone size. The optimal configuration was identified by the minimum
values of

∣∣ ∂θ
∂zs

∣∣/σθ and
∣∣ ∂θ

∂δz

∣∣/σθ shared by µr and µi. Reconstructions involving δz1 and δz2 were discarded due to their poor
convergence rates, as indicated in Fig. S6. Amongst the remaining parameters, δz3 to δz5 and zs1 to zs3, a shared minimum
was found for the (δz5 = 1.25 µm, zs2 = 30 µm) combination.
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Fig. S5. Impact of the inter-slice distance δz and of the zone size zs on the recovered property images.
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Fig. S6. Selection of the optimal inter-slice distance and zone-size. The relative variations of the reconstructed properties are reported in percentage of the property’s
standard deviation calculated in each segment (nucleolus, nucleus, cytoplasm, perivitelline space, and zona pellucida) and averaged across all segments.
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