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The current research and development of 2D (matrix-shaped) transducer arrays to acquire 3D ultrasound
data sets provides new insights into medical ultrasound applications and in particular into elastography.

Until very recently, tissue strain estimation techniques commonly used in elastography were mainly
1D or 2D methods. In this paper, a 3D technique estimating biological soft tissue deformation under load
from ultrasound radiofrequency volume acquisitions is introduced. This method locally computes axial
strains, while considering lateral and elevational motions. Optimal deformation parameters are esti-
mated as those maximizing a similarity criterion, defined as the normalized correlation coefficient,
between an initial region and its deformed version, when the latter is compensated for according to these
parameters.

The performance of our algorithm was assessed with numerical data reproducing the configuration of
breast cancer, as well as a physical phantom mimicking a pressure ulcer. Simulation results show that the
estimated strain fields are very close to the theoretical values, perfectly discriminating between the
harder lesion and the surrounding medium. Experimental strain images of the physical phantom demon-
strated the different structures of the medium, even though they are not all detectable on the ultrasound
scans.

Finally, both simulated and experimental results demonstrate the ability of our algorithm to provide
good-quality elastograms, even in the conditions of significant out-of-plane motion.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Pathological processes very often induce changes in soft tissue
stiffness (Anderson and Kissane, 1953; Lendon et al., 1991; Lee et
al., 1991; Ariel and Cleary, 1987), which is why physicians first
use palpation to detect tumors, especially in the breast or prostate.
However, this examination is restricted to shallow tumors and
pathologies at a late stage. These limitations motivated a new
imaging technique termed ultrasound elastography. This tech-
nique provides information on the local elastic properties of a tis-
sue by visualizing its deformation behavior in response to an
external load. Depending on the nature of the mechanical excita-
tion applied to the tissues, either a static load or a vibration, ultra-
sound elastography techniques fall into two categories: static
elastography and sono-elastography, respectively. This paper
investigates strain estimation in static elastography.

Ultrasound elastography is inspired by a basic rule of mechan-
ics: subjected to a given stress, soft areas will deform more than
ll rights reserved.
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harder ones. In practical terms, ultrasound radiofrequency (RF)
images are acquired from the tissue under investigation in both
rest and compressed states (also termed pre- and post-compres-
sion states). Tissue internal deformations are then locally esti-
mated. Ultrasound data are divided into many overlapping
regions of interest (ROI) and for each ROI, stress-induced changes
within the signals are analyzed to generate a map of the local
strain.

Accurately estimating the strain remains fundamental in elas-
tography since the clinician’s diagnosis, as well as the quality of
mechanical parameter reconstruction, is directly related to these
estimations.

Until recently, mainly one-dimensional (1D) methods had been
developed. They provide a map of the axial component of the
deformation, along the ultrasound beam’s propagation axis. The
first technique, originally developed by Ophir et al. (1991), is based
on a time-delay estimation. It assumes that with compression, the
tissue locally experiences simple axial translations. Within the RF
signal, this results in time-delays for the corresponding acoustical
footprints. Cross-correlation is therefore applied to short segments
of pairs of pre- and post-compression RF A-lines, and the location
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of the peak of the correlation function estimates this shift. Strain is
then calculated as the gradient of the displacement. Since these
time-delay techniques do not take into account the signal shape
variation caused by the compression, they rapidly fail with high
strains. Moreover, the gradient function is a very noise-sensitive
operator. To overcome these limitations, a second category of 1D
methods were proposed, namely the local scaling factor estimation
techniques (Alam et al., 1998; Bilgen, 1999; Brusseau et al., 2000).
With these techniques, the post-compression signal is locally as-
sumed to be an axially shifted and compressed replica of the initial
signal. Since this hypothesis is closer to reality than the previous
one, it improves the robustness of the estimation.

Unfortunately, these techniques often lead to insufficiently
accurate results, because these estimators remain one-dimen-
sional, whereas the tissue motion that occurs during the load is
three-dimensional. As biological media can reasonably be consid-
ered as incompressible, the axial compression applied to the tis-
sues also yields to lateral and elevational expansions. Tissue
acoustical scatterers therefore experience 3D displacements.
One-dimensional techniques only consider the transformation of
the acoustical footprint of the pre-compression signal due to the
axial displacement of the scatterers, whereas lateral and out-of-
plane motions of the scatterers are also responsible for the acous-
tical signature modification. This is a major source of decorrelation
between pre- and post-compression data.

To transcend these limitations and approach 3D motion, 2D
estimators were first developed. Two-dimensional techniques
were also motivated by the fact that most ultrasound devices cur-
rently in clinical use only provide 2D images. Several approaches
can be mentioned.

(i) The conventional technique, taking inspiration from block-
matching, is the 2D speckle tracking method (O’Donnell
et al., 1994). Two-dimensional local displacement is mod-
eled as a translation in both axial and lateral directions.
But the enhancement of the accuracy is limited, since this
type of technique ignores the signal shape variation. Accord-
ing to Pellot-Barakat et al. (2004), data alone may be insuffi-
cient to solve ambiguities due to loss of echo coherence.
Integrating a priori knowledge may therefore be necessary.
The displacement field is estimated by minimizing an energy
function that includes constraints of echo amplitude conser-
vation and displacement field continuity. However, this
approach only considers constant signal shifts (not scaling)
and the field continuity parameter may excessively
smoothen the boundaries. Konofagou and Ophir (1998) pro-
posed both global stretching and lateral weighted interpola-
tion of the post-compression signals, prior to strain
estimation. The scaled replica of each 1D acoustical footprint
is then searched in the axial and lateral directions. Neverthe-
less, two limits should be pointed out: first, global stretching
is not suitable because it does not fit the local signal
changes. Moreover, the lateral resolution is limited by the
interpolation rate chosen.

(ii) Companding, developed by Chaturvedi et al. (1998), is a sig-
nal pre-processing technique, used to restore coherence
between data acquired before and after compression. It
operates a 2D signal restoration at both global and local lev-
els. However, the signal is only scaled during the global com-
panding process, whereas signal shape modification
inherently has a local character. The Lagrangian Speckle
Model Estimator proposed by Maurice et al. (2004) is based
on a linear tissue displacement model, whose parameters
are estimated by minimizing an error criterion between
pre- and post-compression regions. Yet, this estimator
requires a preliminary stage to compensate for the 2D global
translation that occurs between the pre- and the post-com-
pression regions of interest. The correlation techniques used
for this step can be inaccurate in the case of highly strained
regions and may therefore corrupt the strain estimation.

(iii) Chen et al. (2004) proposed an original method to improve
the estimation of lateral displacements. To enhance lateral
tracking accuracy, the analytic signal spectrum is divided
with respect to zero frequency in the lateral direction, in
order to create a synthetic lateral phase. Phase-zero crossing
is then locally performed in both dimensions to find the 2D
displacement. However, this technique is only effective for
low deformation regions (i.e., <1%). Liebgott et al. (2005)
introduced a method to accurately estimate the axial and lat-
eral components of the displacement using an original beam-
forming scheme. The latter leads to the generation of images
with oscillations in the lateral direction, which enables lat-
eral tracking of the scatterers. Yet, this technique requires a
specific ultrasound device dedicated to research applications.

However, 2D estimators may lead to noisy elastograms if signif-
icant out-of-plane motion occurs, since it is a source of decorrela-
tion between pre- and post-compression signals. To overcome this
decorrelation problem and accurately track the motion of the scat-
terers, the elevational movement must also be considered, requir-
ing the acquisition of ultrasound RF volumes. The recent
development of 2D (matrix-shaped) transducer arrays makes the
acquisition of 3D data sets possible, thus exploiting the 3D speckle
in the 3D space. Moreover, 3D strain estimators can provide all the
components of the strain tensor. It is another advantage of 3D
strain estimation, especially if strain estimation is the preliminary
stage to solve the inverse problem of Young’s modulus
reconstruction.

However, very few 3D methods have been developed to date.
Most of them originate from the 2D techniques previously detailed.
Two-dimensional speckle tracking was indeed extended to the
third dimension by Chen et al. (2005). Their 3D correlation-based
speckle tracking algorithm therefore demonstrated the feasibility
of 3D ultrasound elastography. But even if it outperforms 1D and
2D speckle tracking methods, the algorithm can be improved, since
it does not consider any signal shape variation. The method origi-
nally developed by Konofagou and Ophir (1998) was adapted by
Said et al. (2006) to process 3D sectorial data. However, this ap-
proach does not consider the 3D problem globally, but only a 1D
movement in each of the three directions. The estimation accuracy
also remains limited by the interpolation rate initially chosen.
Techavipoo et al. (2004) developed a method using several angular
insonifications. The displacement is calculated along each direc-
tion, and a least squares curve fitting algorithm estimates local tis-
sue displacement. The authors show convincing results, but this
technique requires a complex transducer beam-steering scheme
based on multiple ultrasound insonification directions.

In this paper, we propose a 3D strain estimator that computes
the axial strain while considering lateral and elevational motions.
This 3D model is based on an adaptive and iterative constrained
minimization strategy. The strain estimator is introduced in Sec-
tion 2: the underlying mechanical and acoustical hypotheses used
for our model are explained and the algorithm is described in de-
tail. Section 3 discusses the results obtained for both simulated
and experimental data. Section 4 provides concluding remarks
and future perspectives.

2. Method

The estimator described in this section is based on the 2D model
previously developed by our team (Brusseau et al., 2008), which
has been adapted to consider the 3D tissue motion that occurs dur-
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ing the static load. Its purpose is to accurately estimate the axial
strain, while considering lateral and elevational motions.

With the static compression required to acquire the post-com-
pression signals, the investigated tissues experience axial compres-
sion, but also lateral and elevational expansions. As a first
approximation, we can consider that the related ultrasonic volume
locally undergoes a similar transformation: 3D acoustical signa-
tures are scaled – either stretched or compressed – in the three
directions. Unfortunately, ultrasound data resolution is highly
anisotropic. Owing to ultrasonic device characteristics, lateral
and elevational resolutions are much lower than the axial resolu-
tion. This observation has led to the following assumption: in the
axial direction, the post-compression volume is assumed to be a lo-
cally time-delayed and scaled replica of the pre-compression vol-
ume, whereas in the two other directions it is only considered as
a locally shifted version of the original one (Fig. 1). Therefore, the
volume transformation is described by four parameters, which
must be estimated: an axial delay (denoted d), an axial scaling fac-
tor (a), and a lateral and an elevational shift (s and m, respectively).
The relation between pre- and post-compression volumes, denoted
V1 and V2, respectively, can thus locally be formalized by the fol-
lowing relation:

V1ðx; y; zÞ ¼ V2ða � xþ d; yþ s; zþ mÞ ð1Þ
Pre-compression volume V1 
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Fig. 1. Configuration of the acquisition. V1 and V2 denote the pre- and post-compressio
version R2 is sought in V2, as an axially scaled and laterally and elevationally shifted rep
where Vi(x,y,z) is the signal amplitude at the (x,y,z) position, x being
the axial, y the lateral, and z the elevational spatial variable. To
achieve the parameter estimation, an adaptive and iterative con-
strained optimization process is proposed. It can be divided into
three different steps:

– The first stage of the process is selecting the local region of
interest (ROI) through an adaptive displacement.

– The second step is estimating the parameter itself. For each 3D
ROI R1 selected in the pre-compression volume V1, its deformed
version R2 is sought in the post-compression volume V2 and the
corresponding local strain is then estimated.

– The two previous steps are iterated until the entire ultrasound
volume is covered. Strain maps are then computed and dis-
played during the third step.

2.1. Adaptive displacement of the region of study

Locally estimating the set of parameters first means selecting
ROIs, in both the pre- and post-compression volumes. Let us
denote V1 the pre-compression volume and R1 a local 3D ROI in
V1. Similarly, V2 is the post-compression volume and R2 the local
ROI in V2, corresponding to the same physical tissue region as
Post-compression volume V2 
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n volumes, respectively. For each region of interest R1 selected in V1, its deformed
lica of R1.
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the one inside R1. In V2, the position of R2 is different from that of R1

in V1, owing to the deformation of surrounding regions involved in
compression of the medium. To work with corresponding tissue re-
gions, R1 and R2 are simultaneously and adaptively displaced. This
tracks the motion of the scatterers better during compression, and
therefore related ultrasound data can be considered in both
volumes.

To cover the entire ultrasound volume V1, the pre-compres-
sion 3D region of study R1 is regularly moved by constant steps
of Dax, Dlat, and Delev in the axial, lateral, and elevational direc-
tions, respectively. Any overlaps can be considered to enhance
the resolution of the final elastograms. More precisely, R1 is
moved axially from the probe downward, laterally from the im-
age center to the lateral boundaries, and elevationally from the
image center to the elevational limits. Regarding the post-com-
pression volume V2, an adaptive displacement of the region of
study R2 is considered. R2 axial displacement results from the
accumulation of axial deformations of the regions located be-
tween the probe and the region of interest. The lateral and eleva-
tional displacements are directly linked to those estimated over
adjacent regions. More formally, let us denote RðO;~i;~j;~kÞ the
coordinate system, O being the center of the top surface of the
ultrasound volume (Fig. 1). The positions of R1 in V1 and of R2

in V2, denoted uR1 and uR2 , respectively, thus have the following
expressions:

Initialisation

muR1
¼ muR2

¼ 0 if m ¼ 0

nuR1
¼ nuR2

¼ 0 if n ¼ 0

quR1
¼ quR2

¼ 0 if q ¼ 0

8>>><
>>>:

then

uR1 ðm;n; qÞ ¼ ðm � Dax; n � Dlat; q � DelevÞ

uR2 ðm;n; qÞ ¼
Pm�1

k¼0
ak � Dax;

Pn�1

k¼0
sk;
Pq�1

k¼0
mk

� �
8><
>: if m;n; q–0

ð2Þ

where ak is the axial scaling factor estimated for R1 at the position
uR1 (k,n,q), sk the signed lateral displacement between R1 located at
uR1 (m,k,q) and R2 at uR2 (m,k,q), and vk the signed elevational dis-
placement between R1 at the position uR1 (m,n,k) and R2 at
uR2 (m,n,k). Consequently, the axial time-delay (parameter d) be-
tween R1 and R2 is directly determined by estimating the axial scal-
ing factors. At index m, the axial time-delay dm is given by

dm ¼ m � Dax �
Xm�1

k¼0

ak � Dax

and d0 ¼ 0

ð3Þ

Therefore, three parameters a, s, and m remain to be estimated. The
two latter ones are of small magnitude, since the information of lat-
eral and elevational shifts, previously estimated over surrounding
regions, is progressively taken into account in the ROI adaptive
displacement.

Once the positions of R1 in V1 and R2 in V2 are determined, the
content of these two regions remain to be explicitly specified. Let
L be the axial length, W the lateral width, and D the elevational
depth. R1 positioned at uR1 (m,n,q) is the part of V1 defined by

R1¼V1 x;y;z

m � Dax6 x6m �DaxþL�1
n �Dlat�bW=2c6 y6n �Dlat�bW=2cþW�1
q �Delev�bD=2c6 z6 q �Delev�bD=2cþD�1

8><
>:

,0
B@

1
CA:
ð4Þ

where x.y represents the floor function.
A similar definition describes the post-compression region

R2.
2.2. Parameter joint estimation

Once the 3D regions of interest R1 and R2 are determined, the
three parameters a, s, and m remain to be estimated. This step is
achieved by optimizing a function, based on a similarity criterion
between the two ROIs. The region of interest R2 is sought within
V2, as an axially scaled and laterally and elevationally shifted rep-
lica of R1, denoted R2(ax, y + s, z + m). The criterion chosen to eval-
uate the similarity between the ROIs is based on the normalized
correlation coefficient. Since optimization problems are often for-
mulated as the minimization of a function, we chose to minimize
an objective function f, which is defined as the opposite of the nor-
malized correlation coefficient between R1 and R2, when R2 is com-
pensated for the three parameters sought

f ða; s; mÞ ¼
�
P
x;y;z

~R1ðx; y; zÞ � ~R2ðax; yþ s; zþ mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y;z
ð~R1ðx; y; zÞÞ2

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y;z
ð~R2ðax; yþ s; zþ mÞÞ2

r ; ð5Þ

where ~Riðx; y; zÞ ¼ Riðx; y; zÞ � �Riðx; y; zÞ, with �Riðx; y; zÞ the mean va-
lue of signal amplitude over the region Ri.

In elastography, deformations induced by compression are of
small magnitude (a few percent). Therefore R2 is sought in a small
region immediately surrounding the position determined by uR2 .
Searching for a solution in a local neighborhood is equivalent to
limiting the range of admissible values for the parameters a, s,
and m. As a result, the optimization is subjected to a set of linear
inequality constraints on the parameters. Since it drastically limits
the possible occurrence of a local minimum for the objective func-
tion, these constraints contribute to improving the robustness of
the algorithm. Reducing the parameter domain also speeds up
the convergence process and saves calculation time.

The problem to be solved is therefore summarized by the fol-
lowing equation:

½â; ŝ; m̂� ¼ arg min
a;s;m

f ða;s;mÞ
subjected to : amin 6 a 6 amax;smin 6 s 6 smax;mmin 6 m 6 mmaxf

ð6Þ
Adopting a matrix notation, the problem can be rewritten as

X̂ ¼ arg min
X

f ðXÞ

subjected to : A � X 6 b
ð7Þ

where X ¼ ½a; s; m� is the parameter vector to be estimated, A is a
coefficient matrix linked to the parameters, and b is a vector con-
taining the bounds.

A feasible point X* is a local minimum of (7) if

A:X� 6 b with Â � X� ¼ b̂
ZT � HðX�Þ � Z is positive semi-definite

ZT � rf ðX�Þ ¼ 0()rf ðX�Þ þ AT � k� ¼ 0
k� P 0
k�i � ðAi � X� � biÞ ¼ 0; 8i

8>>>>>><
>>>>>>:

ð8Þ

The three latter conditions define the Kuhn–Tucker conditions, used
as the stop criterion of the iterative algorithm. Â is the submatrix of
A containing the coefficients of the constraints active at X* (those on
bounds) and b̂ the subvector of b, such that Â � X� ¼ b̂. Z is the ma-
trix whose columns form a basis for the set of vectors orthogonal to
the rows of Â. rf is the objective function gradient, ZT . rf ðX�Þ and

ZT � H(X*) � Z are the projected gradient and Hessian at X*, respec-
tively. k* is the vector containing the Lagrange multipliers k�i .

The optimization algorithm is implemented as a sequential qua-
dratic programming methodology (Boggs and Tolle, 1996), which
models the defined problem at a given approximate solution by a
quadratic programming subproblem. The current subproblem
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solution is then iteratively used to construct a better approxima-
tion Xk+1 according to the following scheme:

Xkþ1 ¼ Xk þ qk � dk ð9Þ

where qk is the descent step and dk the descent direction, defined as
the quadratic programming subproblem solution for the kth itera-
tion. The quadratic programming subproblem is defined as

min
dX

rf ðXkÞT � dX þ
1
2
� dT

X � HðXkÞ � dX

subjected to : A � ðdX þ XkÞ 6 b
ð10Þ

where dX = X�Xk,rf is the objective function gradient computed by
a finite-difference approximation, and H is the Hessian of f. Since the
calculation of H is a time-consuming procedure, H is initialized to
the Identity matrix and a positive-definite approximation is itera-
tively built through BFGS updates (Gill et al., 1981). An active set
strategy is used to find the solution dX of the quadratic subproblem.
This iterative procedure aims at identifying which inequality con-
straints will become active at the solution, determining the subspace
Z of the feasible search directions. As Zj is a priori not known, a typ-
ical iteration j consists in computing both a prediction Zj of the sub-
space Z and the descent direction, following the scheme:

Xjþ1 ¼ Xj þ 1j � dj ð11Þ

where the initial value of Xj corresponds to Xk, and where dj = Zj � p is
determined by solving the equation

ðZT
j � H � ZjÞ � p ¼ �ZT

j � rfj

with
rfj ¼ rf ðX0Þ þ H � ðXj � X0Þ
Xj¼0 ¼ XK

� ð12Þ

The step length fj is either fixed to unity, if such a value is possible
with no constraint violation, or is taken as the distance to the near-
est constraint. When fj is equal to one, Lagrange multipliers are
computed and if all positive, the quadratic programming minimum
is achieved. Otherwise, if one or more multipliers are negative, the
constraint associated with the most negative Lagrange multiplier is
deleted from the active set, Zj is updated and the process iterated. If
fj is the distance to the nearest constraint, this blocking constraint is
added to the active set, Zj is updated, and a new iteration is per-
formed. With the descent direction dk established, the descent step
qk is computed to obtain a significant decrease in the objective
function along the descent direction. qk is restricted to the range
[0;M], where M is the distance to the nearest constraint along this
direction dk.

A new estimation is then computed, and the path to the final
solution is constructed until the Kuhn–Tucker conditions are
satisfied.

Sequential quadratic programming-based methods do not guar-
antee finding the global minimum of the objective function, but
only a local solution. As previously mentioned, the parameter
range is reduced to the admissible set

K ¼
a
s
m

2
64

3
75 2 R3

, amin 6 a 6 amax

smin 6 s 6 smax

mmin 6 m 6 mmax

8><
>:

0
B@

1
CA ð13Þ

These powerful constraints associated with the optimization pro-
cess are a first and simple way to reduce the possible occurrence
of a local minimum, but they still do not prevent the algorithm from
being trapped in a remote local minimum. Consequently, two addi-
tional procedures are implemented.

The first procedure aims at initializing the algorithm as close as
possible to the global minimum. This is done by using the param-
eter vector solution information over surrounding regions as an
initial iterate for the optimization process. More precisely, the axial
scaling factor is initialized to the mean value of the admissible
range for the regions at the probe–medium interface and otherwise
to the value previously obtained for the region immediately above
the current position. Moreover, as the information from the lateral
and elevational shifts estimated for surrounding regions is taken
into account in the ROI adaptive displacement, s and m are ex-
pected to be of small magnitude. These two parameters are there-
fore initialized to zero.

A correction procedure is also implemented to improve the esti-
mation reliability. This procedure is launched as soon as the esti-
mation is considered unsatisfactory. To gauge the estimation
quality, the normalized correlation coefficient value is considered.
Indeed, the closer the correlation coefficient is to 1, the better the
estimation. Specifically, when the correlation coefficient value is
less than a threshold Rthreshold, the correction procedure is started.
An erroneous estimation may be caused by the convergence of the
algorithm toward a local minimum because of an optimization ini-
tialization value that is too far from the solution. The algorithm is
therefore reinitialized: N new minimization processes are
launched from N initialization points uniformly spread within the
admissible parameter domain K. Among these N new estimations,
the one leading to the highest correlation coefficient is finally
chosen.

2.3. Parameter field representation

Each position of R1 leads to an estimation of the parameter vec-
tor. Since R1 is regularly moved throughout the ultrasound volume
V1, the previous steps described in Sections 2.1 and 2.2 are re-
peated for each of its positions. The entire volume of ultrasound
data is therefore covered, providing a volume of estimates for each
parameter.

Our primary goal is to accurately represent the axial strain dis-
tribution inside the investigated volume, because this factor is the
most significant for our application. The axial strain is directly
linked to the estimated axial scaling factor ak according to the
relation:

êk ¼ âk � 1: ð14Þ

Since our algorithm also evaluates lateral and elevational displace-
ments, these distributions will also be presented.

Finally, the mean value of the normalized correlation coeffi-
cient over the ROI will also be considered, since it is an indica-
tion of the estimation’s reliability. Indeed, a high correlation
coefficient value means that the coherence between the pre-
and post-compression signals has been restored with an ade-
quate mechanical transformation. In this case, the parameter
estimation is trustworthy.
3. Results

3.1. Results on simulated data

To assess the proposed 3D strain estimation algorithm, initial
tests were run with simulated data.

Ultrasound elastography is designed for any medical applica-
tion in which the development of a pathology involves local mod-
ifications in tissue stiffness. Since cancer detection will certainly
become a common application in elastography, we chose to test
our method on a numerical phantom mimicking the configuration
of tumor tissue. This first phantom is designed as a 30 � 30 �
30-mm3 cube, within that is embedded a 10-mm-diameter spher-
ical inclusion. The geometry of the phantom is further detailed in
Fig. 2.



Fig. 2. (a) Geometry of the first numerical phantom. It is composed of two regions, a
hard sphere (E = 90 kPa) embedded in a softer background material (E = 30 kPa). (b)
A typical ultrasound image of one section of the first phantom.
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The phantom properties were chosen considering two
observations
– The pathological tissue’s acoustical properties may exhibit no
significant difference compared to the properties of healthy tis-
sues, making them undetectable with a classical ultrasound
scan.

– Pathological tissues such as tumors are stiffer than healthy tis-
sues (Krouskop et al., 1998).

Therefore, the inclusion was designed to be three times stiffer
than the surrounding medium, with a Young modulus of 90 kPa
versus 30 kPa for the surrounding material. Such values are in
agreement with those reported by Krouskop et al. (1998) for the
breast elastic modulus, concerning the infiltrating carcinoma and
the normal glandular tissue, respectively. Poisson’s ratio was set
at 0.49, both for the inclusion and the background.

The phantom was acoustically homogeneous (Fig. 2b), com-
posed of a set of punctual scatterers, randomly positioned through-
out the phantom volume on the basis of a uniform distribution. The
number of scatterers in the entire volume is set to 3,000,000. Each
scatterer was also assigned a back-scattering power, whose ampli-
tude follows a normal distribution of zero-mean and with a stan-
dard deviation equal to 1. Regarding the B-mode image
histogram, these settings led to a Rayleigh distribution of the grey
level amplitude, which is the most common statistic for biological
soft tissues (fully developed speckle).

The ultrasound RF volume was built by concatenating regularly
spaced 2D scans, with the scan interdistance at 0.25 mm. The im-
age formation was modeled as a linear space-invariant operation
of convolution. First, the numerical phantom was elevationally di-
vided into 0.25-mm-thick sections. Since each section was thin
compared to the other dimensions (0.25 mm versus 30 mm), the
section volume could be considered as negligible, and therefore
scatterers were considered to be localized in a plane. Then the
ultrasound image associated with a specific section was generated
by convolving the acoustical scatterer distribution with the point
spread function (PSF) of the ultrasound imaging system.

The chosen PSF was axially designed as a 7-MHz cosine func-
tion, modulated by a Gaussian function. Laterally, it was consid-
ered to be Gaussian-shaped. A slight curvature was also
introduced to reproduce the shape of PSFs experimentally mea-
sured and provided in the literature (Du et al., 2006). The sampling
frequency was set at 100 MHz and the sound speed was assumed
to be 1540 m/s.

Forming the image for each section of the volume resulted in a
set of elevationally regularly spaced 2D scans. The RF data volume
was built by stacking the images.
Simulating the ultrasound post-compression volume required
the calculation of the new positions of the scatterers in the phan-
tom. The latter were determined through a finite element model-
ing (FEM). The phantom top surface was subjected to a 1.2-mm
displacement along the axial axis, while the bottom surface was
fixed along this direction, corresponding to a 4% uniaxial compres-
sion. Other boundaries were free to move. The FEM provided the
scatterer displacements and therefore their new positions in the
whole phantom. The latter were then used to calculate the ultra-
sound post-compression volume, as previously explained.

The data were finally composed of two RF ultrasound volumes
(pre- and post-compression volumes), each of them having 4000
axial samples � 128 RF lines � 80 sections.

The ability of our algorithm to detect hard (pathological) areas
was assessed on these data. Prior to strain computation, interpola-
tion was performed with a factor 2 in the axial direction, in order to
improve estimation accuracy. The size of the ROI R1 was 280 axial
points � four RF lines � three elevational sections after this inter-
polation. This approximately represents a region of 1 � 0.9 �
0.75 mm3. Axial overlap was set at 80%, lateral overlap at 50%,
and elevational overlap was equal to 66%. The parameter bounds
were amin = 0.94 and amax = 1 for the axial scaling factor (which al-
lows an axial strain in the range 0–6%), smin = –0.7 mm and smax =
0.7 mm for the lateral displacement (±3 RF lines), mmin = –0.25 mm
and mmax = 0.25 mm for the elevational displacement (±1 section).
Finally, the parameters Rthreshold and N were set to 0.75 and 9,
respectively.

The results are presented in Fig. 3. Although we are specifically
interested in the axial strain distribution, in this section, lateral and
elevational shift fields are also provided, in order to better assess
the performance of our algorithm. Theoretical values for the axial
strain, lateral displacement, and elevational motion are reported
in Fig. 3a–c, respectively, whereas the corresponding estimated
distributions are provided in Fig. 3d–f. We can first observe that
all estimated parameter fields were very close to the theoretical
values, with comparable progression and values. Whereas the
inclusion was undetectable in the conventional B-mode scans
(Fig. 2b), it was clearly delineated in the axial strain volume with
sharp boundaries. More precisely, let us select a specific section,
for instance the section at the elevational distance of 2.5 mm from
the center (therefore crossing the inclusion, (Fig. 4)). It should be
specified that a continuous progression has been observed be-
tween elevational sections. The estimated axial strain map
(Fig. 4d) perfectly discriminates between the hard inclusion and
the surrounding medium. The inclusion exhibits sharp boundaries,
and the mean strain value over the healthy region is 1.9 times that
of the tumor (4.1% versus 2.2%, respectively). Axial strain estimates
are very close to the theoretical field (Fig. 4a).

Even if they are noisy because of the poor lateral resolution, the
lateral displacement image (Fig. 4e) also agrees closely with theory
(Fig. 4b). Because of the phantom configuration, out-of-plane mo-
tion was expected in this section. This can be observed on the esti-
mated elevational displacement map (Fig. 4f), which is available
with our technique. Compared to the theoretical field (Fig. 4c), this
map shows the same pattern with a similar range of values. It is
important to underline that elevational displacement is not uni-
form over the section considered: displacements up to 0.35 mm
are reported, higher than the interdistance section. This observa-
tion validates our assumption that considering a 3D motion model
is necessary. Moreover, even if this parameter alone could not dis-
criminate the different areas, it interfered in the chosen deforma-
tion model. Therefore it contributes to improving both the
quality and robustness of the estimation.

The advantage of considering the 3D motion of soft tissues was
demonstrated anew when a comparison was made with a similar
2D estimator (no elevational displacement allowed, i.e., mmin = mmax = 0),



Fig. 3. Results from the cubic numerical phantom containing a hard spherical inclusion. Theoretical: (a) axial strain (in %), (b) lateral displacement (in mm), (c) elevational
displacement (in mm) volumes. Estimated: (d) axial strains (in %), (e) lateral displacements (in mm) and (f) elevational displacements (in mm).
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applied to the pair of pre- and post-compression images, both posi-
tioned at 2.5 mm from the center in the elevational direction
(Fig. 4g). In the resulting axial strain image, erroneous estimated
areas appear toward the lateral edges, because of significant out-
of-plane motion over these regions.
Since the objective function of our algorithm was based on
the normalized correlation coefficient (NCC), its mean value
over the image was estimated at 0.79, which is a satisfactory
value considering the complex configuration of the phantom
and the poor resolution in the lateral and elevational directions.
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As a comparison, the NCC had a mean value of 0.64 in the 2D
case.

To underline the improvement brought by the 3D estimator, ax-
ial strain error maps are also displayed, both for the 3D estimator
and its 2D counterpart (Fig. 4h and i, respectively). These maps are
computed as the signed difference between the estimated field and
the theoretical one. The mean absolute errors for these images are
0.3% and 1% (3D and 2D, respectively), while the global compres-
sion of the phantom was 4%. For the 3D case, the largest errors
are about 2% and they are found at the boundary between the
inclusion and the surrounding tissue. This is due to the fact that
the estimation is performed for a ROI positioned at the boundary
between two regions of different mechanical behavior, while our
algorithm assumes mechanical homogeneity for each specific
ROI. Concerning the 2D case, error values go up to 5%. The largest
errors are located on the sides of the image, because of out-of-
plane motion.

A second numerical phantom was then considered, designed as
a 40 � 40 � 40-mm3 cube, within that is embedded a 15-mm-
diameter spherical inclusion. Its properties are the same as the
phantom previously described: Young’s moduli of the inclusion
and the surrounding material are 90 kPa and 30 kPa, respectively,
Poisson’s ratio is set to 0.49 and the phantom is acoustically
homogeneous.

The deformation of the medium was calculated by a FEM, and
was processed as if a probe was used to both compress the med-
ium and acquire the data. In other words, the top surface of the
phantom was not displaced uniformly downwards, but only the
rectangular area corresponding to the probe surface was sub-
jected to the compression (see Fig. 5m). Four different configura-
tions were considered, depending on both the position of the
probe and the static compression applied to the phantom. In a
first case, the probe was located at the center of the phantom:
the central plane of the phantom was therefore imaged. The
probe was displaced downwards, either of 0.4 mm (1% global
deformation) or 1.6 mm (4% deformation). A second configuration
was proposed, where the probe was elevationally shifted of
5 mm, so that the insonified area did not cross the center plane
of the phantom. The two levels of compression (1% and 4%) were
still considered.
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The performances of the 3D algorithm and its 2D counterpart
are compared in these four cases. Processing parameters are the
same as those used for the first phantom.

Results are given (Fig. 5), with the same colorbar for all images.
When the deformation is applied at the center of the phantom, 2D
and 3D algorithms lead to similar results, and both estimations are
very close to the theoretical fields, whatever the compression level
(Fig. 5a–f). This can be explained by the fact that, owing to the
symmetry of the phantom, out-of-plane motion in this section is
almost zero. Indeed, elevational displacement values given by the
FEM are in the range ±20 lm. The advantage of considering the
third coordinate is in this particular case questionable. But as soon
as the elevational motion is significant, 3D processing takes advan-
tage over 2D. This can be seen in Fig. 5g–l. Even when a low com-
pression is applied (1%), 2D tracking leads to numerous erroneous
estimations, making the inclusion undetectable, whereas 3D algo-
rithm yields estimations very close to the theoretical field. The rel-
evance of the 3D algorithm versus 2D is emphasized when a higher
compression is applied. 3D results are still close to the theory, and
the inclusion is clearly visible with a 4% global compression
(Fig. 5k).

These numerical experiments showed that the performances of
2D and 3D tracking are similar as long as out-of-plane motion is
small. However, if significant out-of-plane displacements occur,
the benefit of considering a 3D tracking is clearly demonstrated.

3.2. Results on experimental data

The ability of our method to process data acquired in clinical
conditions was then assessed with a physical phantom made of
polyvinyl alcohol (PVA) cryogel, which was designed to mimic an
early-stage pressure ulcer.
Bone

Healthy area 

30 mm

60 

y (lateral) 

x (axial) 

z (elevational) 

a

b

Fig. 6. (a) Scheme of the pressure ulcer-mimicking phantom. This physical phantom i
pressure ulcer-mimicking areas made in PVA. The healthy region underwent one freeze–
thaw cycles. (b) Typical ultrasound B-mode image of a section.
A pressure ulcer is a pathology involving a hardening of dam-
aged tissues (Gefen et al., 2005). This lesion is also deep within
the body, making its detection at an early stage difficult. Elastog-
raphy is a potential tool for detecting a developing pressure
ulcer (Deprez et al., 2006).

PVA cryogel is a polymer that is now commonly used to build
phantoms mimicking soft tissues. Mixed with Sigmacell particles,
its acoustical properties are indeed very close to those of soft bio-
logical tissues, and this material is compatible with ultrasound
imaging. Moreover, its stiffness increases with the number of
freeze–thaw cycles applied. This typically covers a wide range of
elasticity values, especially those commonly encountered for soft
biological tissues (Fromageau et al., 2003).

Pressure ulcers are found on sites where thin-layer tissues are
opposite a bony prominence. The phantom is therefore designed
as a 30 � 60 � 110-mm3 parallelepiped, with three distinct areas:
a bone, a region mimicking the pressure ulcer at an early stage of
the pathology, and surrounding healthy tissues. The geometry of
the phantom is further detailed in Fig. 6. The bone, a forward limb
of a dog, measures approximately 10 mm in diameter. The patho-
logical area undergoes two freeze–thaw cycles, which is one more
than the healthy region. This leads to a harder material for the area
mimicking the pressure ulcer.

RF US data were acquired with an Ultrasonix Sonix RP device
(Ultrasonix Medical Corporation, Richmond, BC, Canada). The
probe and sampling frequencies were 7 MHz and 40 MHz,
respectively. Each image was composed of 128 RF A-lines, with a
0.29-mm line interdistance. A linear stepper motor was used to
move the probe elevationally, and regularly spaced 2D scans (by
0.2-mm steps) were acquired to cover the entire phantom volume.
The pre-compression RF volume was thus obtained by stacking the
set of 2D scans.
Ulcer area 

mm

Ultrasound probe 

110 mm

s composed of three regions, bone, the forward limb of a dog, healthy tissue, and
thaw cycle, whereas the diseased mimicking area had been subjected to two freeze–
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A thin plate was then used to uniformly compress the phantom.
Since this plate is permeable to ultrasound, signals were acquired
through the plate without any significant attenuation. The applied
compression achieved a 2% global axial deformation. The same
acquisition protocol as the one just detailed was applied anew to
generate the post-compression volume.

The ability of our algorithm to deal with a real phantom was
evaluated on these data. Prior to strain estimation, interpolation
was performed with a factor of 5 and 2 in the axial and lateral
directions, respectively. The size of the region of interest R1 was
300 axial points � six RF lines � three elevational sections. The
overlap was set to 80%, both axially and laterally, and the eleva-
tional overlap was 33%.

The range of values allowed for the parameters were amin = 0.92
to amax = 1 for the axial scaling factor (representing an axial strain
0              0.4  

a

b

c

d

Fig. 7. Results from the physical phantom. Estimated: (a) axial strains (in %), (b) lateral d
(d) Estimated 3-D axial strain maps.
up to 8%), smin = �0.85 mm to smax = 0.85 mm for the lateral dis-
placement (±6 RF lines), and mmin = �0.2 mm to mmax = 0.2 mm for
the elevational displacement (±1 section). Rthreshold and N equaled
0.75 and 9, respectively.

The results are presented in Fig. 7. We can observe that the B-
mode scan of the imaged area does not differentiate all structures
(Fig. 6b). The bone is obviously hyperechoic, but the scan does not
discriminate the hard and the soft areas except the interface,
whereas these two regions are distinguishable in the axial strain
map (Fig. 7a): the mean axial strain over the healthy (soft) region
is approximately twice that of the pathological (hard) area, while
the wall of the bone has a deformation almost equal to zero, as ex-
pected. Lateral and elevational displacement maps are also dis-
played (Fig. 7b and c). These maps remain noisy, mainly because
of the poor resolution in these directions. But the border between
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the two regions is visible on the lateral displacement map. For clin-
ical purposes, identifying the border would be of great help in diag-
nosing the stage of the pathology. Surprisingly, the elevational map
shows large displacements at the bone–cryogel interface. This
might be attributable to a weak link between the bone and the
cryogel, perhaps caused by the building procedure but also by their
difference in nature, resulting in slippery conditions at this inter-
face. However, this elevational parameter once again demonstrates
the advantage of considering the 3D motion of soft tissues. This is
confirmed by the associated normalized correlation coefficient
map, where a high value was found throughout the chosen section
using the 3D model. The mean value for this map was found to be
0.93.

As shown in the previous section, volume rendering can also be
used to provide the radiologist with a better understanding of the
medium’s typology (Fig. 7d). Because of the low compression level
applied to the phantom, strain values remained within a small
range. Here again, the low resolution is a limitation. Yet, the three
regions can be distinguished, since the deformation of the patho-
logical area is approximately half the deformation of the
surroundings.

The low contrast between the deformations of the two PVA lay-
ers can be explained by considering two assumptions. It could first
be linked to the level of compression really applied to the phan-
tom, which may have been smaller than 2%. A deformation of 2%
corresponds to a small displacement of 0.6 mm. A minor error in
the implementation of this displacement therefore leads to a more
important change in the estimated strain. The low contrast could
also be due to the material’s properties themselves. It was indeed
pointed out in the literature that the characteristics of PVA cryogel
largely depend on several parameters, such as the sample volume,
the chosen temperatures, the speed of decreasing and increasing
temperature, or possible dehydration (Fromageau et al., 2007;
Lozinsky et al., 2007). A single freeze–thaw cycle difference be-
tween the two regions might therefore lead to small changes in
elasticity, as it can be expected for pressure ulcers.

4. Conclusions

This paper has introduced a 3D strain estimation technique to
image the deformation of soft biological tissues under load from
the processing of RF ultrasound volumes. Contrary to other tech-
niques modeling the compression-induced local displacements as
translations, we have also considered a local scaling factor in the
axial direction. Considering the modification in shape of the de-
formed data has provided estimation techniques that are more ro-
bust with regard to decorrelation noise. Optimal deformation
parameters are locally estimated as those maximizing the normal-
ized correlation coefficient between a 3D ROI and its deformed ver-
sion, when the latter is compensated for these parameters.

Results on simulations and experimental data are very encour-
aging, demonstrating the ability of the proposed technique to pro-
vide good-quality 3D strain maps. Unlike 2D techniques,
considering 3D tissue motion enables accurate estimations of the
deformation even in the conditions of out-of-plane motion. For
clinical purposes, the 3D visualization will be very helpful to pro-
vide physicians with a better understanding of the scanned area.
With standard probes, clinicians access to the volume information
by visualizing consecutive planes, requiring mental representation.

Future work will focus on decreasing the computational efforts
of the algorithm. Indeed because of the 3D character of the model
and the size of the data set, computing the elastogram for one sec-
tion requires approximately 1 hour with a standard PC (2.6 GHz
CPU and 1 Gb RAM) running with Matlab. Code optimization and
parallel implementation will be considered.
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