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With the objective of characterizing biological soft tissues with dynamic elastography, a
three-dimensional �3D� analytical model is proposed to simulate the scattering of plane shear waves
by a soft cylinder embedded in an infinite soft medium. The 3D problem of harmonic plane
shear-wave scattering is first formulated and solved, and the monochromatic solution is employed
to simulate transient wave scattering. Both harmonic and transient simulations are compared with
experimental 3D acquisitions. The good agreements obtained between measured and calculated
displacement fields allowed to conclude on the validity of the proposed 3D harmonic and transient
models. The spatial distribution of displacements �diffraction lobes, displacement oscillations, wave
diffraction angles, etc.� and their relative amplitudes in both inclusion and surrounding materials
depended on the contrast between the viscoelastic properties of the different media. The possibility
of solving an inverse problem to assess soft heterogeneous medium viscoelasticity is discussed and
some future theoretical and experimental developments are proposed.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2973194�
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I. INTRODUCTION

Detection and characterization of vascular pathologies
are of great importance since they are responsible for more
than one-third of global deaths caused by cardiovascular dis-
eases in the world1 �2002 World Health Organization statis-
tics�. In this context, the present work is dedicated to study,
theoretically and experimentally, shear-wave �SW� scattering
by mimicked venous thrombi2 in order to enrich existing
diagnostic methods, such as ultrasound imaging, x-ray an-
giography, and magnetic resonance imaging �MRI�, by a new
one based on dynamic elastography. Indeed, it has been
proven that viscoelastic properties of coagulated blood de-
pend on the clot age and composition.3–5 This dependence is
currently exploited to perform qualitative static elastography
imaging �using a static or quasistatic loading to image the
strain distribution in the medium�6,7 but this technique is sen-
sitive to mechanical boundary conditions and motion
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artifacts and does not allow to measure tissue viscosity.
However, quantitative elasticity and viscosity imaging could
become an interesting clinical indicator for pathology diag-
nosis and therapy planning.

Contrary to static methods, dynamic elastography8,9 per-
mits to perform viscoelastic characterization of living tissues
by studying traveling of elastic SWs into the probed me-
dium. Since SW speeds in soft tissues are very low �few
meters per second� compared to compression waves, it is
possible to track them with an ultrafast ultrasonic imaging
system that can typically produce more than 5000 images per
second. Compared to static methods, SW tracking allows to
determine their velocity and attenuation independently of the
mechanical boundary conditions. Moreover, the fast imaging
system is not sensitive to typical motion artifacts since the
propagation occurs during few milliseconds. Dynamic elas-
tography allows to obtain the spatiotemporal displacement
evolution and, consequently, the wave-medium interaction to
perform tissue mechanical characterization. Here, one has to
notice that contrary to elastic waves in solids, the total dis-
placement field in tissues can be experimentally measured

and imaged.
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A. Dynamic elastography in medicine

The first applications of SW imaging in bioacoustics
were performed using M-mode ultrasonography10 and Dop-
pler for sonoelasticity,11,12 MRI for magnetic resonance
elastography,13 or by means of real-time ultrafast ultrasonic
imaging for both harmonic and transient elastographies.14,15

Concerning transient elastography, most of modeling works
concerned analytical or numerical simulation of SW genera-
tion obtained by impact methods15 or by ultrasound radiation
forces.16,17 The interaction of SWs with confined heteroge-
neities in inhomogeneous tissues has not yet been precisely
modeled despite the fact that to characterize mechanically
many pathologies such as clotted vessels, tumors, etc., it is
necessary to simulate and understand SW scattering by such
inhomogeneities.

B. Objectives

An application of dynamic elastography to venous and
arterial pathologies is presented here. The aim was to model
analytically and to study, theoretically and experimentally,
SW scattering by a venous clot, modeled by a cylindrical soft
inclusion surrounded by an infinite soft medium. From a me-
chanical point of view, both inclusion and surrounding media
were assumed to be made of homogeneous, isotropic, and
linear viscoelastic materials.

A three-dimensional �3D� analytical model was devel-
oped to simulate the scattering of a harmonic plane SW by a
cylindrical inclusion for an arbitrary incident angle. Follow-
ing theoretical works of Faran,18 White,19 Fan et al.,20 and
Honarvar and Sinclair21 on scattering of plane waves by cy-
lindrical solids, the solution was formulated using a modal
decomposition technique. The superposition principle of har-
monic solutions �stationary displacement fields� served to
obtain the 3D scattered field for an arbitrary incident tran-

FIG. 1. �Color online� Left: 3D view of the reconstructed B-mode ultra
echogenicity contrast between the agar-gelatin cylindrical inclusion �represe
the plane SW scattering problem. The incident plane wave makes an angle o
y axis by an angle �.
sient plane SW. It is important to note that the model pro-
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posed in the present work can be coupled with magnetic
resonance elastography or sonoelastography techniques.

Before validating experimentally the 3D model, the im-
age acquisition process and the experimental setup that were
used to produce ultrafast scanning are first described. The
experimental material was composed of an agar-gelatin
phantom �tissue mimicking material� containing a soft cylin-
drical inclusion, which simulated a venous clot. Both theo-
retical and experimental results are compared and discussed
to investigate the validity of simulations. In the light of this
discussion, a set of future possible applications and perspec-
tives is presented, in particular, to solve the inverse problem
allowing to characterize blood clot mechanical properties.

II. THEORY

To introduce the model, Fig. 1 shows a B-mode ultra-
sonic image of the 3D volume experimentally probed. The
imaged soft agar-gelatin volume contained a circular cylin-
drical inclusion made of a mechanically different agar-
gelatin material. One can observe that there is no echogenic-
ity contrast between the inclusion and its surrounding
medium despite their viscoelasticity differences. It will be
shown �in Sec. IV� that a strong mechanical contrast appears
between these two media when a SW propagates and inter-
acts with the inclusion.

A. Problem formulation

The inclusion �blood clot phantom� was assumed to be a
circular cylinder, of radius R, made of a soft material �me-
dium 1� and surrounded by an infinite soft tissue �medium 2�.
Both media were assumed to be homogeneous, isotropic, lin-
ear, and viscoelastic. It is known that, for a certain frequency
range �namely, for a few hundred hertz�, the mechanical be-
havior of the agar-gelatin material is governed by the

22

image of the experimentally tested heterogeneous medium. There is no
in the image� and its surrounding soft medium. Right: 3D representation of
ith its propagation direction and is inclined in the plane �o ,ex ,ey� from the
sonic
nted
f � w
Hooke–Voigt viscoelastic behavior law. This is in agree-
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ment with a preliminary experimental work23 that also sug-
gested that coagulated blood viscoelasticity follows the same
Hooke–Voigt model. This latter relies on the frequency do-
main, the stress, �, and the strain, �, tensors in the following
way:

� = �C� + i�C��� , �1�

where C� and C� are the stiffness and viscosity tensors, re-
spectively. For an isotropic and viscoelastic material, the
complex stiffness tensor, C=C�+ i�C�, depends on the com-
plex Lamé coefficients � and �. According to this, and in
order to easily take into account the viscosity, the elastody-
namic problem was expressed in the frequency domain.
Since studied materials are soft, the bulk moduli � of both
media are not significantly different and were chosen to en-
sure a compression wave speed equal to 1540 m/s �ultra-
sound speed in biological tissues� for tissue densities of
1100 kg /m3. Consequently, scattering of SWs in such mate-
rials depends strongly on the complex shear moduli.

The problem geometry, given in Fig. 1, was described in
a Cartesian system of coordinates �o ,ex ,ey ,ez� but regarding
the cylinder circular geometry and to simplify the expression
of mechanical boundary conditions, the elastodynamic prob-
lem was expressed and solved in a cylindrical system of
coordinates �o ,er ,e� ,ez�. The inclined incident plane SW,
represented in Fig. 1, propagates with an incidence angle �,
formed by the incident shear wavevector kTinc

and the polar-
ization plane �o ,ex ,ey�. Finally, and for more generality, the
incident wave polarization, Uinc contained in the plane
�o ,ex ,ey�, was doing an angle � with the y axis, see Fig. 1.

From these geometrical considerations, one can con-
clude that the scattering problem is 3D and that mode con-
versions of SWs can occur. Consequently, diffracted waves
were expressed as a combination of compression and SWs in
both media. The incident plane SW was first considered to be
harmonic with an angular frequency �. Then, the harmonic
solution was derived to model the scattering of arbitrary tran-
sient plane SWs.

B. The stationary problem

In the following, the subscript 1 is assigned to the cyl-
inder constitutive material, whereas the subscript 2 desig-
nates the surrounding medium. In addition, the longitudinal
�compression� and transverse �shear� wavevectors in the me-
dium j �j= �1,2�� are labeled by K j and k j, respectively. Both
of these wavevectors are decomposed into components par-
allel to the z axis, called Kjz

=Kj sin � and kjz
=kj sin �, and

other ones contained in the plane �o ,er ,e�� �perpendicular to
the cylinder axis� given by Kj�

=Kj cos � and kj�
=kj cos �.

The displacement field in both media satisfies the Navier
elastodynamic wave equation.24 Applying a Fourier trans-
form to this equation, one obtains

� j�
2U j + �� j + 2� j� � �� · U j� − � j � � ��

�U j� = 0 with j = �1,2� , �2�

where U j = �Urj
U�j

Uzj
�T is the displacement field in a

phase j= �1,2�, � j is the density, and � j and � j are the com-

plex viscoelastic Lamé coefficients. The Helmholtz decom-
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position technique permits to express the displacement field
in both media into scalar and vector potentials:25

U j = �	 j + � � �
 jez� + R �

�� � �� jez� with j = �1,2� . �3�

Mechanically, 	 j�r ,�� is the displacement scalar potential as-
sociated with compression waves in phase j and 
 jez and
� jez are the vector potentials of displacements polarized fol-
lowing the �o ,er ,e�� plane and another parallel to the z axis,
respectively. Each of these potentials satisfies the well
known Helmholtz wave equation.

Following the classical modal decomposition method,
these potentials can be expressed as infinite series of Bessel
and angular functions containing unknown coefficients, ex-
cept for the known incident purely SW contained in the plane
�o ,er ,e��. This latter depends only on the vector potential

inc �Uinc=��
incez�. Consequently, we can choose to ex-
press the shear incident field by its potential, which is written
in a cylindrical system of coordinates as18–21


inc = amp����
n=0

+�
1


0
n�i�nJn�k2�

r�

�cos�n�� − ���e�ik2z
z−i�t�, �4�

where n is the Neumann factor, i.e., 0=1 and n=2 for n
�1. One has to note that the incident wave’s inclination
angle �, in the plane �o ,er ,e��, acts like a rotation angle
applied to the wave corresponding to �=0 �i.e., an incident
wave propagating following the x axis�. The incident wave
amplitude, amp���, is fixed to 1 for harmonic incident waves
and is equal to the excitation amplitude �complex amplitude�
in the case of a transient incident wave �see Sec. II C�. The
normalization coefficient, 
0, ensures that the maximum am-
plitude of the incident harmonic wave is equal to unity re-
gardless of the frequency.

In a similar way, transmitted and reflected displacement
fields can be expressed via their potentials. Considering the
fact that the displacement at the cylinder center is finite, only
the first kind Bessel functions Jn�·� serve to express the re-
fracted potentials. The three displacement potentials within
the inclusion are then given by

	1 = �
n=0

+�

AnJn�K1r�sin�n�� − ���eik2z
z,


1 = �
n=0

+�

BnJn�k1r�cos�n�� − ���eik2z
z,

�1 = �
n=0

+�

CnJn�k1r�sin�n�� − ���eik2z
z. �5�

In these expressions and in the following, the harmonic time
dependence term is omitted for simplification.

The displacement potentials in the surrounding medium
are composed of those of the incident plane wave Eq. �4� and

of the scattered ones. Knowing that scattered waves are out-
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going, they are expressed by means of first kind Hankel
functions Hn

�1��·�. One finally obtains the following scattered
potential expressions:

	2 = �
n=0

+�

DnHn
�1��K2�

r�sin�n�� − ���eik2z
z,


2 = �
n=0

+�

EnHn
�1��k2�

r�cos�n�� − ���eik2z
z,

�2 = �
n=0

+�

FnHn
�1��k2�

r�sin�n�� − ���eik2z
z. �6�

One can note that the axial wave number k2z
is the same in

both media. It has to be equal to the axial component of the
incident SW since stress and displacements are continuous at
the cylinder interface. Moreover, it is important to note that
the angular dependencies in Eqs. �5� and �6� were chosen to
be in agreement with the symmetry and antisymmetry prop-
erties of the different elastic waves �i.e., the incident and the
scattered ones�.19

At the cylinder boundary, the continuity of displace-
ments and normal stress �given by � ·n, where � is the stress
matrix and n is the unit vector normal to the cylinder� per-
mits to determine the unknown coefficients An, Bn, Cn, Dn,
En, and Fn in Eqs. �5� and �6�. These conditions are summa-
rized as follows:

�Ur1 U�1 Uz1�T = �Ur2 U�2 Uz2�T

��rr1 �r�1 �rz1�T = ��rr2 �r�2 �rz2�T at r

= R and � � �0,2�� . �7�

Using Eqs. �1� and �3�, displacement and stress fields
expressed at r=R in Eq. �7� can be written with respect to
potentials given in Eqs. �5� and �6�. The orthogonality prop-
erty of angular functions over the interval �0,2�� allows to
separate the boundary conditions in Eq. �7� into an infinite
set of equations with respect to the infinite series orders n
�n=0, . . . , +��. For a given mode of order n, it appears, after
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FIG. 2. Left: incident transient wave temporal form used in experiments and
frequency. Right: the discretized incident wave spectrum representing the c
calculations, that the unknown coefficients An, Bn, Cn, Dn,
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En, and Fn are related to a set of known terms, which depend
on the incident SW, by means of a linear system of equa-
tions:

Tn�An Bn Cn Dn En Fn�T = bn with r = R and n

= 0, . . . , + � . �8�

In Eq. �8�, the �6�6� Tn matrix depends on the geometry
and the mechanical properties of media 1 and 2, while the
second member bn represents the incident wave contribution
to the nth displacement and stress terms, expressed at the
cylinder boundary. Both Tn and bn elements are detailed in
the Appendix. Solving the system of Eq. �8�, by using a
classical matrix inversion algorithm26 to avoid fastidious cal-
culations using the Cramer rule �which formulates solutions
explicitly�, provides for each integer order n the searched
coefficients. These latter permit then to calculate the total
stationary displacement field by means of expressions
�4�–�6� and �3�. Since one cannot calculate all terms of the
infinite series appearing in the displacement field expression,
the maximum calculation order is limited to a finite order.
The truncation order, which depends on the inclusion size
and on the incident wave frequency, was fixed for the simu-
lations presented here to 50 terms.

C. Transient-wave scattering

Following the superposition principle in the spectral
domain,24 transient SW scattering by a homogeneous soft
circular cylinder was modeled using the previous harmonic
wave scattering model. Indeed, any incident wave, having an
arbitrary temporal profile, can be expressed in the frequency
domain by means of a temporal Fourier transform. In prac-
tice, the relevant frequencies are frequently limited to a cer-
tain interval with no significant information outside it �see
the example in Fig. 2�. Consequently, by choosing to express
the transient wave scattering problem in the frequency do-
main, one can discretize the frequency range of interest into
a finite number of calculation points �Fig. 2� and solve, for
each frequency-wave amplitude couple �� , amp���� in Eq.
�4�, the associated harmonic problem using the model previ-
ously presented. This set of stationary solutions provides the
diffracted transient wave spectrum. The temporal diffracted
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lations. The wave is composed of six modulated pulses with 350 Hz central
tion points ���.
simu
alcula
field was finally obtained from the spectral solution by
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means of an inverse Fourier transform. Compared to a tem-
poral solving strategy, this spectral method is faster and per-
mits to model more easily viscoelastic effects �since tempo-
ral convolution products appearing when viscosity is
modeled are transformed into simple products in the fre-
quency domain�.

III. EXPERIMENTAL SETUP

A. Generation of shear waves and ultrafast
acquisition system

In the experimental setup schematized in Fig. 3, SWs
were generated by a large rigid plate �202�85 mm2� at-
tached to a vibrator �type 4810, Brüel&Kjær, Nærum, Den-
mark� and applied on the phantom surface. The low fre-
quency harmonic or transient vibration was produced with a
function generator �model 33250A, Agilent, Palo Alto, CA�,
amplified �type 2706, low frequency amplifier, Brüel&Kjær�
before supplying the minishaker. In this configuration, the
propagation direction of the plane SWs was orthogonal to the
plate motion. A clinical array transducer �model L14-5/38,
38 mm width, 128 elements, Ultrasonix� connected to the
Sonix RP scanner �Ultrasonix Medical Corporation,
Burnaby, BC, Canada� was positioned parallel to the tissue
motion to acquire and reconstruct radio-frequency �RF� se-
quences at a high frame rate �3850 Hz�. The ultrafast imag-
ing method used here was inspired from an
electrocardiogram-gated image acquisition strategy to reach
high frame rates.27,28 In the present case, synchronization
was achieved using SW gating by considering the starting of
the mechanical excitation.

The probe excitation frequency, the sampling frequency,
and the bit depth were 10 MHz, 40 MHz, and 16 bits, re-
spectively. To avoid reverberation artifacts, an acoustical ab-
sorber was placed on the front of the probe. The true plate
motion was acquired with an accelerometer �type 4375,
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FIG. 3. �Color online� A schematic representation of the experimental setup:
the SW generation and the ultrasonic acquisition devices.
Brüel&Kjær� connected to a charge amplifier �type 2692,
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Nexus Amplifier, Brüel&Kjær�. The part of the experimental
setup including the phantom was enclosed in a temperature-
controlled chamber regulated at 20 °C.

The agar-gelatin phantom was made following a proto-
col described in a previous work.29 The surrounding material
was made �in proportion of the water weight� of 4.0% por-
cine skin gelatin and 3.0% agar powder �product No. G-1890
for gelatin and No. A-9799 for agar, Sigma Chemical, St.
Louis, MO� and contained an agar-gelatin cylindrical inclu-
sion composed of 2.5% porcine skin gelatin and 1.0% agar.
The whole phantom had a parallelepipedal geometry �20.5
�27.5�10.5 cm3� and the inclusion was a 9.8 mm diameter
cylinder. This latter formed an angle of �=46° �i.e., the in-
cidence angle� with the moving plate �positioned vertically�
and had a length equal to 15.5 cm.

To image the 3D displacement field, RF ultrasonic sig-
nals at 14 consecutive planes �38.0�40.0 mm2� were ac-
quired every 2.5 mm along the z axis �for a 35.0 mm scan-
ning distance� by adjusting automatically the probe position
with a positioning step motor. A normalized cross-correlation
algorithm applied to the acquired RF signals allowed to ob-
tain the y displacement field component and its temporal
evolution for the different slices. Finally, the 3D displace-
ment field was reconstructed by superposing, along the z
axis, the two-dimensional �2D� consecutive measured fields.
In what follows, one has to note that both experimental and
simulated displacement fields �in 3D, 2D and one-
dimensional �1D� representations� have been normalized by
their respective maximum displacement value.

B. Viscoelasticity of phantom components

Since mechanical properties have to be entered into the
model to calculate displacement fields and in order to vali-
date simulations, i.e., to solve the forward problem, it was
necessary to assess viscoelastic properties of the gel materi-
als that were used. The viscoelastic properties of phantom
materials were determined by using 2D dynamic
elastography22 based on our ultrafast imaging system. Using
this approach, the viscoelasticity was obtained by solving an
inverse problem22 based on the phase velocity and attenua-
tion of plane SWs propagating in a homogeneous gel sample.
A multifrequency study �using harmonic plane waves at dif-
ferent frequencies� allowed to assess the Hooke–Voigt vis-
coelastic parameters.

The two agar-gelatin materials �surrounding medium
and inclusion� were characterized by using a separate homo-
geneous and parallelepipedal phantom for each of them. Vis-
coelastic properties were assessed between 50 and 440 Hz
for the surrounding material and from 50 to 360 Hz for the
inclusion material. Since this latter was very soft and vis-
cous, high frequency plane SWs did not propagate suffi-
ciently to characterize the inclusion material at frequencies
above 360 Hz �as it can be shown by simulation, such a
problem is avoided when the soft material is confined, for
example, in a cylindrical form into a harder one�. The experi-
mental viscoelastic mean values and relative errors �i.e., the
ratio between the standard deviation and the mean value� for

the two samples were obtained by assessing plane SW veloc-
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ciden
ity and attenuation along 80 lines �of 38 mm width� at dif-
ferent depths. Viscoelasticity mean values were �= �14600
+0.7i�� Pa and �= �1150+0.035i�� Pa for the surrounding
medium and inclusion, respectively. Relative experimental
errors were equal to �2.4% and �14.0% for elasticity and
viscosity, respectively.

IV. EXPERIMENTAL VALIDATION OF THE 3D MODELS

A. Monochromatic case

The first experimental validation consisted in comparing
experimental and theoretical stationary displacement fields
due to the scattering of a monochromatic incident SW. This
validation is necessary since the harmonic simulation also
served to model a transient incident wave scattering. In ad-
dition, monochromatic excitation of soft tissues is commonly
used in magnetic resonance elastography and in Doppler so-
noelastography. Two harmonic excitations, 350 and 450 Hz,
have been chosen to verify the validity of the harmonic
model. This choice has been made because a large bandwidth
was covered by the transient wave experimentally generated
�see Fig. 2�.

Figure 4 presents a 3D view of experimental and theo-
retical normalized displacements for the two harmonic exci-

FIG. 4. �Color online� 3D representation of experimental �left� and simula
bottom images correspond to the scattering of 350 and 450 Hz harmonic in
tations. A quarter volume was cut out from the entire scanned
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�or calculated� space in order to better visualize the displace-
ment field into the inclusion. As one can see, a great similar-
ity is noted between displacements within the inclusion and
those within the surrounding medium for the two incident
waves. One can also notice that the correspondence between
simulations and measurements is not satisfied everywhere in
the 3D space. In particular, it appears that the experimental
frontwaves are not always strictly planar and that phase and
amplitude shifts exist in certain regions. In order to compare
more rigorously simulations with experiments and study the
differences, the stationary fields were compared, first, fol-
lowing a plane � �namely, the plane z=−17.5 mm�, then
along a line �1D� parallel to the x axis and contained in the
plane �, and finally along the z axis �i.e., the cylinder axis�.

Figure 5 shows the 2D normalized stationary displace-
ment fields in the plane � for the two harmonic incident
waves. The horizontal striations �jitter errors� appearing in
the experimental displacements correspond to the piezoelec-
tric elements of the ultrasonic linear array. It is noticeable
that measurements contain experimental noise due to the
relatively small amplitude of displacements at high frequen-
cies �at lower frequencies, strong displacement modulations
do not appear within the inclusion�. Despite the presence of
noise, one can see the good agreement between measured
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perimental incident wave was inclined, in the plane
�o ,ex ,ey�, by an angle �=−3° relative to the x axis. Figure 5
shows that this inclination, which has been measured and
entered into the model, is correctly simulated.
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One can also observe in Fig. 5 that the presence of os-
cillations in the inclusion is well simulated by the model.
This is confirmed in Fig. 6 that represents, for both selected
frequencies, the superposition of the experimental and simu-
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lated displacement profiles along a line �y=0� parallel to the
x axis, crossing the inclusion and contained in the plane �. A
good correspondence between calculations and measure-
ments is observable, except for the region immediately after
the inclusion in the positive x direction. One can note the
effect of attenuation increasing with frequency between the
two plots, particularly in the region ranging between 5.0 and
20.0 mm. One may also notice differences in amplitude be-
tween measured and calculated displacements in Fig. 6 that
are also observable in the stationary fields of Fig. 5. This is
due to three principal reasons. The first one is the uncertainty
in mechanical properties of materials composing inclusion
and surrounding medium given in Sec. III B. Since theoreti-
cal displacements are calculated for mean values of the mea-
sured viscoelastic properties �which are global measure-
ments�, locally, slight differences between simulated and
measured displacements �particularly for wave attenuation�
can exist. The second source of differences is attributed to
the relatively low spatial resolution in the lateral x direction
because of the limited number of elements in the array trans-
ducer. The measured displacements were consequently sub-
sampled �particularly into the inclusion where wavelengths
are smallest� and an error on the inclusion localization oc-
curred. Finally, the whole phantom dimensions were finite
and the surrounding medium viscosity was relatively low.
Experimentally, in the harmonic regime, this caused SW re-
flections at boundaries that perturbed the measured displace-
ments into the inclusion and in its neighboring region.

The abovementioned sources of errors were simulta-
neously present but they did not dramatically affect the qual-
ity of measurements. This is also verified in Fig. 7, where
experimental and theoretical stationary displacements along
the z axis are compared for each tested frequency. As one can
expect, the wavelength following the z direction, as in the
other directions, is inversely proportional to the incident
wave frequency �which is 14.5 and 11.3 mm at 350 and 450
Hz, respectively�. The best agreement is thus noticed at the
highest frequency of 450 Hz in Fig. 7. Existing differences
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FIG. 7. Comparison of experimental and simulated stationary displacements
along the z axis into the inclusion for �a� the 350 Hz harmonic incident wave
and �b� for the 450 Hz harmonic incident wave �—– experimental; � simu-
lation�.
could be explained by the spatial discretization error ��z
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=2.5 mm� and by elastic wave reflections at phantom
boundaries that are strongest at low frequencies �since SWs
are less attenuated at low frequencies�.

Before concluding for the monochromatic case, it is im-
portant to point out that the presence of oscillations in the
inclusion, observed in the horizontal planes �see, for ex-
ample, Fig. 6� and along the vertical direction �as in Fig. 7�,
is directly related to the inclusion constitutive material vis-
coelasticity. Indeed, on one hand oscillation wavelengths are
a function of elasticity, and on the other hand their ampli-
tudes depend on both elasticity and viscosity. Another scat-
tered wave characteristic is its spatial distribution in a given
horizontal plane, i.e., the SW slowing down after crossing
the inclusion, the orientation of diffraction lobes in the sur-
rounding medium �see Fig. 5�, the 2D shape of oscillations
into the inclusion, the wave diffraction angle into the inclu-
sion with respect to its axis, etc. All these behaviors are
related to the internal and external viscoelastic properties and
also to the contrast between them. Consequently, as it is de-
veloped in Sec. IV B, one could exploit this rich information
to characterize mechanical properties of heterogeneous me-
dia.

B. Transient case

The harmonic 3D model is now used to simulate scat-
tering of a transient SW with the previously described strat-
egy. Both simulated and experimental incident waves were
constituted by six oscillations, modulated by a Blackman
temporal window to minimize Gibbs effects, with 350 Hz
central frequency �see Fig. 2�. Theoretical displacements are
compared as a function of time with measurements obtained
on the same phantom as the one used for the monochromatic
excitation.

Figure 8 shows the transient wave propagation at differ-
ent moments in half of the total 3D probed volume. This 3D
view has been chosen to visualize more precisely the internal
interaction of the incident SW with the cylindrical inclusion
and the wave diffraction angle within the cylinder relative to
the z axis. Time-varying experimental and simulated dis-
placements are in good agreement in both inclusion and sur-
rounding media. However, some comments can be made on
the scattering behavior. First, it is noticeable that the experi-
mental incident wave is not perfectly plane �this is observed
at t=21.8 ms in the lower left part of the image�. This ex-
plains slight differences between measured and predicted
displacement fields. A second remark concerns oscillations
observable in simulations in both inclusion and surrounding
media before the incident wave arrival �see the right panel of
Fig. 8 at t=11.4 ms�. These artifacts are due to the Gibbs
phenomenon, which appears when the scattering spectral so-
lution is inversely Fourier transformed to the time domain.
Indeed, since the scattering problem is solved for a finite
frequency range, we applied the zero-padding technique out-
side this range to get the total spectral response. This numeri-
cal technique introduced a small discontinuity in the spectra
and, in consequence, small nonphysical oscillations in the
time response.

Despite these sources of errors, in addition to those ref-

erenced for the harmonic case �except reflections which are
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absent in the transient case�, we can observe that the
3D transient SW scattering was well simulated by the
model. It is important to notice that, as for the
harmonic scattering problem, the wave distribution and
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FIG. 8. �Color online� Time-varying 3D representation of the transient wave
of the volume to visualize the behavior of the wave into the inclusion durin
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amplitude are related to the medium viscoelasticity
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along the propagation path. Typically, the wavelength
and the wave diffraction angle into the cylinder are re-
lated to the inclusion mechanical properties and to the
contrast in viscoelasticity between both media, respec-
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V. CONCLUSION AND PERSPECTIVES

An analytical model was developed to simulate the scat-
tering of an arbitrary �monochromatic or transient� plane SW
by a circular cylindrical heterogeneity. Both inclusion and
surrounding media constitutive materials were soft enough to
allow the slow propagation of SWs which could, conse-
quently, be imaged by an ultrafast ultrasonic system. The
model validation was achieved experimentally on a hetero-
geneous phantom containing a very soft cylindrical inclu-
sion. The comparison of measured and calculated 3D, 2D,
and 1D stationary displacement fields has shown the model
validity to simulate SW scattering by a cylindrical heteroge-
neity. The validated model then served to simulate the scat-
tering of a transient plane SW �using the superposition prin-
ciple�. In this configuration, 3D theoretical temporal
displacements were also in good agreement with measure-
ments. When the geometrical and mechanical configurations
of a scattering problem allow an analytical solving, analyti-
cal approaches are generally more precise, more stable, and
faster than numerical methods �such as finite-element and
finite-difference methods, well adapted to irregular scattering
configurations�. Moreover, analytical models allow the cal-
culation of mechanical fields, such as displacement, strain,
and stress, at any spatial position �a part of the plane, a line,
or a set of points�, without calculating in the whole volume
like in numerical approaches. These advantages could be in-
teresting to solve inverse problems using simulations.

In the context of dynamic elastography of soft struc-
tures, and more generally of living tissues, the approach de-
veloped in the present work could likely be applied to assess
viscoelastic properties of venous blood clots, as introduced
earlier. Indeed, these latter have a cylindrical shape �almost
circular� and are constituted by coagulated blood with elas-
ticity that does not exceed few kilopascals and a viscosity
that is generally high.5 Clot mechanical properties depend on
several factors such as hematocrit level, the time elapsed
since its formation in a blood vessel, chemical and metabolic
conditions, etc. One can then consider to formulate and solve
an inverse problem, into a strategy using both in vivo and
simulated data, to perform mechanical property assessments
of clots. The correlation of the assessed viscoelasticity with
the clot age, its compactness, and biological constitution
would provide to clinicians a complementary tool for venous
thrombosis diagnosis and therapy planning. Moreover, the
general 3D configuration considered here is compatible with
real clinical conditions where mechanical excitation and ul-
trasound imaging angles can be arbitrary due, for example, to
anatomical restrictions. The formulation and resolution of
such inverse problem should deserve attention. Parallel to
this direct application of the present work, the model could
be developed to simulate scattering of SWs by a multilayer
cylindrical inclusion. This extension would permit to treat
the more general and realistic case of an inhomogeneous
inclusion. To be more realistic, another avenue of develop-
ment would be the simulation of SW interaction with geo-
metrically and mechanically more complex heterogeneities
�e.g., hollowed heterogeneities, elliptical cylinders, finite het-

erogeneities, anisotropic materials, etc.�.
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To conclude, this study showed that it is possible to
analytically model SW interactions with soft bodies. The im-
pact of this model is not limited to ultrasound elastography
�in both harmonic and transient regimes� but also to MRI
based elastography �monochromatic regime� that can be for-
mulated in a similar framework. It is finally conceivable to
extend this modeling strategy to other pathologies such as
breast, brain, prostate and liver tumors, atherosclerosis, etc.
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Appendix

The �6�6� Tn matrix elements in Eq. �8� are given by

Tn�1,1� =
1

2
K1�Jn−1�K1R� − Jn+1�K1R��, Tn�1,2�

=
R

2
k1ik2z

�Jn−1�k1R� − Jn+1�k1R�� ,
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n
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Tn�1,5� = −
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ik2z
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R� ,
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1

2
k1�Jn−1�k1R�
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Tn�2,4� = −
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Tn�3,2� = R�−
�k1�2

4
�Jn−2�k1R� − 2Jn�k1R� + Jn+2�k1R��
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The second member vector in Eq. �8� contains the nth
components of displacement and stress due to the incident
wave at the cylinder boundary. The bn vector elements are as
follows:
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