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Intravascular ultrasound~IVUS! is known to be the reference tool for preoperative vessel lesion
assessments and for endovascular therapy planning. Nevertheless, IVUS echograms only provide
subjective information about vessel wall lesions. Since changes in the vascular tissue stiffness are
characteristic of vessel pathologies, catheter-based endovascular ultrasound elastography~EVE! has
been proposed in the literature as a method for outlining the elastic properties of vessel walls. In this
paper, the Lagrangian Speckle Model Estimator~LSME! is formulated for investigations in EVE,
i.e., using a polar coordinate system. The method was implemented through an adapted version of
the Levenberg-Marquardt minimization algorithm, using the optical flow equations to compute the
Jacobbian matrix. The theoretical framework was validated with simulated ultrasound rf data of
mechanically complex vessel wall pathologies. The results, corroborated with Ansys finite element
software, demonstrated the potential of EVE to provide useful information about the heterogeneous
nature of atherosclerotic plaques. ©2004 Acoustical Society of America.
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I. INTRODUCTION

Intravascular elastography, or equivalently endovasc
elastography~EVE!, was introduced in the late nineties as
new imaging modality that aims to outline the elastic pro
erties of vessel walls. In EVE, the vascular tissue is co
pressed by applying a force from within the lumen. Inde
the compression can be induced by the normal cardiac
sation or by using a compliant intravascular angioplasty b
loon. The feasibility of EVE was investigatedin vitro with
phantom studies~de Korte et al., 1997! and with excised
vessels~de Korte et al., 1998 and 2000a; Brusseauet al.,
2001; Wanet al., 2001!, and in vivo on human coronary
arteries~de Korteet al., 2000b!. Interestingly, it was demon
strated that EVE could provide information that is occlus
to intravascular ultrasound~IVUS! images.

However,in vivo, the position of the catheter in the lu
men is generally off center and may move in response to
flow pulsatility. Moreover, the lumen geometry is often n
perfectly circular. In such conditions, the ultrasound be
does not run parallel with tissue displacements, and ap
priate coordinate systems are required to model both the
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trasound propagation and the tissue motion. Owing to t
~one-dimensional! 1-D-motion estimators may not be opt
mal for EVE applications. Ryan and Foster~1997! then pro-
posed to use a 2-D correlation-based speckle track
method to compute vascular elastograms. Additionally t
2-D correlation-based estimator, Shapoet al. ~1996a, 1996b!
proposed the use of an angioplasty balloon to stabilize
catheter in the vessel lumen. Those phantom investigat
tended to demonstrate the feasibility of EVE in the prese
of motion artifacts, and its potential to provide new diagno
information that may help in the functional assessment
atherosclerosis.

Another strategy was proposed by de Korteet al.
~2000b! to minimize artifacts due to catheter motion. It co
sisted in using pre- and post-motion images near end-dias
for a pressure differential of approximately 5 mm Hg. T
computedin vivo elastograms could detect an area compo
of hardened material, which was corroborated with IVU
B-scans that revealed a large calcified area. This last me
may become a standard procedure if one considers E
without the use of an angioplasty balloon.

So far, EVE appears a very attractive and promising t
to characterize the mechanical properties of vessel wa
However, in return, it is potentially limited by motion art
16(2)/1276/11/$20.00 © 2004 Acoustical Society of America
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facts. Furthermore, it is also limited by the heterogene
nature of the vascular tissue and of the plaque itself that m
induce very complex tissue deformations~nonrigid rotation,
scaling, shear, etc.!. Most of the currentelastographicmeth-
ods use correlation techniques to assess tissue motion
may not be optimal to investigate such complex strain p
terns. In this paper we propose an adaptation of the Lagra
ian Speckle Model Estimator~LSME! for strain computation
in EVE, i.e., for a formulation in a polar coordinate syste
The method was implemented through an adapted versio
the Levenberg-Marquardt minimization algorithm, using t
optical flow equations to compute the Jacobbian mat
While the full 2-D polar strain tensor was assessed, only
radial strain parameter is displayed in this paper. The th
retical framework was validated with simulated ultrasound
data of mechanically complex vessel wall pathologi
Namely, oneidealizedand onerealistic plaque were investi-
gated. Whereas the former allowed validating the potentia
the method to differentiate between hard and soft vasc
tissues, the latter showed its potential to characterize the
erogeneous nature of atherosclerosis. Interestingly, i
worth noting that a polar image-formation model that sim
lates the spatial variation of the ultrasound beam with de
was also introduced.

This paper is organized as follows. In Sec. II A, the fo
ward problem in EVE is addressed; it is followed by t
derivation of the tissue motion estimator in Sec. II B, and
the biomechanical simulations of the vessel walls in S
II C. Results are presented in Sec. III, while in Secs. IV a
V we discuss the results and draw conclusions and pers
tives to this work.

II. METHODOLOGY

Endovascular elastography~EVE! is a catheter-base
modality, which gives insights about mechanical propert

FIG. 1. A schematic illustration of the image acquisition process in IV
and EVE. The transducer is placed at the tip of the catheter and c
sectional imaging of the vessel is generated by sequentially sweeping
ultrasound beam over an angle of 360°. In this ideal situation, the ultraso
beam runs parallel with the vascular tissue motion, i.e., in the (r ,w) coor-
dinate system.
J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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of the vessel wall. Following the example of IVUS, and
schematically illustrated in Fig. 1, the transducer is placed
the tip of the catheter and cross-sectional imaging of a ve
is generated by sequentially sweeping the ultrasound b
over a 360° angle. Mechanical parameters~radial strain, in
this case! are estimated from analyzing the kinematics of t
vascular tissue during the cardiac cycle~or in response to an
angioplasty-balloon push!.

A. The forward problem in EVE

1. The polar static-image-formation model

The image-formation model is for a rotating bea
~single element or an array transducer system! and is thus
expressed in polar coordinates. It is based on previous w
by Bamber and Dickinson~1980!. Such a model was used b
Meunier and Bertrand~1995! to study speckle dynamics; i
was also considered to investigate speckle motion artifa
~Kallel and Bertrand, 1994; Maurice and Bertrand, 1999!.
Under assumptions such as space-invariance of the ima
system, and plane strain conditions for the motion~that is no
transverse motion is involved!, the following simple 2-D
model was used~Maurice and Bertrand, 1999b!:

I 8~x,y!5h8~x,y! ^ z8~x,y!, ~1!

whereI 8(x,y) is the radio-frequency~rf! image,h8(x,y) is
the point-spread function~PSF! of the ultrasound system,̂
is the 2-D convolution operator, andz8(x,y) is a function
representing the acoustic impedance variations, which
modeled as a white Gaussian noise~random distribution of
uncorrelated scatterers within the region of interest!. As it
will be seen further in this section, the notation ‘‘8’’ is only
for convenience and it does not refer to any mathemat
operator.

Because the speckle dimension varies with depth for
lar scan systems such as the one described in Fig. 1, Eq~1!
is valid only for small regions of interest~ROI!. Accordingly,
the linear image-formation model is formulated using t
superposition integral, given by

I ~r ,w!5E E h~r ,w,r 8,w8!z~r 8,w8!r 8 dr8 dw8, ~2!

wherer andw are the radial~depth! and angular coordinates
respectively;I (r ,w), h(r ,w), and z(r ,w) are the polar rf
image, polar PSF, and the acoustic impedance func
mapped in polar coordinates, respectively; (r 8,w8) is the po-
sition of the ‘‘point object’’ used to define the polar PS
Furthermore, for a polar scan system,h(r ,w) can be consid-
ered angular-position invariant; therefore, Eq.~2! becomes

I ~r ,w!5E E h~r ,r 8,w2w8!z~r 8,w8!r 8 dr8 dw8. ~3!

It is convenient to model the PSF as a 1-D cosine mo
lated by a 2-D Gaussian envelope; that is a simple appr
mation of the far field PSF. The mathematical formulati
can be expressed as

s-
he
nd
1277Maurice et al.: Endovascular elastography modeling
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h~r ,r 8,w2w8!5e2~~r 2r 8!2/2sr
2
1~w2w8!2/2sw

2
!

3cosS 2p
f tr

c/2
~r 2r 8! D , ~4!

wheres r is a pulse length parameter;sw[sw(r ) is a beam-
width parameter;b f tr andc are the transducer frequency an
the sound velocity in soft tissue, respectively. For simplic
it is assumed thatsw(r ) is a linear function ofr; it is ex-
pressed as

sw~r !5
r

RL
s0 , r>RL , ~5!

with RL being the lumen radius ands0 the beam width at
r 5RL . In such a situation, the beam forms a sector t
linearly increases with depth through the vessel wall. It
important to notice that Eqs.~4! and~5! define a very simple
approximation of the PSF in the far-field. In practice, t
near field beam profile is more complex. However, it can
assumed that the transducer is positioned near the midd
the lumen, so that the vessel wall is not in the near fiec

Additionally to the divergence of the ultrasound beam p
file, the nonplanar nature of the wavefronts also raises
complexity of the polar scan model; this aspect was not m
eled in the current study.

In theory,sw(r ) is a continuous function ofr. However,
for simplification it will be considered as a piecewise co
stant function, then partitioning regions being defined by th
boundaries 05r 0,r 1,r 2,¯<r n . For convenience, eac
partition will be denoted asPi , that is,

Pi5] r i 21 ,r i ], i 51,...,n. ~6!

Equation ~6! defines an interval; the reversed left brack
means thatr 0 ~the first element of the interval! is excluded. A
discrete approximation ofsw(r ) is then defined as follows:

sw~r !ur PPi
>sw~Pi !5

Pi

RL
s0 , ~7!

wherePi is the mean radial distance of the intervalPi . Now,
assuming that the PSF is locally depth-invariant, i.e., on e
Pi , the linear model of Eq.~3! can be approximated by th
following convolution form:

I ~r ,w!>(
i 51

n

I ~Pi ,w!5(
i 51

n

@h~Pi ,w! ^ z~Pi ,w!#, ~8!

with

h~Pi ,w!5h~r ,w!ur PPi

5e2~r 2/2sr
2
1w2/2sw~r !2! cosS 2p

f tr

c/2
r D .

While the continuity ofI (r ,w) at the boundaries of the
partitions can be questioned, Eq.~8! presents a simple ap
proximation model of a polar scan system. Figure 2 illu
trates the implementation of such a model for a 20 M
transducer with a 60% bandwidth at23 dB and a beam
width ~width at half maximum52.353s0) of 0.1 mm.
z(r ,w) is assumed to be a continuum. For the purpose of
simulations presented below,z(r ,w) was simply obtained by
1278 J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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generating a 2-D normally distributed random field. The
men and the tissue surrounding the vessel were assume
be, respectively, 2.5 and 1.67 times less echoic than the w

Figure 2~a! shows the beam profile as a function
depth. The beam width increases linearly, being minima
the lumen and maximal in the surrounding tissue; the pa
tion numbern was set at 5. Figure 2~b! presents a simulated
polar B-mode image for an homogenous vessel secti
whereas Fig. 2~c! gives the equivalent IVUS image~in Car-
tesian coordinates!.

2. The tissue-motion model

For a small ROI, tissue motion can be approximated
an affine transformation; this can be expressed in Carte
coordinates as

~9!

where u j is a function of timet „u j (t)…. Equation 9 ex-
presses a translation of the center of the ROI~vector @Tr #)
and a linear geometrical transformation of coordinates~ma-
trix @LT#).d It can also be seen as trajectories that describ
tissue motion in a region of constant strain~Maurice and
Bertrand, 1999a!. Strain is usually defined in terms of th
gradient of a displacement field; sincep(x,y,t) andq(x,y,t)
represent the new position of a point (x,y), the (ux ,uy)
components of the displacement vector in the (x,y) coordi-
nate system are given by

Fux

uy
G5Fp~x,y,t !2x

q~x,y,t !2yG5Fu1

u4
G1DFxyG , ~10!

with

FIG. 2. Image-formation model for a 20 MHz polar scan system;~a! shows
the beam profile as a function of depth;~b! presents the simulated pola
B-mode image for an homogenous vessel section;~c! is the IVUS simulated
image.
Maurice et al.: Endovascular elastography modeling
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In the above equation,D can be defined as the Cartesi
deformation matrix. Thee i j , which are the components o
the strain tensore, are expressed in terms of theD i j compo-
nents as

e i j ~ t !5 1
2 @D i j ~ t !1D j i ~ t !#. ~11!

Furthermore, the radial and tangential components of
displacement vector (ur ,uw) in the (r ,w) coordinate system
are, respectively, given as

ur5Aux
21uy

2,

uw5arctanS uy

ux
D ,

with

ux[ux„x~r ,w!,y~r ,w!… and uy[uy„x~r ,w!,y~r ,w!….
~12!

The polar deformation matrix, labeled asj(t), then can be
derived from Eqs.~12! and ~10!; it is given as

j~ t !5F ]uw

]w

]uw

]r

]ur

]w

]ur

]r

G
5F ]uw

]ux

]uw

]uy

]ur

]ux

]ur

]uy

GF ]ux

]x

]ux

]y

]uy

]x

]uy

]y

GF dx

dw

dx

dr

dy

dw

dy

dr

G
5F ]uw

]ux

]uw

]uy

]ur

]ux

]ur

]uy

G DF dx

dw

dx

dr

dy

dw

dy

dr

G , with H x5r cosw,
y5r sinw .

~13!

The LSME computes the full 2-D-strain tensorj(t).
However, for the purpose of this paper, only the map of
j rr (5e rr ) component~the radial strain, labeled in EVE a
the elastogram! is displayed. For small deformations, th
elastogram is expected to provide cartography of relative
sue stiffness inside the vessel wall. This assumption ho
for example, when pre- and post-motion rf images are
quired for a small pressure gradient, i.e., at the end-dias
j rr can be expressed as a function of the Cartesian defo
tion matrix ~D! as

j rr ~ t !5
]ur

]r
5F ]ur

]ux

]ur

]uy
GDFcosw

sinw G . ~14!

3. The polar dynamic-image-formation model

The 2-D polar dynamic-image-formation model for a
in-plane tissue motion is now derived. It is worth rememb
ing thatz(r ,w) is a map of the acoustic impedance variatio
z8(x,y) in polar coordinates, which can mathematically
expressed as
J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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z~r ,w!5z8~x,y!ux5r cosw
y5r sin w

. ~15!

The affine transformation onz8(x,y) can be set by only
changing the (x,y) coordinates. Without loss of generality,
is assumed that translation is absent, and@Tr # in Eq. ~9! can
thus be neglected. It is also interesting to notice that impre
ing @LT# on the tissue to simulate deformation requires
computation of the inverse transformation@LT21# on the
coordinates. Hence, for an (r ,w) in-plane motion, the 2-D rf
polar dynamic-image-formation model at timet becomes

I ~r ,w,t !>(
i 51

n

I ~Pi ,w,t !

5(
i 51

n

@h~Pi ,w! ^ zLT
p
21~Pi ,w!#,

with

zLT
p
21~Pi ,w!5zLT

p
21~r ,w!ur PPi

5zLT218 ~x,y!ux5r cosw
y5r sin w

.

~16!

In Eq. ~16!, zLT218 (x,y) indicates a change in coordinates f
the functionz8(x,y); that change involves the 232 matrix
@LT21#. Similarly, zLT

p
21(Pi ,w) indicates a change in coor

dinates for the functionz(Pi ,w) where the 232 matrix
@LTp

21# is involved. Implicitly, this means that@LT# ~as well
as @LTp#) is invertible. This assumption is valid for an in
compressible continuum.

B. Tissue motion estimation in EVE

1. Lagrangian speckle image (LSI)

Vascular tissue may rotate, shear, stretch, or compres
the measurement plane. Such kinematics set a fundam
limitation to correlation-based tissue motion estimators,
they are not appropriately compensated for. In conventio
elastography, where an external compression is indu
Ophir et al. ~1999! proposed to partially compensate for su
decorrelation by using temporal stretching of the post-mot
signals, whereas Chaturvediet al. ~1998a,b! proposed the
2-D-companding method. Interestingly, the Lagrang
speckle image~LSI! was introduced to describe ultrasoun
signals compensated for tissue motion~Maurice and Ber-
trand, 1999a!. For instance, in the dynamic image-formatio
model of Eq.~16!, tissue motion is modeled by applying th
linear transformation matrix@LTp

21# to z(r ,w). Hence, the
motion-compensated image, said the LSI, is obtain
through applying@LTp# ~the inverse of@LTp

21#) to a post-
motion rf image at timet given by I (r ,w,t). For the polar
dynamic image-formation model given by Eq.~16!, the LSI
~noted asI Lag) is then expressed as

I Lag~r ,w,t !5@ I ~r ,w,t !#LTp

>F(
i 51

n

h~Pi ,w! ^ zLT
p
21~Pi ,w!G

LTp

5(
i 51

n

@hLTp
~Pi ,w! ^ z~Pi ,w!uLTpu#. ~17!
1279Maurice et al.: Endovascular elastography modeling



x

se
e
e

th
b

-

a
na
b

al

er
t,

a

e

ve
gi

er

pen-
co-

a-

on

om-

du-

d by
tis-

tri-
lthy
-
Pa
In the above equation,uLTpu is the determinant of the matri
@LTp#.

2. The Lagrangian speckle model and the minimization
problem

As described in Maurice and Bertrand~1999a!, the
motion-compensated rf image~LSI! directly involves the La-
grangian description of motion. For instance, it is expres
in Eq. ~17! that the LSI brings back material points to th
positions where they originally stood. Accordingly, a conv
nient model to formulate the LSI can be given as

I ~r ,w,0!5I Lag~r ,w,t !1R~r ,w,t !

5@ I ~r ,w,t !#LTp
1R~r ,w,t !, ~18!

where R(r ,w,t) can be seen as an error term. The ma
ematical model for a tissue motion estimator then can
formulated as

MIN
LTp

i I ~r ,w,0!2@ I ~r ,w,t !#LTp
i2

5MIN
LTp

i I ~r ,w,0!2I Lag~r ,w,t !i2

5MIN
LTp

iR~r ,w,t !i2. ~19!

The minimum is obtained using the appropriate@LTp#. It is
worth remembering that@LTp# is a linear transformation ma
trix; it maps the Cartesian trajectories@Eq. ~9!# in a polar
coordinate system. However, for a small ROI (Dr ,Dw) that
is far from the vessel lumen center, motion equivalently c
be investigated using either a polar or a Cartesian coordi
system. In other words, the following approximation can
done to compute the elastogram:

j>LT2I , ~20!

whereI is the 2-D-identity matrix.

3. The Levenberg-Marquardt nonlinear minimization

Several gradient-based methods exist to numeric
solve minimization problems as given by Eq.~19!. Here,
tissue motion was assessed by using the Levenb
Marquardt method~L&M ! ~Levenberg, 1963; Marquard
1944!. As presented in Appendix A, at thekth iteration, the
L&M regularized inversion was implemented as

DuW k5@Jk21
T Jk211lkI #21Jk21

T
„IW02IWLag~uW k21!…, ~21!

whereDuW k is a vector of increments used to update the L

grangian images (DuW k is also known in the literature as th
step size!; @Jk21# is the Jacobian matrix;T designates the
transpose operator;lk is a non-negative scalar,I is the iden-
tity matrix; I 0(r ,w,0) andI Lag(r ,w,t) are rewritten asI 0 and
I Lag(uW ), respectively; anduW is the vectorization of@LTp#.

4. The optical flow equations and the Jacobian matrix

The optical flow equations, or material derivatives, gi
a relationship between measures in Eulerian and Lagran
coordinate systems, respectively~Horn, 1986!. For instance,
I Lag(uW

k21) can be seen as a function that describes a mat
1280 J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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property. Under such an assumption, as presented in Ap
dix B, the full expression for the 6 components of the Ja
bian matrix@Jk21# @Eq. ~21!# is given as

]I Lag~uW k21!

]uW
>

]I ~uW k21!

]uW

52H ]I

]x
,
]I

]x
x,

]I

]x
y,

]I

]y
,
]I

]y
x,

]I

]y
yJ . ~22!

Equation~22! was implemented to compute the Jacobian m
trix required to solve the minimization problem of Eq.~19!.

C. Biomechanical simulations of vessel wall
kinematics

1. Model design and image analysis

The computational structural analysis was performed
one simulated idealized coronary plaque~Fig. 3!, and on a
model created from measurements made of a typical c
posite plaque identified from anin vivo IVUS image @Fig.

FIG. 3. Schematic representation of an ‘‘ideal’’ plaque. The Young’s mo
lus for the normal vascular tissue was 80 kPa, while the plaque~three times
stiffer! was set at 240 kPa. To emulate boundary conditions as provide
the surrounding environment, the Young’s modulus for the surrounding
sue was set at 1000 kPa.

FIG. 4. ~a! In vivo IVUS cross-sectional image of a coronary plaque;~b!
2-D finite element mesh of the unloaded real geometry with spatial dis
bution of the plaque constituents. The Young’s modulus for the hea
vascular tissue~or adventicia and media! was 80 kPa, while the dense fibro
sis ~three times stiffer! was set at 240 kPa, and the cellular fibrosis at 24 k
~ten times softer than the dense fibrosis!.
Maurice et al.: Endovascular elastography modeling



FIG. 5. Schematic implementation of the polar dynamic image-formation model.
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4~a!#. Whereas the former allowed validating the potential
the method to differentiate between hard and soft vasc
tissues, the latter investigated its potential to characterize
heterogeneous nature of atherosclerotic plaques, whic
linked to the risk of rupture and thrombosis. The major d
ficulty in computational structural analysis based onin vivo
imaging is to determine the unloaded physiological confi
ration of the artery, i.e., the configuration when the artery
subjected to no external load. This configuration has to
known for finite element~FE! simulations. To obtain this
unloaded state, adenosine triphosphate~ATP! ~Striadyne®,
Wyeth France Laboratories! was injected to the patient,e as
previously described by Ohayonet al. ~2001!. All contours
in the IVUS image were manually traced@Fig. 4~b!#. These
contours are those of the lumen border, media, advent
and plaque components~dense fibrosis and cellular fibrosis!.
The adventicia contour was added in the simulation an
had a mean thickness of 350mm ~Rioufol et al., 1999!, so as
to take account of its protective role against any radial ov
stretching of the artery~Rachev, 1997!. The various contours
were digitized using the Un-Scan-It® software~Silk Scien-
tific, Inc., Orem, UT!.

2. Material properties

For the two models, the materials were considered
quasi-incompressible~Poisson ratiosn50.49! and isotropic
with linear elastic properties. The Young’s modulus for t
J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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healthy vascular tissue~or adventitia and media! was 80 kPa
~Williamson et al., 2003!, while the dense fibrosis~much
stiffer! was set at 240 kPa, and the cellular fibrosis~softer
than the dense fibrosis! was chosen at 24 kPa~Ohayonet al.,
2001; Treyveet al., 2003!. Whereas the surrounding tissu
was not investigated, the bulk boundary conditions, as it m
eventually be provided by surrounding organs, were sim
lated by imbedding the vessel in a stiffer environment
1000 kPa Young’s modulus.f

3. Structural analysis

Finite element~FE! computations were performed usin
the ANSYS 5.7® software~Ansys, Inc., Cannonsburg, PA!.
Static simulations of coronary plaque under loading blo
pressure were performed on the geometrical models pr
ously described@Figs. 3 and 4~b!#. Nodal displacements wer
set to zero on the external boundaries of the surround
tissue.

The various regions of the plaque components were t
automatically meshed with triangular~6 nodes! and quadran-
gular ~8 nodes! elements. The FE models were solved und
the assumption of plane and of finite strains. The assump
of plane strain was made because axial stenosis dimens
were of at least the same order of magnitude as the ra
dimensions of the vessel. Moreover, the assumption of fi
deformation was required as the strain maps showed va
up to 30% for physiological pressures~Loree et al., 1992;
1281Maurice et al.: Endovascular elastography modeling
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FIG. 6. ~a! Theoretical radial strain elastogram, computed with Ansys FE software, for the idealized plaque;~b! theoretical radial strain distributions along th
vertical and horizontal lines specified on~a!; ~c! radial strain elastogram as computed with the LSME;~d! LSME radial strain distributions along the vertica
and horizontal lines specified in~c!. The color bars express the strain in percent.
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Chenget al., 1993; Leeet al., 1993; Ohayonet al., 2001;
Williamsonet al., 2003!. However, the kinetics reported he
were achieved with small pressure gradients~around 15 mm
Hg! such that the radial strain remained below 10%. T
Newton–Raphson iterative method with a residual nodal
erance of 431024 N was used to solve the FE models. T
1282 J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
e
l-

calculations were performed with a number of elements cl
to 7200.

This computational structural FE analysis was used
perform the kinematics of the vascular tissue. The dyna
image-formation model@Eq. ~16!# was implemented using
the Matlab software~The MathWorks Inc, MA, USA, ver.
the s
FIG. 7. ~a! Strain-decay-compensated LSME elastogram, showing substantial contrast improvement between hard and soft materials;~b! vertical 1-D plot
from the elastogram showing a contrast ratio close to 3 between the plaque and the normal vascular tissue, as can be expected;~c! horizontal 1-D plot from
the elastogram, showing effective strain decay compensation, and thus a substantial improvement of the contrast ratio. The color bar expressestrain in
percent.
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FIG. 8. ~a! Theoretical radial strain
elastogram for the real plaque, show
ing very complex strain patterns;~b!
and ~c! show vertical and horizontal
1-D plots from the elastogram, respec
tively. Strain decay is specifically ob
served at the inner portion of the ves
sel wall. The color bar expresses th
strain in percent.
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6.0!. The process to simulate polar radio-frequency~rf! im-
ages is schematically presented in Fig. 5, for a homogene
~pathology-free! vessel wall. It can be summarized as fo
lows. It started by generating in Matlab a scattering funct
that simulated the acoustical characteristics of a transv
vascular section in Cartesian coordinates,z8(x,y). The axial
and lateral displacement fields were computed with An
and were applied uponz8(x,y) to perform motion and then
to providezLT218 (x,y).g

The next step consisted in mappingz8(x,y) and
zLT218 (x,y) in a polar coordinate system (r ,w) to provide
z(r ,w) and zLT

p
21(r ,w) @Eqs. ~15! and ~16!#. Both polar-

mapped acoustic impedance functions were then convo
with the polar PSFh(r ,w) to provide polar pre- and post
tissue-motion rf images@ I (r ,w,0) and I (r ,w,t), given by
Eq. ~16!#. Those images were used as inputs to the LS
@Eq. ~19!#.

In summary, the static and the dynamic image-format
models associated with a polar scan were derived in S
II A, whereas the LSME was adapted for EVE in Sec. II B.
Sec. III, this new approach is validated using the biom
chanical simulations of the vessel wall kinematics~for the
‘‘ideal’’ and the ‘‘realistic’’ plaque geometries! presented in
Sec. II C. Indeed, radial elastograms (e rr ), computed from
simulated rf data with the LSME, are compared with ‘‘the
retical’’ e rr obtained with Ansys FE software. For the pu
pose of that study, a noise term was added to the rf dat
simulate electronic noise. The signal-to-noise ratio was
dB.

III. RESULTS

The idealizedvessel of Fig. 3 measured about 3.8 mm
the outer diameter, whereas the rf images extended
mm34 mm. The real casevessel of Fig. 4~b! measured
about 7 mm in the outer diameter, whereas the rf ima
extended to 8 mm38 mm. For the purpose of simulation
J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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the intraluminal pressure gradients were set at 15.79 mm
and 11.73 mm Hg for theidealizedand therealistic vessels,
respectively. According to that, the dilation at the inner w
was around 7%h in both cases. The PSF characterized a
MHz central frequency transducer, as described in the
ward problem~Sec. II A!. The LSME~described in Sec. II B!
was implemented to assess tissue motion. Measurem
windows of 0.38 mm30.40 mm and 0.77 mm30.80 mm,
with 90% axial and lateral overlaps, were used for the ide
ized and the realistic cases, respectively. For more de
concerning the definition of the measurement-window
quired with the LSME, the reader is referred to Fig. 1
Mauriceet al. ~2004!.

A. Investigation of the ‘‘ideal’’ plaque pathology

Figure 6~a! presents the theoretical radial strain elas
gram, computed for the ‘‘ideal’’ pathology case, using Ans
FE software. The plaque can slightly be differentiated fro
the normal vascular tissue, whereas a region of higher st
values is observed at the right portion of the inner ves
wall. This ‘‘mechanical artifact’’ is a direct consequence
the well known strain decay phenomenoni ~Shapo et al.,
1996a!. For a more quantitative illustration, plots from th
theoretical elastogram for two orthogonal orientations alo
x and y are presented in Fig. 6~b!. Indeed, the vertical plot
~—! shows low contrast between the plaque and the nor
vascular tissue, whereas the horizontal plot~---! clearly
points out the presence of strain decay.

Figure 6~c! presents the radial strain elastogram as co
puted with the LSME, using simulated rf images. As for t
theoretical elastogram in Fig. 6~a!, the plaque is slightly dis-
tinguishable from the normal vascular tissue. The plots
Fig. 6~d! confirm such an observation. Note that lower stra
values were computed in the LSME elastogram than
theory, specifically at the inner wall. That strain underestim
tion in the regions close to the lumen is due to the windo
ing process required to assess tissue motion with the LS
s
l

,
y,
-
e-
s

FIG. 9. ~a! Radial strain elastogram a
computed with the LSME for the rea
plaque;~b! and ~c! vertical and hori-
zontal 1-D plots from the elastogram
respectively. Because of strain deca
there is not a clear demarcation be
tween cellular and dense fibroses, sp
cifically in ~c!. The color bar expresse
the strain in percent.
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FIG. 10. ~a! Strain-decay-
compensated LSME elastogram fo
the real plaque, showing a substanti
contrast improvement;~b! and~c! ver-
tical and horizontal 1-D plots from the
elastogram showing more effectiv
contrast ratio between dense and cell
lar fibroses, after strain decay compe
sation. The color bar expresses th
strain in percent.
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Moreover, the maximum strain can be observed at the in
boundary around 1 and 5 o’clock. Such a softening artifac
a consequence of stress concentration at the interface
tween hard~plaque! and softer~normal! materials.

For the purpose of compensating for strain decay,
LSME radial strain elastogram was post-processed. Ind
e rr was modulated with a function proportional to the squ
of the vessel radius.j In Fig. 7~a! is presented the strain
decay-compensated LSME elastogram, showing substa
contrast improvement. For instance, the axial plot of F
7~b! shows an effective contrast ratio close to 3 between
plaque and the normal vascular tissue, as it can be expe
Equivalently, Fig. 7~c! also shows some valuable contra
ratio improvement.

B. Investigation of a ‘‘realistic’’ vessel wall pathology

Figure 8~a! presents the theoretical radial strain elas
gram, computed for the ‘‘realistic’’ pathology case. Intere
ingly, complex strain patterns are observed; nevertheless,
ferent regions can be identified. For instance, since the r
of Young’s moduli between the dense and the cellular
broses was set to 10, both of those materials can be di
guished. Less contrast is seen between the cellular fibr
and the healthy vascular tissue because their Young’s m
lus contrast was set to 3. As illustrated with vertical a
horizontal 1-D plots from the elastogram@Figs. 8~b! and
8~c!, respectively#, strong strain decay is observed spec
cally at the inner portion of the vessel wall.

Figure 9~a! presents the radial strain elastogram as co
puted with the LSME, using simulated rf images. As for t
theoretical elastogram in Fig. 8~a!, very complex strain pat-
terns are observed. Moreover, the dense and the cellula
brosis tissues can be identified. However, while less pro
nent than in the ‘‘ideal’’ case study, strain decay remain
significant factor to compensate for improved image int
pretation. This is illustrated in Figs. 9~b! and 9~c!, where
vertical and horizontal 1-D plots from the elastogram a
presented. Whereas low strain values clearly indicate
presence of stiff materials in Fig. 9~b!, this is not the case in
Fig. 9~c!.

In Fig. 10~a! is presented the strain-decay-compensa
LSME elastogram, showing substantial contrast impro
ment. Now, the vertical plot@Fig. 10~b!# as well as the hori-
zontal one@Fig. 10~c!# show a more effective contrast rat
between dense and cellular fibroses, and between cel
fibrosis and the normal vascular tissue. Moreover, it is in
esting to notice the presence of moderate strain va
1284 J. Acoust. Soc. Am., Vol. 116, No. 2, August 2004
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~around 0.6 to 0.8%! at the extremities of the plots; thi
characterizes regions of healthy vascular tissue, namely
media and adventicia.

IV. DISCUSSION

Pathological conditions of vascular tissues often indu
changes in the vessel wall elasticity. For instance, pla
deposit stiffens the vascular wall and then counteracts
dilation under systolic blood pressure. Hence, investigat
mechanical and elastic properties of the arteries seems t
a suitable method to appreciate the dynamics of the arte
wall and its pathologies. In this paper, a model-based
proach devoted to outline the elastic properties of the ve
wall with endovascular elastography~EVE! was presented
Results obtained from numerical simulations establish
potential of such a method to reliably assess strain patt
from very complex arterial and plaque structures.

A. About the forward problem

Regarding the forward problem in EVE, a polar sta
image-formation model was introduced. Taking into acco
the ultrasound beam divergence associated with h
frequency sector scans, this image-formation model was
mulated using the superposition integral. The radial variat
was conveyed with the beam width, which increases a
linear function of depth. This is actually a relatively simpli
tic approximation. In practice, the transducer point-spre
function ~PSF! is expected to be more complex. For e
ample, the acoustic wavefronts may be nonplanar, and
~4! ~an approximation of the far field PSF! does not hold
anymore. Since it was demonstrated that such comp
wavefronts can induce speckle motion artifacts~Kallel and
Bertrand, 1994; Maurice and Bertrand, 1999b!, it would be
worthwhile, in the future, to address the polar dynam
image-formation model with a more complex~‘‘realistic’’ !
PSF geometry.

B. About the tissue motion estimation

To assess tissue motion, the Lagrangian speckle m
estimator~LSME! was used. The LSME is a 2-D mode
based estimator that allows computing the full 2-D deform
tion matrix D of Eq. ~10! ~D is directly assessed; no deriva
tive of the displacement fields is required with this metho!.
In this paper, it was adapted for EVE investigations. Wh
the full 2-D polar deformation matrixj(t) of Eq. ~13! was
assessed, only the radial strain componentj rr (5e rr ) was
displayed. This was motivated by the fact that tissue moti
Maurice et al.: Endovascular elastography modeling



m
a

io
th
te
ne
,
a

o-

le

d
te

ed
o

at
E
fo
as
a
h
d
h
lls
F
po
e

lle
s-
ra
a

e

l-

im-

e
as

or.
f
the

s a
is

es-
in EVE, is expected to run parallel with the ultrasound bea
Interestingly, the method was implemented through
adapted version of the Levenberg-Marquardt minimizat
algorithm, using the optical flow equations to compute
Jacobbian matrix. The theoretical framework was valida
using the biomechanical simulations of the vessel wall ki
matics for an ‘‘ideal’’ and a ‘‘realistic’’ plaque geometries
respectively. Elastograms, computed from simulated rf d
with the LSME, were supported by ‘‘theoretical’’ ones pr
vided by Ansys FE software.

V. CONCLUSION

A new method to characterize mechanically comp
vascular pathologies in endovascular elastography~EVE!
was presented. First, a polar static image-formation mo
was introduced. The radial variation of the PSF, associa
with the high-frequency IVUS instrument, was convey
with the beam width, which increases as a linear function
depth. Second, the Lagrangian speckle model estim
~LSME! was adapted for EVE investigations. The LSM
was formulated as a nonlinear minimization problem,
which an analytical formulation of the Jacobian matrix w
derived. The hypothesis behind that model-based appro
was that speckle can be seen as a material property. W
the full 2-D polar strain tensor was assessed, only the ra
elastograms were presented. Elastograms, computed wit
method from simulated rf data of pathological vessel wa
were supported by theoretical ones provided by Ansys
software. The results help to provide confidence in the
tential of EVE to provide very useful information about th
heterogeneous nature of atherosclerotic plaques.
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APPENDIX A: THE LEVENBERG-MARQUARDT
NONLINEAR MINIMIZATION

I Lag(r ,w,t) and R(r ,w,t) @Eq. ~19!# are implicit func-
tions of u i @Eq. ~9!#. For clarity and without loss of genera
ity, let us rewrite I Lag(r ,w,t) as I Lag(uW ) and R(r ,w,t) as
R(uW ), respectively;uW is the vectorization of@LTp#. At the
kth iteration, one will have

R~uW k!5R~uW k211DuW k!

5I 02I Lag~uW k21!2(
j

n
]I Lag

]u j
Du j

kuu
j
k21, ~A1!

with I05I (r ,w,0).
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In Eq. ~A1!, uW k21 is computed at iterationk21, Du j
k is

the increment of thejth component ofuW , I Lag(uW
k21) is the

Lagrangian image at iterationk21, and]I Lag/]u j are partial
derivatives ofI Lag with respect to each component ofuW . A
more compact formulation of Eq.~A1! is given as

IW02IWLag~uW k21!5@Jk21#DuW k1RW ,

with

Jk215F ]I Lag

]u1

]I Lag

]u2
¯

]I Lag

]un

] ] ]

]I Lag

]u1

]I Lag

]u2
¯

]I Lag

]un

G , ~A2!

whereIW0 , IWLag(uW
k21), andRW are vectorizations ofI 0 , I Lag,

andR, respectively;@Jk21# is the Jacobian matrix; andDuW k

is a vector of increments used to update the Lagrangian

ages (DuW k is also known in the literature as the step siz!.
For such a model, the least-square error solution is given

Duk5@Jk21
T Jk21#21Jk21

T
„IW02IWLag~uW k21!…, ~A3!

where the subscriptT designates the transpose operat
When Jk21

T Jk21 is not invertible, a regularized version o
Eq. ~A3! may be required to ensure the convergence of
solution. The Levenberg-Marquardt method~L&M ! con-
verges to a potential solution for such a problem~Levenberg,
1963; Marquardt, 1944!. The L&M regularized inversion
was implemented as

DuW k5@Jk21
T Jk211lkI #21Jk21

T
„IW02IWLag~uW k21!…, ~A4!

wherelk is a non-negative scalar, andI is the identity ma-
trix.

APPENDIX B: THE OPTICAL FLOW EQUATIONS AND
THE JACOBIAN MATRIX

I Lag(uW
k21) can be seen as a function that describe

material property. Assuming that such a material property
preserved with motion, the total derivative ofI Lag(uW

k21) can
be expressed as

dILag~uW k21!

du i
5

]I Lag~uW k21!

]r

dr

du i
1

]I Lag~uW k21!

]w

dw

du i

1
]I Lag~uW k21!

]u i
50

~B1!
[

]I Lag~uW k21!

]u i
52

]I Lag~uW k21!

]r

dr

du i

2
]I Lag~uW k21!

]w

dw

du i
,

with

]I Lag~uW k21!

]uW
5I Lag~uW k211DuW k!2I Lag~uW k21!.

As introduced in the paper~section II B2!, under the
assumption of a small ROI (Dr ,Dw) that is far from the
vessel lumen center, tissue motion equivalently can be inv
1285Maurice et al.: Endovascular elastography modeling
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tigated using either the Cartesian or polar coordinates. A
tionally, for small motion, the gradient ofI Lag(uW

k21) should
not be significantly different from the gradientI (r ,w,0).
These hypotheses, in conjunction with Eq.~9!, lead to

]I Lag~uW k21!

]uW
>

]I ~uW k21!

]uW

52H ]I

]x
,
]I

]x
x,

]I

]x
y,

]I

]y
,
]I

]y
x,

]I

]y
yJ . ~B2!

Eq. ~B2! gives the full expression for the 6 components
the Jacobian matrix@Jk21# @Eq. ~21!#.

b!The radial position-dependence of the PSF is associated with the d
gence and the attenuation of the high-frequency IVUS instrument w
depth. The attenuation was not taken into account in this study.

c!Whereas the lumen is in practice in the near field, it is here simulate
being in the far field@with a beam widthsw(r )5s0]. This simplifying
hypothesis does not alter the generality of the model, since motion as
ment is not relevant for the lumen.

d!@LT# is used to define rotation as well as nonrigid motion due to comp
sion, expansion, or shearing.

e!Adenosine triphosphate~ATP! temporarily ~,3 sec! stops cardiac pulsa-
tions. During that period, the blood pressure decreases at approximate
mm Hg, allowing the acquisition of data at an optimum unload state of
arterial wall.

f!An alternative could have been the simulation of a softer surrounding ti
~about 100 kPa!. Since the objective of those simulations was to obt
strain values in the range of 0–10% approximately, this would have
quired decreasing the nominal intraluminal pressure gradient such tha
dilation at the inner wall remained below 10% to prevent signal decorr
tion.

g!It is to note thatz8(x,y) was low-pass filtered with a 2-D-circular Gaussia
filter having a 1-pixel standard deviation. Such a step was required in o
to reduce the interpolation noise introduced when resamplingz’( x,y) to
providezLT218 (x,y).

h!Referring toe rr computed with Ansys FE software~Figs. 6 and 8!, the
maximum radial strain for both cases was close to 6%. Such a s
amount of strain was required to prevent signal decorrelation. In prac
this can be achieved by acquiring pre- and post-motion rf images
end-diastole~de Korteet al., 2000b!.

i!Radial straine rr is proportional to 1/r 2. This decreasing ofe rr with depth
is usually defined as strain decay.

j!Since radial straine rr decreases proportionally to 1/r 2, the compensation
for strain decay consists in multiplyinge rr by a function proportional tor 2,
with respect to the vessel lumen center.
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