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Abstract

3D-ultrasound (US) imaging systems offer many advantages such as convenience, low operative costs and multiple scanning options.
Most 3D-US freehand tracking systems are not optimally adapted for the quantification of lower limb arterial stenoses because their
performance depends on the scanning length, on ferro-magnetic interferences or because they require a constant line of sight with the
US probe. Robotic systems represent a promising alternative since they can control and standardize the 3D-US acquisition process
for large scanning distances without requiring a specific line of sight. The performance of a new prototype medical robot, in terms of
positioning and inter-target accuracies (i.e., difference between measurements and ground truth values) was evaluated with a lower-limb
mimicking phantom throughout the robot workspace. The teach/replay repeatability (i.e., difference between taught and replayed points)
was also assessed. A mean positioning accuracy between 0.46 mm and 0.75 mm was found on all scanning zones. The mean inter-target
distance accuracy varied between 0.26 mm and 0.61 mm. Teach/replay repeatability below 0.20 mm was also obtained. Additionally, a
3D reconstruction of in-vitro stenoses was performed with the robotic US scanner. The quantification error of a 80% area reduction
(AR) stenosis was 3.0%, whereas it was �0.9% for a less severe 75% AR stenosis. Altogether, these results suggest that the robot
may be of value for the clinical evaluation of lower limb vessels over long and tortuous segments starting from the iliac artery down
to the popliteal artery below the knee.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Atherosclerosis is the major cause of peripheral arterial
disease (PAD), which leads to progressive narrowing of
lower limb arteries (Golledge, 1997; Weitz et al., 1996).
Atheromatous infiltration in PAD is usually diffuse with
more than one stenosis affecting adjacent vessels. Different
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PAD evaluation strategies are used in clinical practice.
The ankle/brachial systolic blood pressure ratio measured
with a cuff and a manometer is the oldest non-invasive
index still utilized to assess the global disease of lower limb
vessels (McDermott et al., 2002). Pulsed-wave Doppler
ultrasound (US) and color Doppler flow imaging are the
most popular non-invasive imaging techniques currently
in use to investigate the severity of specific lesions along
the lower limb vascular tree (Elsman et al., 1997; Mati-
gnon, 2002). Nevertheless, in most centers, a pre-interven-
tion mapping by digital subtraction angiography (DSA),
magnetic resonance angiography (MRA) or computed
tomography angiography (CTA) is necessary to provide a
complete 3D representation of the lower limb vessels to
plan an appropriate therapy (Weitz et al., 1996). With these
3D imaging methods, the scan is performed over long seg-
ments usually starting from the abdominal aorta within the
abdomen, following with iliac, femoral, and then with pop-
liteal arteries to end in the tibial vessels of the calf.
Although these imaging technologies yield high image res-
olution and 3D rendering, they still do not exhibit the same
benefits of US that is low-cost, non-invasive, non-ionizing,
safe and painless. Additionally, US presents multiple
options for the diagnosis such as blood flow information
with color Doppler, angiographic images with power
Doppler and atherosclerotic plaque visualization with B-
mode scanning. However, conventional 2D-US assessment
of atherosclerotic disease highly depends on the observer
(Delcker and Diener, 1994). As a result, many 3D-US sys-
tems were developed and validated in various clinical appli-
cations notably obstetrics, cardiology, and vascular
imaging to increase the US diagnosis confidence (Nelson
and Pretorius, 1998).

3D-US systems are based on two-dimensional arrays,
mechanical localizers and freehand scanning with or with-
out position sensing. Sensorless 3D-US systems include 2D
linear array transducers (3D probes) (Bushberg et al.,
2002), speckle decorrelation techniques (Fenster and Dow-
ney, 2000) and pseudo-tracking (Sonix, 2005). Only small
volumes can be scanned using 3D probes. In speckle decor-
relation techniques, the transducer is moved manually and
speckle motion measurements are used to determine the
distance between 2D images. The decorrelation algorithm
used to predict the correct distance thus strongly relies on
small constrained movement of the US probe. This tech-
nique can provide 3D-reconstruction if the image spacing
is accurately determined and if the US transducer parame-
ters are well known. Yet, since this approach does not
guarantee accurate distances, it is not used to measure
organ size, area nor volumes. Pseudo-tracking is an option
available on many US systems today. This mode produces
a 3D reconstruction from a 2D image sequence acquired
during a manual linear scan. However, it does not provide
an accurate 3D reconstruction since positions of 2D-US
images are not tracked. Therefore, this approach is limited
to scan regular geometries since a tortuous volume would
be misrepresented as a linear one.
Sensor based 3D-US freehand systems include position-
ing information from tracking devices that are used to
locate each 2D image in space and to reconstruct the sam-
pled volume (Mercier et al., 2005). Optical tracking exploits
properties of light to follow light emitting diode (LED)
markers distributed on a rigid structure with charged cou-
pled device (CCD) cameras. Electromagnetic (EM) tracking
measures the magnetic field between a transmitter attached
to the US probe and a receiver. Limitations of optical sys-
tems are mainly the requirement of a constant line of sight
(Cartellieri et al., 2001; Rousseau, 2003), and those of EM
sensors are errors induced by metallic object interference
and a variable performance depending on the scanning dis-
tance (Birkfellner et al., 1998a,b; Frantz et al., 2003; Rous-
seau, 2003). Additionally, uneven volume sampling
generated by the 3D-US freehand tracking method adds
uncertainty to the reconstruction. Consequently, these
devices are not well suited for lower limb vessel imaging,
where the detection and quantification of long and tortuous
arterial segments requires a high precision. In fact, a robust
positioning accuracy of approximately 1 mm is likely
needed for a tracking device to provide a competitive 3D-
US quality analysis of stenoses in lower limb arteries.

Robotic systems represent a promising approach for ste-
nosis quantification as they simultaneously control and
standardize the 3D-US acquisition process for long scan-
ning distances and complex geometries. Medical prototype
robots have been developed to explore this advantage. For
example, Hippocrate, a low-power robot actuated by slow
stepper motors, is a force feedback medical robot that
allows US and tonometry measurements with heart rate
synchronization (Pierrot et al., 1999). While preliminary
in vivo results looked promising, the main innovation of
this system was the development of a force controller with
design strategies selected to meet safety requirements
imposed by medical applications. To our knowledge, no
follow-up studies can be found on this robot in the litera-
ture. Furthermore, no evaluation of the robot accuracy
has been performed. Other systems such as an image-
guided control instrument (Abolmaesumi et al., 2002)
and a tele-robot (Gonzales et al., 2001) were developed
for 3D-US scanning. The first system was designed for
the tele-examination of carotid arteries on short rectilinear
paths. The control of the US probe movement is shared
between the operator, the robot controller and the US
image processor. This system produces autonomous track-
ing of the vessel contour in real-time scans to compensate
for the physiological motion of an artery during probe
motion along a 1D trajectory. Thus, the US probe move-
ment is controlled in three degrees of freedom (DOF) that
are constrained to lie in the US observation plane. Never-
theless, this robot operates within a limited range in the
robot workspace and is restricted to straight line objects
of interest (i.e., no tortuous curved objects) to obtain visual
information. Certainly, the principal accomplishments of
this robot remain the development of ultrasound visual ser-
voing and control that enable a remote assistance for tele-
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operation. The second design is a tele-robotic system also
with remote control assistance to facilitate hand-eye coor-
dination necessary to perform echographic examination
over the abdomen of pregnant women. It is to note that
most developments have been so far oriented towards
architectural control and safety designs. However, it is very
important that new medical hardware and software designs
be validated to meet specific clinical needs.

To provide accurate 3D US scanning of lower limb ves-
sels, a prototype medical robot was recently developed by
our team. A teach mode that enables the learning of a
‘‘freehand’’ scan, and a replay mode to reproduce the man-
ually taught path are available. These features, which are
also present in Hippocrate, accommodate specific scan
routes with controlled speed. In addition, when coupled
to an US probe, the system captures and stores images with
their registered 3D spatial location at uniform spacing in
replay mode. Furthermore, the robot was designed to have
a constant high accuracy over its entire workspace. Thus, a
clinician can integrate their regular scanning operation for
each patient’s leg by manually teaching a scan path to the
robot. The robot replays the path over the leg and acquires
2D images for 3D reconstruction. The reconstructed vessel
segments consequently remain within the US image plane
obtained on a pre-determined trajectory for each patient
scan. A sub-objective of this study was to use a double-ste-
nosis vascular phantom to evaluate the feasibility of accu-
rate quantification of stenoses in 3D with the prototype
robotic scanner.

2. Materials

2.1. Prototype medical robot

The robot includes three principal components: the
computer workstation, the robotic arm and the US scan-
ning system. An overview of this system is shown in
Fig. 1. The robotic arm is managed through a custom made
software installed on the computer workstation. Namely,
the robotic arm carries the US probe to scan a volume.
a b Vascular phan

Fig. 1. The 3D-ultrasound (US) robotic imaging system. The F3 CRS robotic
arm is moved through the user interface software on the workstation (c). 2D U
arm (d). In this example, a vascular phantom is scanned.
Then, B-mode images are acquired with corresponding
probe positions for 3D-reconstruction.

The URS software (Ultrasound Robotic Scanner, Inte-
gral Technologies Inc., Laval, Québec, Canada), which
runs on the workstation, provides a user interface to access
and set-up the robot controls, movements, parameters and
tasks. This specialized software was developed in Visual
C++ and run under Windows. This higher control archi-
tecture allows three operative states for the robotic arm:
teach, replay and idle modes. In teach mode, the operator
manually moves the robotic arm while the robot controller
uploads the real time arm positions to the workstation; the
positions are then saved in a trajectory file. Thereafter, in
replay mode, the saved trajectory file is sent back to the
robotic arm into movement commands. The replayed tra-
jectory is executed at constant speed and contact pressure
with the patient or object to be scanned. The last robot
arm state is the idle mode where the operator can freely
handle manually the arm without trajectory file processing.
Also, the software limits any tool attached to the robotic
arm to a maximum linear speed of 50 mm/s in addition
to a maximum applied force (i.e., 100 N in the normal
direction and 50 N in the transverse directions). Finally,
the workstation communicates with the robot controller
according to the RS-232 protocol.

The robot controller (CRS C500C, CRS Robotics Cor-
poration) provides safety circuits, power and motion con-
trol for the robotic arm. It drives the motors in each
joint, keeps track of motor position through feedback from
encoders, computes trajectories and stores robot applica-
tions in memory. The modules implemented in the robot
controller consist of the lower architecture control level.
These modules were all written in the RAPL-3 program-
ming language. They translate the position commands
and move the arm as requested by the workstation. Addi-
tionally, the robot controller triggers the image acquisition
and sends the corresponding arm position to the
workstation.

The robotic arm is an industrial robot (F3 Articulated
Robot, CRS Robotics Corporation, Burlington, Ontario,
ctom d

US probe
position +
orientations

US

B-mode

images

arm (b) carries a probe from an US system (GE Vivid-5) (a). The robotic
S images are tagged with the US probe positions acquired from the robotic
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Canada). Note that many groups have used CRS industrial
robots to develop specialized light-weight precision tasks.
In particular, medical applications include image-guided
surgery (Tseng et al., 2007) and 3D transrectal ultra-
sound-guided prostate brachytherapy (Zhouping et al.,
2005). Our industrial manipulator is an articulated robotic
arm designed for light payload applications (3 kg). More-
over, applications that require complex and flexible move-
ments are recommended for this particular model. Our unit
has 6 DOF with absolute encoders in each arm joint that
provide continuous information on the arm stance and
position to the robot controller. In our system, the robotic
arm moves the US probe with commands from the work-
station and information that comes from the force/torque
sensor.

The force/torque sensor (F/T) (ATI, Industrial Automa-
tion, Apex, NC, USA) connected to the robotic arm is a key
element of the 3D US scanner system. This sensor allows
easy handling and precise positioning of the robot manipu-
lator by the operator. Manual handling of the robotic arm is
possible because the F/T sensor reports all forces and tor-
ques applied to the robot controller. This information is
then transmitted to the workstation where forces and tor-
ques are converted into positioning information to move
Replay
operator b

F/T Sens
 control

Robot con

E-Stop
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Power supply 
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Fig. 2. The 3D-ultrasonic robotic system block diagram. The US probe is atta
(b). In teach mode, forces and torques applied to the sensor are sent to the F/T
translates forces and torques into positioning information that are transm
workstation transfers the saved trajectory to the robot controller (e). The robo
the robotic arm to move (f). At the same time, the robot controller uploads in
the image acquisition card (g). 2D images are thus simultaneously acquired fr
control is assured in replay mode with the operator button that monitors the r
Additionally, if any of the control workstation (k) or the robot controller mo
stop). The E-stop activation automatically removes (n) all the power supplied
the arm and generate the trajectory file in teach, replay
and idle modes. Additionally, in replay mode, the worksta-
tion employs force feedback. This is performed with repeti-
tion of the same applied US probe pressure to the patient
and safe monitoring of the threshold contact force.

The robotic system assures patient security through
many safety controls. Two control schemes of watchdog
mechanisms were added to the system in case of failure:
one at the customized software and the other at the robot
controller. The watchdog monitors continuous digital sig-
nals sent from the robot controller and the workstation.
If the robot controller or workstation goes out of control
or does not respond, the emergency stop (E-stop) is acti-
vated. Its activation immediately removes power from the
robotic arm and fail-safe brakes are automatically engaged
to prevent movements due to gravity. Moreover, the soft-
ware monitors singularities of joint configurations, joint
limits and tracks errors between desired and current posi-
tions. Furthermore, there is a maximum limit set for the
US probe pressure and linear scanning speed. Also, three
additional E-stop buttons, which can be manually trig-
gered, are available in the robot operating workspace.
Other safety designs include the operator button that needs
to be pressed throughout the entire replay mode to ensure
:
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Fig. 4. The spherical pointer used to determine the performance of the
robotic US scanner. The SP is rigidly attached to the US probe handle that
is linked to the robot end-effector. The SP translation is a vector that is
estimated to make the SP center of gravity known in the robot referential.

M.-A. Janvier et al. / Medical Image Analysis 12 (2008) 275–290 279
the monitoring of the replayed trajectory. It is to note that
the Hippocrate robot as well contains similar security fea-
tures (Pierrot et al., 1999).

The last principal component is the US scanner. It pro-
vides images of a scanned volume in any available modal-
ities (e.g., B-mode, color Doppler, power Doppler). Any
US scanner for which it is possible to attach the US probe
to the F/T sensor handle on the robotic arm can be used. In
its current form, the robotic system provides its own digiti-
zation of US images. 2D-US images are captured at uni-
form spacing with an image acquisition card (PCI-1411,
National Instrument, Austin, Texas, USA) mounted in
the workstation. These US images are then digitized in
480 · 640 pixels format from the scanner video output.
Simultaneously, US probe positions of the robotic arm
are associated to the acquired 2D-US images and saved
into the workstation for 3D-reconstruction. Fig. 2 shows
the complete 3D-US robotic system block diagram.

2.2. Phantom model

A phantom was specially designed to assess the accuracy
of the robot arm to position a spherical pointer (SP) within
holes manufactured on a leg mimicking geometry. Fig. 3
shows the phantom where dimensions correspond to the
upper half of a thigh and where holes are arranged in three
different paths. The paths match classical US lower limb
45.009 cm 
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L10
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A3A4 A2 A1 

b

a

20.32 cm

17.78 cm

Fig. 3. The lower limb mimicking phantom, top (a), axial (b) and side (c) views
The phantom contains a total of 37 holes which serve as target points for the ro
the accuracy and teach/replay repeatability measurements. Path 1 is linear with
with four selected targets (A1, A2, A3 and A4) and path 3 is curved with five ta
the corresponding path: L for linear, A for arc and C for curved.
vessel scanning trajectories. They were designed in linear,
arc and curved fashions (see Fig. 3). Paths 1, 2 and 3 con-
tain 15, 6 and 16 holes, respectively. Each hole was manu-
factured with a precision of 0.03 mm, a 8.38 mm diameter
and a 4.19 mm depth. To avoid redundancy in the 3D
space explored by the SP, the phantom was designed with-
out collinear and coplanar points.

The SP at the robot end-effector replaced the US probe
for the accuracy and teach/replay repeatability testing.
Fig. 4 shows the SP added to the robotic arm where the
spherical end fits tightly within the phantom holes. Various
orientations were possible when the SP was in contact with
the phantom target points. Even though the center of the
Path 2 
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c

Path 3 

C2
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C13
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10.16 cm 

. The three paths represent classical lower limb vessel scanning trajectories.
botic spherical pointer (SP, see Fig. 4). A total of 13 holes were selected for
four selected targets (L1, L5, L10 and L15). Path 2 represents the arc path

rgets (C2, C5, C10, C13 and C16). Each target point is labeled according to
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Fig. 6. The three referential coordinate systems in this study: the
robot end-effectorProbot-base, the spherical pointer (SP) SPPend-effector and the
phantom G.
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SP was constrained to the center of a phantom hole, infinite
configurations of the robot joints were possible. This
method, also referred as the single endpoint contact
method, is usually the preferred approach for robot cali-
bration (Mavroidis et al., 1998; Mooring et al., 1991).

The phantom was centrally positioned and fixed within
each of five designated experimental zones in the robot
workspace, as illustrated in Fig. 5. The orientation of the
leg phantom in each experimental zone is given as well in
Fig. 5a. The experimental zones were chosen to allow the
identification of optimum operating areas in the robot
workspace. Likewise, selected zones and phantom orienta-
tions were chosen to correspond to the expected scan posi-
tions of a patient lower limb during a clinical exam.

3. Methods

In order to evaluate the robot performance, the methods
required to relate the coordinate system of the robot, to
that of SP and of the phantom, as identified in Fig. 6.
Because the SP was not considered in the robot referential,
a calibration procedure was thus needed to determine the
SP center of gravity with respect to the robot referential.
Thereafter, the performance of the robot could be evalu-
ated with the SP. It was quantified in terms of positioning
and inter-distance accuracies (i.e., difference between mea-
surements and ground truth values) with the phantom tar-
get points, and in term of teach/replay repeatability of the
measures (i.e., difference between ‘teach’ and ‘replay’
points).
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3.1. SP calibration

The robot reports the Cartesian position and orientation
of its last joint or wrist, also referred as the end-effector.
The SP coordinates could be transformed with respect to
the base of the robot because the orientation and position
of the end-effector were known. To perform the SP calibra-
tion, its translation with respect to the end-effector was cal-
culated by using the following equation (Detmer et al.,
1994; Hartov et al., 1999; Leotta et al., 1997)

SPP robot-base ¼ end-effectorP robot-base þ ðend-effectorRrobot-base

� SPP end-effectorÞ; ð1Þ

where SPProbot-base defines the unknown position vector of
the SP center of gravity with respect to the robot referential,
end-effectorProbot-base represents the known position vector of
the robot end-effector in the base referential,
end-effectorRrobot-base describes the known Euler rotation
matrices that transform the end-effector orientation in the
robot referential, and SPPend-effector is the unknown transla-
tion vector of SP in the end-effector referential. The posi-
tions P are 3 · 1 vectors and the rotation matrix R is
3 · 3. When a specific phantom target hole is reached several
times with different tool configurations, Eq. (1) becomes
over determined. Unknowns can thus be solved using the
least-square method. Once the SP vector SPPend-effector was
estimated, the SP position for following experiments could
be calculated in the robot referential with Eq. (1).

To perform the SP calibration, the robot arm was oper-
ated manually in idle mode. In each experimental zone of
the robot workspace, two holes on phantom path 1 were
randomly selected. For each hole and zone, the SP was
rotated manually to 32 different positions distributed in a
hemispherical pattern around each selected phantom target
pivot. Cartesian position and orientation of the robot end-
effector were then recorded for each SP configuration. The
SPPend-effector vector was estimated with Eq. (1) for each
experiment (2 phantom holes in each of five robot work-
space zones for a total of 10 estimated SP translations).
The mean value of this vector was used as the SP transla-
tion for subsequent performance assessments.

3.2. SP calibration precision

A precision metric was evaluated since subsequent per-
formance measurements to be reported below also depend
on the SP translation precision. The precision was defined
as the ability to locate the same point in space with small
position variations. Since it is not physically possible to
locate the origin of the robot coordinate system because
it is inside the robot base, it was not possible to accurately
measure the location of any object in the base coordinate
system using rulers (Barratt et al., 2001; Frantz et al.,
2003; Hartov et al., 1999). Thus, a point position acquired
with the robot could not be compared with its true physical
location. The SP precision S was computed by using
S ¼ 1

TLM

XT

i¼0

XL

j¼0

XM

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

x i;j;k þ r2
y i;j;k
þ r2

z i;j;k

q
; ð2Þ

where r2
x i;j;k is the variance for T = 10 SP calibration con-

figuration positions i in the x direction for the experimental
zone j and target point k. This definition applies as well for
the y and z directions. The average precision was calculated
for L = 5 zones, M = 2 target holes randomly chosen
among the selected path 1 (see Fig. 3a for the selected tar-
get point options) for a total sample size of 100 points. It is
to note that the data collected for the SP calibration was
not used to assess the average SP precision.

3.3. Performance evaluation of the robot

The relative positioning accuracy, the inter-distance
accuracy, and the teach/replay repeatability in locating
the SP were assessed. The robot referential first needed to
be transformed into the phantom coordinate system, as
described earlier by Eq. (1). For that purpose, the position
of the selected phantom points indicated in the legend of
Fig. 3 was acquired with four different SP orientations ran-
domly chosen (T = 4 in this case); a sample mean was com-
puted for each target point. These mean values
corresponded to the phantom theoretical central positions
of the holes in the robot referential. In the phantom coor-
dinate system, the ground truth position of each hole was
known from the computer-assisted-design (CAD) file used
to manufacture the mimicking leg. The translation offset
between the phantom ground truth and the theoretical tar-
get points in the robot referential was then calculated. The
offset phantomoffsetrobot-base was determined for all selected
target points in each zone and it was averaged to obtain
the position of the phantom with respect to the robot base.
The translation value is different in each zone and conse-
quently it had to be recomputed when the phantom was
moved. With phantomoffsetrobot-base known in each zone,
the phantom points targeted with the robot arm could be
transformed into the phantom referential by using

phantomP robot-base ¼ SPP robot-base þ phantomoffsetrobot-base; ð3Þ
where phantomProbot-base defines the 3 · 1 position vector of
the center target point of the hole acquired with the robot
and transformed into the phantom coordinate system,
SPProbot-base is the 3 · 1 position vector of the SP center
of gravity with respect to the robot referential, and phan-

tomoffsetrobot-base is the 3 · 1 translation offset vector to po-
sition the robot base in the phantom referential. It can be
recalled that Fig. 6 illustrates the three referential objects
of this study: the robot, the phantom and the SP.

3.3.1. Positioning and inter-distance accuracies

The robot positioning and inter-distance accuracies were
evaluated with the leg mimicking phantom on a total of 13
target points (see Fig. 3). The same targets were evaluated
in each robot experimental zone and for each hole, taught
and replayed data were collected. In teach mode, the oper-
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ator manually moved the SP to a phantom target point.
The robot arm then replayed the taught path to reach the
same target. Data collection consisted of the Cartesian
position and orientation of the robot end-effector (using
T = 4, as mentioned earlier). The robot end-effector posi-
tion and orientation for all collected data were transformed
into the robot referential with Eq. (1). Data positions were
then transformed from the robot referential into the phan-
tom coordinate system with Eq. (3).

The relative positioning accuracy Ps, calculated with Eq.
(4), is the mean distance between the phantom ground
truth point positions and the phantom points collected
with the robot SP and transformed in the phantom referen-
tial. The inter-distance accuracy IntDist, given by Eq. (5),
evaluates the robot error in segment length measurements;
it is the mean absolute error between the length separating
phantom ground truth neighbor points and the length sep-
arating the corresponding target points collected with the
robot SP:

Ps ¼ 1

TM

XT

i¼0

XM

k¼0

kGk � phantomP i;k
robot-basek; ð4Þ

IntDist ¼ 1

T ðM � 1Þ
XT

i¼0

XM�1

k¼1

jkGkþ1 � Gkk

� kphantomP iþ1;kþ1
robot-base � phantomP i;k

robot-basekj: ð5Þ

In Eqs. (4) and (5), Gk defines the 3 · 1 ground truth position
vector of target point k obtained from the CAD file of the
designed phantom, phantomP i;k

robot-base describes the 3 · 1 robot
target point position vector transformed into the phantom
referential of target point k for the SP configuration
i,T = 4 corresponds to the different SP configurations taken
around the target point, and M = 13 is the number of se-
lected phantom target points. Ps and IntDist were evaluated
in each robot workspace zone (L = 5). The inter-distance
accuracy IntDist was computed for only neighbor target
points pair in a specific path (e. g., in path 1, inter-distance
pairs included L1-L5, L5-L10 and L10-L15). As a result, a
smaller data sample was used for this evaluation.
Fig. 7. The symmetric cylindrical vascular phantom. (a) The lumen mold of
cover and the agar-mimicking tissue material used to fill the phantom. (b) A v
first and second stenoses with 80% and 75% area reductions, respectively. T
completed by introducing the phantom in water. This allows producing a v
scanning.
3.3.2. Teach/replay repeatability

The teach/replay repeatability is the distance between the
robot teach and replay points. It was assessed with the data
collected for the robot accuracy measurements. For this
analysis, it was not necessary to know the translation of the
data in the phantom coordinate system; the collected data
were only transformed into the robot referential with Eq.
(1). The teach/replay repeatability Rpt was calculated with:

Rpt ¼ 1

TM

XT

i¼0

XM

k¼0

kSPP teach
robot-base

i;k � SPP replay
robot-base

i;kk ð6Þ

where SPP teach
robot-base

i;k
is the teach position vector with respect

to the robot referential of target point k for the SP config-
uration i, SPP replay

robot-base

i;k
represents the replay position vector

with respect to the robot referential of target point k for the
SP configuration i, T = 4 is the number of SP configura-
tions, and M = 13 is the number of target points. Rpt
was evaluated in each robot workspace zone (L = 5).

3.3.3. Statistical analyses

Multiple pairwise comparisons with Bonferonni tests
were performed on accuracy and teach/replay repeatability
results to evaluate differences among the robot operating
zones and phantom paths. All statistical analyses were per-
formed with the SPSS statistical software (version 13.0,
SPSS Inc., Chicago, IL).

3.4. 3D-US reconstruction of a vascular phantom from a

robot scan

The performance of the 3D-US robotic system for the
reconstruction of a vessel was evaluated by using a sym-
metric cylindrical vascular phantom of known length with
two consecutive stenoses of 80% and 75% area reductions.
The fabrication phantom ground truth values were
obtained from micro-caliper measurements performed on
the low-melting point vessel lumen prototype. Fig. 7 shows
the vascular phantom box and lumen mold. A complete
description of the fabrication process, characteristics and
the vascular phantom with double stenoses is shown without the box top
iew of the lumen mold alone is shown, labels S1 and S2 correspond to the
he sugar-based lumen mold is removed when the fabrication process is

essel with two stenoses that is filled with degassed water for ultrasound
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geometric accuracy of the phantom is available in (Cloutier
et al., 2004). For the current evaluation, the vascular phan-
tom was placed in zone 3 of the robot workplace (see
Fig. 5) and scanned along its length. The robotic system
was coupled to an US scanner equipped with a 10 MHz lin-
ear array probe (Model FPA, Vivid-5 US system, General
Electric, Chicago, IL, USA). In order to reconstruct the
vascular phantom accurately, a 3D-US calibration was first
performed by using a cross-wire phantom. Thereafter, the
quantification of the diameter and area reduction of stenos-
es was performed on the reconstructed volume obtained
from US images captured with the robot system.

3.4.1. Calibration with a cross-wire
To locate US images within the robot coordinate system,

it was necessary to find the transformation (rotation and
translation) of the US image plane with respect to the probe
position. This was achieved with a cross-wire calibration
phantom made with two crossed threads suspended in
water. Several scans were performed with a wide range of
US probe angles and positions. The intersection of the
two wires was aligned in the US image for a specific depth.
The center of the intersection was manually segmented and
considered as the origin of the phantom coordinate system
to solve the following equation (Mercier et al., 2005):

0

0

0

1

0
BBB@

1
CCCA ¼ T phantom

robot-base � T robot-base
USprobe � T

USprobe
image �

sx � uk

sy � vk

0

1

0
BBB@

1
CCCA; ð7Þ

where T phantom
robot-base is the unknown transformation (rotation

and translation) of the cross-wire phantom with respect
to the robot referential, T robot-base

USprobe represents the known
transformation of the US probe with respect to the robot
referential for an acquired image, and T USprobe

image is the un-
known transformation of the image with respect to the
US probe. For each image k, uk and vk represent the col-
umn and row indices with respect to the B-scan origin; sx

and sy are defined as the scaling parameters in mm/pixel
estimated from the B-scan depth settings. A Levenberg–
Marquadt iterative algorithm was employed to compute
the unknown parameters since the cross-wire position is
undefined in the robot referential. Once the calibration ma-
trix T USprobe

image is determined, all cross-wire points in the ac-
quired images were reconstructed in the robot referential
with Eq. (7) to assess the calibration precision Crms:

Crms ¼

ffiffiffiffiffiffiffiffiffiffiPN
i¼1

ri

N

vuuut
; ð8Þ

where ri is the standard deviations of the reconstructed
points for an US image i among a total of N images.

3.4.2. 3D-US reconstruction

A US scan with quasi-parallel planes of the phantom
was taught and replayed by the robot. B-mode images
(480 · 640 pixels) were captured, digitized and stored on
the workstation. Images were cropped to a region of inter-
est and then segmented by using a fast-marching method
based on gray level statistics and gradients adapted from
(Roy Cardinal et al., 2006). It provided an outline of the
phantom vessel wall boundary. Each segmented contour
pixel position (uk, vk) was then mapped to the reconstruc-
tion volume B with the calibration matrix T USprobe

image , their
respective scaling factors (sx, sy) and with the correspond-
ing US probe transformation parameters T robot-base

USprobe . Thus,
each pixel xB of the 3D surface reconstruction was
expressed by the following equation:

xB ¼ T robot-base
USprobe � T

USprobe
image �

sx � uk

sy � vk

0

0

0
BBB@

1
CCCA: ð9Þ

The transformed contours were re-sampled on a rectangu-
lar grid and interpolated to provide a 3D surface rendering.

3.4.3. Quantification of stenoses

Stenoses were evaluated from the 3D-reconstruction. The
reconstructed volume was re-sliced perpendicularly to the
longitudinal axis of the vessel. A mean diameter and an area
were computed for each cross-section. From this data set, 10
samples in regions where the area was maximum were used
to compute the average dimension of the reference vessel
Aref. In regions where the area was minimum (within stenos-
es), one value was used to compute the average diameter and
area of the reduced stenosis Amin. Stenoses in the 3D volume
were quantified according to the following equation:

% of reduction ¼ 100� Aref � Amin

Aref

� �
: ð10Þ

The quantification error for both stenoses was deter-
mined and compared to the fabricated phantom ground
truth values obtained from micro-caliper measurements.
4. Results

4.1. SP calibration

The SP translation magnitude SPPend-effector in Eq. (1)
was estimated as 194.33 ± 0.36 mm. The corresponding
translation position coordinates, which represent the SP
center of gravity in the x, y and z directions with respect
to the robot end-effector, are listed in Table 1.

4.2. SP calibration precision

The mean SP precision according to Eq. (2) was found
to be 0.57 ± 0.30 mm for the five experimental zones. This
mean was calculated with 100 collected points in the robot
workspace. Fig. 8 presents the histogram of the distance
between each target position acquired with the SP and
the corresponding mean target position. Most data



Table 1
Spherical pointer (SP) calibration results

SPPend-effector Position vector Magnitude iSPPend-effectori

X Y Z

Mean (mm) �12.05 ± 0.64 �1.38 ± 0.27 194.50 ± 0.35 194.33 ± 0.36

SPPend-effector is the estimated translation vector of the SP in the end-effector referential.
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Fig. 8. The precision histogram of the robot scanner determined by using
the spherical pointer. For the five experimental zones, a mean of
0.57 ± 0.30 mm was found.

Table 2
Robot positioning accuracy

Experimental zones Phantom paths Psteach ðm
Zone 1 1 0.69 ± 0

2 0.74 ± 0
3 0.69 ± 0
Mean 0.71 ± 0

Zone 2 1 0.46 ± 0
2 0.46 ± 0
3 0.55 ± 0
Mean 0.50 ± 0

Zone 3 1 0.48 ± 0
2 0.64 ± 0
3 0.72 ± 0
Mean 0.62 ± 0

Zone 4 1 0.61 ± 0
2 0.52 ± 0
3 0.72 ± 0
Mean 0.63 ± 0

Zone 5 1 0.54 ± 0
2 0.63 ± 0
3 0.56 ± 0
Mean 0.58 ± 0

All zones Total mean 0.60 ± 0

Ps is the relative mean positioning accuracy which defines the mean distance be
in the robot teach ðPsteachÞ and replay ðPsreplayÞ modes. d and n indicate stat
comparisons with p < 0.05 and p < 0.001, respectively.

* Signifies that a statistically significant difference between paths was found
p < 0.05.
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acquired at different angulations of the SP resulted in a pre-
cision below 1 mm.

4.3. Performance evaluation

4.3.1. Positioning accuracy

The mean relative positioning accuracy calculated with
Eq. (4) was 0.60 ± 0.29 mm in teach mode, while it was
0.62 ± 0.29 mm in replay mode. Ninety five percent of
the data points (248 instead of 260 samples) was collected
in teach and replay modes given that some holes were
not reachable by the robot. Table 2 details the positioning
accuracy within each designated experimental zones and
different phantom paths for teach and replayed points. Sta-
tistically significant differences were found between the
robot experimental zones (p < 0.05) for both Psteach and
Psreplay measurements. The pairwise comparisons revealed
a significantly higher positioning error in zone 1 compared
to zones 2 and 5 (p < 0.001 and p < 0.05, respectively). Fur-
thermore, over all robot workspace zones and for both
mÞ Psreplay ðmmÞ Sample size (N)

.26* 0.69 ± 0.28* 12

.33 0.75 ± 0.33 16

.30* 0.70 ± 0.30* 16

.29 n, d 0.72 ± 0.30 n, d 44

.27* 0.59 ± 0.30* 16

.18 0.49 ± 0.19 16

.28* 0.60 ± 0.29* 20

.25 n 0.56 ± 0.27 n 52

.19* 0.47 ± 0.18* 16

.26 0.60 ± 0.28 16

.35* 0.73 ± 0.34* 20

.29 0.61 ± 0.29 52

.27* 0.61 ± 0.27* 16

.29 0.49 ± 0.25 16

.37* 0.75 ± 0.42* 20

.32 0.63 ± 0.34 52

.25* 0.56 ± 0.22* 16

.21 0.62 ± 0.23 16

.24* 0.55 ± 0.22* 16

.23 d 0.58 ± 0.22 d 48

.29 0.62 ± 0.29 248

tween ground truth and robot measured phantom points. It was calculated
istically significant differences between experimental zones from pairwise

over all robot workspace zones for both teach and replay modes with



Table 4
Robot teach/replay repeatability

Experimental zones Phantom paths Rpt ðmmÞ Sample size (N)

Zone 1 1 0.13 ± 0.18 12
2 0.08 ± 0.10 16
3 0.04 ± 0.02 16
Mean 0.09 ± 0.13 44

Zone 2 1 0.18 ± 0.05 16
2 0.05 ± 0.06 16
3 0.12 ± 0.22 20
Mean 0.12 ± 0.26 52

Zone 3 1 0.06 ± 0.04 16
2 0.16 ± 0.31 16
3 0.05 ± 0.05 20
Mean 0.09 ± 0.18 52

Zone 4 1 0.04 ± 0.02 16
2 0.15 ± 0.15 16
3 0.20 ± 0.40 20
Mean 0.14 ± 0.30 52

Zone 5 1 0.10 ± 0.23 16
2 0.07 ± 0.08 16
3 0.07 ± 0.15 16
Mean 0.08 ± 0.16 48

All zones Total mean 0.10 ± 0.22 248

Rpt is the mean teach/replay repeatability which defines the distance
between the robot teach and replay points. No statistically significant
difference was found between the different zones and paths.
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Psteach and Psreplay, a statistically significant difference
between phantom paths 3 and 1 was found (p < 0.05) with
the smallest error in the linear path (path 1). However, no
statistically significant difference was found between the
teach and replay positioning accuracy over all zones and
phantom paths (p = 0.67).

4.3.2. Inter-distance accuracy

The mean inter-distance accuracy computed with Eq. (5)
in teach mode ðIntDistteachÞ was 0.43 ± 0.32 mm, whereas
for the replay mode, IntDistreplay was 0.42 ± 0.33 mm. Sev-
enty eight percent (188 over 240 holes) of the data points
was used for the robot inter-distance accuracy measures in
teach and replay modes. This is due to the fact that this eval-
uation was limited to neighbor targets located on a specific
path and because of the limited reach of the robot to some
holes. Table 3 shows the inter-target distance accuracies.
For both IntDistteach and IntDistreplay, statistically significant
differences were observed between the robot operating zones
(p < 0.05). The pairwise comparisons showed that the inter-
target measurement error in zone 4 was significantly higher
than in zones 2 and 5 (both with p < 0.05). Furthermore, for
both IntDistteach and IntDistreplay, no significant differences
occurred between phantom paths (p = 0.24) and between
teach and replay modes (p = 0.60).

4.3.3. Teach/replay repeatability

Finally, the teach/replay repeatability computed with Eq.
(6) was 0.10 ± 0.22 mm. Table 4 summarizes the robot
teach/replay repeatability measurements. No significant dif-
ferences occurred between robot workspace zones (p = 0.78)
and between different paths (p = 0.98) within each zone.
Table 3
Robot inter-distance accuracy

Experimental zones Phantom paths IntDistteach

Zone 1 1 0.56 ± 0.43
2 0.52 ± 0.23
3 0.32 ± 0.16
mean 0.45 ± 0.29

Zone 2 1 0.37 ± 0.13
2 0.34 ± 0.28
3 0.29 ± 0.21
mean 0.33 ± 0.21

Zone 3 1 0.33 ± 0.17
2 0.37 ± 0.28
3 0.57 ± 0.35
mean 0.43 ± 0.30

Zone 4 1 0.34 ± 0.27
2 0.57 ± 0.52
3 0.63 ± 0.55
mean 0.44 ± 0.40

Zone 5 1 0.26 ± 0.18
2 0.48 ± 0.35
3 0.27 ± 0.28
mean 0.34 ± 0.29

All zones Total mean 0.43 ± 0.32

IntDist evaluates the robot error in segment length measurements; it is the m
neighbor points and the length separating the corresponding target points coll
teach ðIntDistteachÞ and replay ðIntDistreplayÞ modes. d indicates a statistically s
with p < 0.05. No statistically significant difference was found between phanto
4.4. 3D-US reconstruction of a vascular phantom from a
robot scan

4.4.1. Calibration with the cross-wire phantom

The calibration matrix T USprobe
image was computed with 62

images at a depth of 6 cm with a cross-wire. The calibration
precision Crms achieved was 2.5 mm (see Eq. (8)).
ðmmÞ IntDistreplay ðmmÞ Sample size (N)

0.54 ± 0.41 8
0.51 ± 0.22 12
0.32 ± 0.14 12
0.45 ± 0.27 32
0.44 ± 0.22 12
0.35 ± 0.29 12
0.31 ± 0.21 16

d 0.36 ± 0.24 d 40
0.33 ± 0.15 12
0.35 ± 0.29 12
0.59 ± 0.35 16
0.44 ± 0.30 40
0.34 ± 0.25 12
0.61 ± 0.43 12
0.61 ± 0.53 16

d 0.47 ± 0.36 d 40
0.40 ± 0.30 12
0.50 ± 0.35 12
0.26 ± 0.27 12

d 0.38 ± 0.32 d 36
0.42 ± 0.33 188

ean absolute error between the length separating phantom ground truth
ected with the robot spherical pointer (SP). It was calculated for the robot
ignificant difference between experimental zones on pairwise comparisons
m paths.



Fig. 9. The 3D–ultrasound reconstructed phantom with double stenoses. Quantification errors of 3.0% and �0.9% were found for the 80% and 75% area
reduction stenoses, respectively.

Table 5
Vascular phantom 3D reconstruction results

Vessel parameters In-vitro phantom 3D reconstruction Error between the phantom model and the 3D reconstruction

Normal lumen wall diameter 7.98 ± 0.20 mm 7.08 ± 0.36 mm �0.90 ± 0.16 mm
1st stenosis diameter 3.57 ± 0.20 mm 2.93 mm �0.64 mm
1st stenosis area reduction ratio 80.0% 83.0% 3.0%
2nd stenosis diameter 3.99 ± 0.20 mm 3.62 mm �0.37 mm
2nd stenosis area reduction ratio 75.0% 74.1% �0.9%
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4.4.2. 3D-US reconstruction

The phantom with two stenoses was scanned also at a
depth of 6 cm. A total of 83 images was captured to recon-
struct the vascular phantom. Images were segmented and
re-sampled in a 20 · 20 · 300 grid. The surface rendering
achieved with the 3D-US system is shown in Fig. 9.

4.4.3. Stenosis evaluation

Table 5 shows quantification errors of 3.0% and �0.9%
for the 80% and 75% stenoses, respectively. Additional
details on diameter measurements and 3D reconstruction
of the phantom are given in Table 5.

5. Discussion

5.1. SP calibration and precision

The SP calibration resulted in a low variability of
0.36 mm (Table 1). Additionally, the precision was close
to 0.6 mm over the whole robot workspace indicating an
accurate calibration procedure (see Fig. 8). This means that
the location of an image acquired with an US probe rigidly
attached to the robotic arm handle is expected to be accu-
rately found anywhere in the robot workspace. To assure
an accurate SP calibration and constant precision, the
robot arm had to be periodically re-homed. This is due
to gradual drift in and out of calibration after long periods
for which the robot was not operated.
5.2. Performance evaluation

5.2.1. Positioning accuracy

The positioning accuracy was below 0.75 mm for both
teach and replay modes (see Table 2). Evermore, it was
comparable to the precision of the SP calibration. This
observation proves again the consistency of the robot,
where the relative positioning accuracy reflects the preci-
sion of the robotic arm combined to the precision of the
SP calibration procedure. Furthermore, zone 1, the furthest
to the robotic arm, showed the worst mean positioning
accuracy, as shown in Table 2. When zone 1 was compared
to zones 2 and 5, which had the best mean positioning
accuracy with values below 0.63 mm, a statistically signifi-
cant difference was found. The poorer accuracy was due to
the mechanical stress in the robotic arm to reach the phan-
tom target points within zone 1. A smaller sample number
of 11 target points was indeed used in zone 1 because some
targets were out of reach to the robotic arm. While the
robot offered an overall acceptable accuracy in its work-
space, an optimum setting would be where the robotic
arm can reach its target such as in zone 2 or zone 5. There-
fore, for a 3D US scan, a patient leg could be placed any-
where in the robot workspace, but the robotic arm
positioning accuracy would be better for a leg located
within an area closer to its reach.

Concerning the robot scanning paths, the statistical
analysis singled out a difference between paths 1 and 3.
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This can be observed in Table 2 specifically in zones 3 and
4, where path 3 showed a significant higher positioning
error then path 1. Consequently, scanning of tortuous
lower limb arterial segments, such as modeled with the
curved scanning path 3, does increase the mechanical stress
on the robotic arm, however the difference in the position-
ing accuracy was nevertheless low (60.20 mm).

5.2.2. Inter-distance accuracy

The inter-distance accuracy was found satisfactory
within all robot workspaces (mean accuracy of
0.43 ± 0.32 mm in teach mode and 0.42 ± 0.33 mm in
replay mode). In fact, absolute mean distances were always
60.63 mm. The inter-distance accuracy in Table 3 showed
differences between zones. Zone 4 had the largest variations
between 0.34 mm and 0.63 mm, and zones 2 and 5 again
corresponded to the optimal regions with the lowest varia-
tions between 0.26 mm and 0.48 mm. However, no differ-
ences were found between the phantom paths. Hence, in
the robot workspace, the optimum zones to perform
inter-distance evaluation are again zones 2 and 5 where
the mean inter-distance accuracies stayed 60.48 mm. The
inter-distance measure is an important parameter as it eval-
uates the robot error in segment length measurements,
which can condition the choice of a therapy (surgical
bypass or endovascular approach) and the selection of
the length of an angioplasty balloon or a stent.

In both positioning and inter-distance accuracies, the
taught and replayed points showed similar results. This
confirms, as expected, that the robot can repeat with high
accuracy a manually taught trajectory. This is important
since the robot can replay at a constant speed the desired
scan path for any given patient leg at a high accuracy for
3D reconstruction.

5.2.3. Teach/replay repeatability

The robot teach/replay repeatability reported in Table 4
was found slightly higher than the value specified by the
manufacturer, which is 0.05 mm. The higher teach/replay
repeatability that reached 0.20 mm might be explained by
the calibration procedure of the robot SP. Because the SP
was not a fixed component of the robotic system, it became
necessary to transform its physical length into the robot
referential with Eq. (1). The calibration procedure esti-
mated the SP translation from the robot end-effector.
Thereafter all robot point targets were computed with the
SP translation estimation to obtain their location in the
robot referential. Hence, since SP was involved in all mea-
sures of performance, this aspect might explain the differ-
ence observed between our study and the manufacturer’s
specification.

5.3. Comparison to other systems

Precision and inter-distance accuracies obtained in this
study were better in comparison to other 3D-US freehand
systems evaluated with similar methods. The precision of
these systems was measured as the standard deviation
around a target point, which is similar to Eq. (2), and dis-
tance accuracies were evaluated according to known phan-
tom inter-target lengths, measurements with a ruler or
other referential systems such as robots. The most popular
position localizers in 3D-US systems are optical systems
and EM sensors.

Optical systems are known to provide the best level of
position tracking accuracy. The optical Polaris system
(NDI, Waterloo, Ontario, Canada) provided inter-dis-
tance errors as low as 0.193 ± 0.167 mm with a precision
of 0.059 ± 0.047 mm for a 1 m distance between the cam-
era and the localized object (Khadem et al., 2000). How-
ever, these results were obtained only for optimal
placement of the optical reflectors with respect to the
tracking camera. If not, position accuracies as large as
6.67 mm and mean inter-distance accuracies of
3.55 ± 1.51 mm were achieved (Cartellieri et al., 2001).
These last measurements were obtained by using four dif-
ferent optical systems to evaluate the position of a point
target on a phantom that was reached with different ori-
entations. In the current study, even though our robot
showed an optimum scanning zone and path to reach
the best positioning accuracy, and an optimum zone to
measure the inter-distance accuracy, the spatial precision
was not severely compromised when working in other
zones and paths. This would not be the case for optical
trackers because the position of the camera would not
be optimum to scan, for example, path 1 on the top sur-
face of the phantom and path 3 on its side.

EM position trackers offer the benefit of unrestricted
range of motion. However, the accuracy is variable because
of their sensitivity to metallic environments and because
the transmitter needs to be near the receiver to achieve a
good precision. In the literature, there exist discrepancies
in the reported precisions and inter-distance accuracies of
these devices. Precisions varying between 0.61 mm and
1.7 mm, and inter-distance accuracies varying between
0.05 mm and 1.7 mm, were found for the EM Flock-of-
Bird (Ascension Technology, Burlington, Vermont, USA)
at distances between the emitter and receiver below 61 cm
(Detmer et al., 1994; Hartov et al., 1999; Leotta et al.,
1997; Rousseau, 2003). When comparing the Fastrack
(Polhemus, Colchester, Vermont, USA) with the Flock-
of-Bird system, RMS inter-distance accuracies ranging
from 0.21 mm to 1.7 mm, and from 0.16 mm to 1.3 mm
were measured, respectively with both systems, at a dis-
tance of 30 cm (Rousseau, 2003). In worst case scenarios,
for example in clinical settings with EM interferences,
inter-distance accuracies as large as 6.4 ± 2.5 mm (Flock-
of-Bird) and 3.2 ± 2.4 mm (Fastrack) were obtained for a
9 cm distance between the emitter and receiver (Birkfellner
et al., 1998b). For lower limb vessel imaging applications, a
setting with metallic objects (e.g., US probe, hospital bed)
and typical scanning lengths varying between 50 and
100 cm are expected. Consequently, our robot with a preci-
sion of 0.57 ± 0.30 mm (see Fig. 8) and an inter-distance
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accuracy of 0.42 ± 0.33 mm (see Table 3) is thus superior
to that of approaches using localizing systems since a con-
stant performance can be achieved in all workspaces.

When compared to the few existing robotic 3D-US sys-
tems, our design demonstrated its suitability for the pro-
posed clinical application. An articulated mechanical arm
for 3D-US imaging had a mean positioning error of
0.7 mm (Hernandez et al., 1996) compared to the position
accuracy of 0.62 ± 0.29 mm reported in the current study
(see Table 2). With the Hippocrate system (Pierrot et al.,
1999), an absolute positioning accuracy of 0.5 mm and a
repeatability of 0.05 mm were obtained, which is also sim-
ilar to our results (a teach/replay repeatability of
0.10 ± 0.22 mm was found with our system, see Table 4).
It is to note, however, that a direct comparison with the
Hippocrate scanner is difficult because no precise informa-
tion was available in Pierrot et al. (1999) on how these mea-
sures were obtained. Additionally, in this study, no
quantitative evaluation of the 3D-reconstruction of an
artery was performed. As a result, not much information
supports Hippocrate performance in term of validation in
a clinical mimicking set up. Our 3D-reconstruction showed
quantitatively in Table 5 that the robotic system can quan-
tify stenoses with a good accuracy.

5.4. Advantages and limitations of our robotic system

5.4.1. Performance

In this study, the robot was used as a tracking device to
provide positions of 2D-US images for 3D-reconstruction.
According to Rousseau (2003), performance of the track-
ing device includes latency (or lag), update rate, interfer-
ences, precision of measures and optimum operating
space. To identify how closely a robot follows a taught
scan pattern determined by a clinician, it is first important
to discuss latency and update rate. Latency is the delay
required for the system to detect motion. Update rate refers
to the number of positions reported by the system per sec-
ond. Unfortunately, no measurements of these characteris-
tics were performed or disclosed by the manufacturer of
our robotic system. Nevertheless, we did not observe any
limitations in scanning mimicking arteries and we can
assume that latency and update rate frequencies are faster
than the frame rate of US scanners (typically 30 Hz for
most applications). Consequently, we do not anticipate
any problems for lower limb vessel scanning by a clinician.

Interferences affecting the robot performance can occur
when the operating environment is not respected (i.e., tem-
perature, humidity and extreme electrical noise). Accord-
ingly, the environment for the current study encompassed
the manufacturer operative conditions required to preserve
robust performances (i.e., room temperature and humidity,
and normal electrical interferences encountered in indus-
tries or hospitals).

For robotic 3D-US imaging, precision of measures and
resolution of US images should be comparable. At
10 MHz, US image resolution has approximately, at
3 cm depth, a resolution of 0.3–0.4 mm in axial, 1.0–
2.0 mm in lateral and 3.0–4.0 mm in out of plane orienta-
tions (Dajani, 2000). In our study, the positioning accu-
racy of the robot (60.75 mm) was similar to the
combined axial and lateral resolutions of US imaging.
However, since the sensing technology of the arm relies
on the transformation of joint angles into the end-effector
position, the robotic arm will maintain a reliable perfor-
mance in complex movements if the robot joints are oper-
ated within the safe boundary of their limits. It is to note
that binding of the arm is very unlikely because our
design is based on a robust industrial robot. However,
excessive vibrations may limit the performance.

Other performance limitations include the use of the sys-
tem under clinical conditions for scanning patients of dif-
ferent anatomy. Currently, our robotic system is limited
to accommodate each scan of a patient‘s leg with a manual
taught path made by a clinician. Henceforth, the robot
replays this path over the leg and acquires at a constant
step US image planes based on a pre-determined trajectory.
Of course, movement of the patient’s leg between the
taught and replay modes would eventually need to be
addressed. The patient leg may be either immobilized or
an automatic tracking of the vessel and registration during
replay may be required. However, these solutions are
beyond the scope of the present article.

Finally, the robot performance was evaluated for posi-
tion and inter-distance accuracies and for teach/replay
repeatability at different locations within its operating work-
space. A map zone that characterizes the robot performance
limitations inside its workspace was achieved (see Fig. 5 and
Tables 2–4). It was found that the robot positioning accu-
racy limits varied between 0.46 mm and 0.72 mm, the
inter-distance accuracy boundaries were between 0.26 mm
and 0.63 mm, and the teach/replay repeatability was from
0.04 mm to 0.20 mm. Thus, a clinician can generally expect
these performances when operating inside the robot work-
space during the scanning of a patient.

5.4.2. Design

In this study, we identified the limits of accuracy from
the base of the robotic arm that extends to SP for scanning
lower limbs. The level of accuracy we can achieve with our
robotic system is greatly influenced by the mechanical
design specifications of the robotic arm. More specifically,
the number of mechanical joints and link dimensions (i.e.,
member lengths of the robotic arm) are significant ele-
ments. Including SP in the evaluation certainly reduced
the reported accuracy of our robotic system. It would be
possible to improve accuracy with SP by adding mechani-
cal joint limits to the robotic arm to restrain the workspace
for optimal operation (Duchemin et al., 2004). An alternate
way to improve and preserve performance would be to
change the physical design of the robotic arm by comput-
ing a model of optimal link dimensions and joint orienta-
tions (i.e., kinematic parameters) with SP. The Jacobian,
a matrix that depends on a kinematic model to relate joint
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velocities to the end-effector, would be a solution to pro-
vide a better positioning accuracy measured at the end-
effector with SP (Mavroidis et al., 1998).

Elastic joints are another source that can influence the
level of accuracy achievable by a robot. Under this assump-
tion, our robot has intrinsic compliant elements at the
joints (e.g., six revolute joints, F/T sensor and cables) that
have to be considered. Elasticity of mechanical transmis-
sion is often the cause of positional errors at the end-effec-
tor when a robot works in contact with the environment
(Zollo et al., 2005). This is often due to static deformations
caused under gravity in position tracking and interaction
tasks. Given our robotic system was designed to interact
with humans, and was in contact with a lower limb mim-
icking phantom for this study, this aspect is thought to
be important to explain the reported positioning accura-
cies. Nonetheless, when the robot interacts with humans,
these effects can be reduced to ensure a high performance
with the design of a compliance control in the Cartesian
space of the robotic system.

5.5. 3D-reconstruction of a vascular phantom from a robot
scan

5.5.1. Calibration with a cross-wire and 3D-US

reconstruction

The calibration matrix obtained with the cross-wire
showed a precision suitable for a preliminary 3D-recon-
struction. However, the calibration precision affected the
geometry of the reconstructed vessel in the longitudinal
axis. This can be seen in Fig. 9, where the 3D reconstruc-
tion is slightly shifted in the x � y plane along its length
(z axis). It is important to remember that the vascular
phantom had a symmetric geometry along its length. For
future work, we expect that it may be feasible to improve
the calibration precision as the accuracy of the method
relies on how well the intersecting point can be detected
in the B-scan images and on how the cross-wire location
can be precisely estimated in the robot referential. While
the precision affected the 3D reconstructed central axis, it
did not seem to influence severely the overall geometry.
Thus, the stenosis severity could satisfactorily be evaluated
from the 3D volume. Nevertheless, a better accuracy than
3.0% (see Table 5) may be expected and a z-phantom cali-
bration device may be a solution for this problem (Mercier
et al., 2005).

5.5.2. Stenosis evaluation

Imaging lower limb stenoses is an important applica-
tion for 3D-US. This non-invasive imaging technique
may become an alternative to 3D reconstruction of arte-
rial segments obtained with magnetic resonance imaging
and computed tomography angiography. Carotid artery
atherosclerotic plaque progression was evaluated in
patients with a 3D-US linear step motor system (Delcker
and Diener, 1994). Already, the vascular risk factors pro-
moting plaque progression were monitored and analyzed
with this system (Delcker et al., 1995). Another study val-
idated the 3D-US Flock-of-Bird EM system to measure a
phantom and blood conduit geometries (Hodges et al.,
1994). Dimensions of uniform and stenotic 3D-recon-
structed phantoms were measured. This system was able
to detect diameter reductions up to 28% corresponding
to an area reduction of 48%. More recently, a study with
a similar EM system evaluated the error in stenosis quan-
tification for the 3D-US reconstruction of carotid bifurca-
tion phantoms and found errors of �1.2% for detecting a
70% stenosis (Barratt et al., 2004). We found similar
results with errors of 3.0% for detecting a 80% stenosis,
and errors of �0.9% for quantifying a 75% stenosis (see
Table 5).

6. Conclusion

The prototype medical robot proved to be a suitable
tracking device that offers a constant performance and con-
trol to acquire 3D positions with a high precision, and
good position and inter-distance accuracies. The computed
positions in the robot referential of the acquired US images
were satisfactory to quantify stenoses in a 3D reconstructed
vessel phantom. Of course, further developments and vali-
dations of the robotic system are necessary to provide a
platform that would meet clinical needs. Developments
include a more robust 3D-US image calibration procedure
to improve the accuracy of the 3D reconstruction from B-
mode, color and power Doppler images. The integration of
electrocardiogram data in the robot control system to gate
the US image acquisition would also eliminate deforma-
tions of the reconstructed volume due to the pulsation of
the vessel wall. Acquisition of US images with controlled
applied pressure may also be of interest to enable non-inva-
sive elastographic measurements of pathological biological
tissues (Maurice et al., 2004) or to detect deep venous
thrombosis with objective vessel compression measures
(Guerrero et al., 2006).
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